1)quotient singular value decomposition商奇异值分解
1.By applying the singular value decomposition and the quotient singular value decomposition,the inverse problem of anti-bisymmetric anti-orth-bisymmetric matrices with a sub-matrix constraint was studied firstly.利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论了子矩阵约束下反对称正交反对称矩阵的反问题,给出了其有解的充分必要条件及在有解条件下的通解表达式,并得到了此问题的最佳逼近解,给出了求最佳逼近解的数值算法及数值算例,验证了方法的有效性。
2.By applying the quotient singular value decomposition of matrix pairs,the necessary and sufficient conditions are obtained for the existence of the centro-symmetric solutions of the matrix equation AX = B,and the expression of the minimal and maximal rank solutions is also shown.利用矩阵对的商奇异值分解,得到了矩阵方程AX=B有中心对称解的充分必要条件,以及有解时,最小、最大秩解的一般表达式。
3.By making use of the quotient singular value decomposition (QSVD) of a matrix pair ,this paper established the necessary and sufficient conditions for the existence of and the expressions for the symmetric ortho-symmetric solution of minimum Frobenius norm of matrix equation AXAT = B.利用矩阵对的商奇异值分解,给出了线性流形上矩阵方程AXAT=B存在极小Frobe- nius范数对称正交对称解的充要条件及其解的表达式。
2)QSVD商奇异值分解
1.Using the singular value decomposition(SVD) and quotient singular value decomposition(QSVD) of a matrix and matrix pair,this paper establishes the necessary and sufficient conditions for the existence and the expressions for the matrix equation X ~T AX=B under a submatrix constraint.利用矩阵的奇异值分解和商奇异值分解,建立了子矩阵约束下的矩阵方程XAX=B解存在的充分必要条件,并给出了通解的表达式。
3)quotient singular-value decomposition商奇异值分解
1.By applying the singular-value decomposition(SVD) and quotient singular-value decomposition(QSVD),the sufficient and necessary conditions and the normal solutions of the inverse problem of anti-bisymmetric matrices with a submatrices constraint are given,together with the optimal approximate solution.利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论了子矩阵约束下双反对称矩阵扩充问题,给出了其扩充的充要条件和扩充后的通解表达式,并给出了此问题的最佳逼近解。
2.By applying the singular-value decomposition(SVD) and the quotient singular-value decomposition (QSVD),the inverse problem of symmetric orth-symmetric matrices with a submatrix constraint is studied.利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论子矩阵约束下对称正交对称矩阵反问题,给出了其有解的充分必要条件及在有解条件下的通解表达式,并得到了此问题的最佳逼近解,给出了求解最佳逼近解的数值算法及数值算例。
4)Singular value decomposition奇异值分解
1.Application of singular value decomposition (SVD) in solution of T_2 relaxation spectra from nuclear magnetic resonance (NMR) log data;应用奇异值分解算法的核磁共振测井解谱方法
2.Random noise attenuation using predictive filtering in F-X domain by singular value decomposition;F-X域奇异值分解预测滤波法随机噪声衰减
3.Application of matrix singular value decomposition (SVD);矩阵奇异值分解(SVD)的应用
英文短句/例句
1.singular value decomposition of image matrix影像矩阵的奇异值分解
2.Singular-value Decomposition in Time Series Analysis奇异值分解在时间序列分析中的应用
3.Image Watermarking Algorithm Based on Blocked SVD基于分块奇异值分解的图像水印算法
4.Face Expression Recognition Based on Singular Value Decomposition;基于奇异值分解的人脸表情识别研究
5.Kronecker product and singular value decomposition of weighted extended matrix;Kronecker积与加权延拓矩阵的奇异值分解
6.A New Method of Tremor Diagnosis Based on Singular Value Decomposition of EMD基于EMD奇异值分解诊断震颤的新方法
7.Digital Image Watermarking Algorithms Based on Singular Value Decomposition基于奇异值分解的数字图像水印算法
8.Noise Reduction of Frequency Response Function Using Singular Value Decomposition基于奇异值分解的频响函数降噪方法
9.Algorithm of Shot Boundary Detection Based on Singular Value Decomposition视频镜头边界检测中奇异值分解算法
10.A Method of Image Compression Based on Singular Value Decomposition一种基于奇异值分解的图像压缩方法
11.SINGULAR VALUE DECOMPOSITION AND ALGORITHM OF o-SYMMETRIC MATRIXo-对称矩阵的奇异值分解及其算法
12.2-D DOA Estimation Method Based on Joint SVD基于联合奇异值分解的二维DOA估计
13.The Digital Watermarking Based on the SVD and Singular Value Quantification;一种基于矩阵奇异值分解和奇异值量化的数字水印算法
14.A Theoretical Analysis of Linear Least Square based on Singular Value Decomposition奇异值分解求线性最小二乘解的理论分析
15.Decision of threshold for singular value decomposition filter based on SNR's empirical value基于信噪比经验值的奇异值分解滤波门限确定
16.Applications of SVD and Principal Component Analysis in Vehicle Type Recognition;奇异值分解和主成分分析在车型识别中的应用
17.Human face characteristic extraction and application based on overall and partial singular values基于整体与部分奇异值分解的人脸识别
18.Image denoising based on SVD using image rotation and block基于图像旋转和分块的奇异值分解图像去噪
相关短句/例句
QSVD商奇异值分解
1.Using the singular value decomposition(SVD) and quotient singular value decomposition(QSVD) of a matrix and matrix pair,this paper establishes the necessary and sufficient conditions for the existence and the expressions for the matrix equation X ~T AX=B under a submatrix constraint.利用矩阵的奇异值分解和商奇异值分解,建立了子矩阵约束下的矩阵方程XAX=B解存在的充分必要条件,并给出了通解的表达式。
3)quotient singular-value decomposition商奇异值分解
1.By applying the singular-value decomposition(SVD) and quotient singular-value decomposition(QSVD),the sufficient and necessary conditions and the normal solutions of the inverse problem of anti-bisymmetric matrices with a submatrices constraint are given,together with the optimal approximate solution.利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论了子矩阵约束下双反对称矩阵扩充问题,给出了其扩充的充要条件和扩充后的通解表达式,并给出了此问题的最佳逼近解。
2.By applying the singular-value decomposition(SVD) and the quotient singular-value decomposition (QSVD),the inverse problem of symmetric orth-symmetric matrices with a submatrix constraint is studied.利用矩阵的奇异值分解和矩阵对的商奇异值分解,讨论子矩阵约束下对称正交对称矩阵反问题,给出了其有解的充分必要条件及在有解条件下的通解表达式,并得到了此问题的最佳逼近解,给出了求解最佳逼近解的数值算法及数值算例。
4)Singular value decomposition奇异值分解
1.Application of singular value decomposition (SVD) in solution of T_2 relaxation spectra from nuclear magnetic resonance (NMR) log data;应用奇异值分解算法的核磁共振测井解谱方法
2.Random noise attenuation using predictive filtering in F-X domain by singular value decomposition;F-X域奇异值分解预测滤波法随机噪声衰减
3.Application of matrix singular value decomposition (SVD);矩阵奇异值分解(SVD)的应用
5)Singular Value Decomposition(SVD)奇异值分解
1.To analyse the possible interactions among multiple flexible AC transmission system(FACTS) controllers in a power system,an approach based on the singular value decomposition(SVD) is proposed for the analysis of interactions between thyristor controlled series compensator(TCSC) and static Var compensator(SVC).针对电力系统中多台灵活交流输电装置(FACTS)控制器之间可能存在的交互影响问题,以可控串联补偿器(TCSC)和静止无功补偿器(SVC)2种FACTS控制器为研究对象,提出了一种基于奇异值分解(SVD)的交互影响分析方法,定量分析了新英格兰10机39节点电力系统中同时装设TCSC和SVC时,2台FACTS装置之间可能存在的交互影响问题及电气参数对交互作用的影响。
2.First of all,D-H matrix is used to construct a kinematics model and a geometric parameter identification model for the robot,singular value decomposition(SVD) for Jacobian matrix is given,and elementary row operations are applied to the last 5 rows of the matrix to find the geometric parameters to be compensated.首先,使用D-H矩阵对机器人建立了运动学模型和几何参数识别模型,对雅可比矩阵进行奇异值分解并对分解后的正交阵的最后5行进行初等行变换,以确定需要补偿的几何参数。
3.According to inverse problem mathematical model of one dimensional wave equation,the singular value decomposition(SVD) technique is applied to analyze the characteristics of inversion equations.基于一维波动方程反问题的数学模型,应用奇异值分解分析算子方程的不适定性。
6)SVD奇异值分解
1.Watermarking Algorithm for Digital Image Based on DCT and SVD;一种基于离散余弦变换和奇异值分解的数字水印算法
2.A Shot Detection Algorithm Based on SVD and Feature-level Fusion;基于奇异值分解和特征融合的镜头检测算法
3.Digital Image Watermarking Algorithm Based on DWT and SVD;基于小波变换和奇异值分解的数字水印算法
延伸阅读
力学量的可能值和期待值 在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足 的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。 在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。 量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开: 在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。 因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。 在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示: 上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为