对流方程,convection equation
1)convection equation对流方程
1.A new semi-implicit scheme for two-dimensional convection equation;二维对流方程的一种半隐计算格式
2.Alternating group explicit method for solving convection equation;对流方程的交替分组显示方法
3.Subdomain precise integration parallel method for solving convection equation;解对流方程的子域精细积分并行算法
英文短句/例句

1.Subdomain precise integration parallel method for solving convection equation解对流方程的子域精细积分并行算法
2.A REDUCED FINITE DIFFERENCE SCHEME BASED ON PROPER ORTHOGONAL DECOMPOSITION FOR THE NONSTATIONARY CONDUCTION-CONVECTION PROBLEMS热传导对流方程基于POD的差分格式
3.The Study with DG-FEM for Convection-diffusion Equation对流扩散方程的间断有限元方法研究
4.Space-time Discontinuous Galerkin Method for Advection-diffusion Problems on Time-dependent Domains对流—扩散方程的时空间断有限元方法
5.Upwind Cell-centered Mixed Methods for Convection-diffusion Problems对流扩散方程的迎风Cell-centered混合元方法
6.The Three-Step ENO-MMOCAA Difference Method for Convection Diffusion Equation对流扩散方程的三层ENO-MMOCAA差分方法
7.The Discussion about Some Difference Schemes for Convection-Diffusion Equations;关于对流扩散方程的一些格式的探讨
8.Two-Grid Scheme for Solving Nonlinear Convection-Diffusion Equations;非线性对流扩散方程的两重网格算法
9.An Economical Difference Scheme for Nonlinear Convection-Diffusion Equations;非线性对流扩散方程的经济差分格式
10.Convective Cahn-Hilliard Equation with Dynamic Boundary Conditions;具动态边界条件的对流Cahn-Hilliard方程
11.The Out-differential Equation of Ideal Fluid in General Theory of Relativity;广义相对论中理想流体的外微分方程
12.High-Order Difference Schemes of Exponential Type for Convection Diffusion Equation with Source Term;对流扩散方程的指数型高阶差分格式
13.Numerical Solutions of Two-Dimension Fractional Advection-Dispersion Equations二维分数阶对流-弥散方程的数值解
14.Source-Type Solutions of a Non-Newtonian Filtration Equation with Absorption and Convection;具吸收项和对流项的非Newton渗流方程的源型解
15.Numeric Approachment of Diffusion-convection-reaction Equations and Simulation of Coal Spontaneous Combustion;煤自燃过程中对流扩散反应方程组的数值模拟
16.Optimization for solution of 2D nonlinear convection diffusion problem二维非线性对流扩散方程求解程序优化
17.A Discrete and Accelerative Method for Two Dimersional Convection-Diffusion Equation二维对流扩散方程的一种离散与加速方法
18.A New Approach to Introduction of Bernoulli Equation of Fluid Relative Movement;流体相对运动伯诺里方程推导的又一种方法
相关短句/例句

Convective equation对流方程
1.For solving convective equation u t=au x , a new group of implicit different schemes containing three parameters are constructed.为求解对流方程 ut=aux 构造一族新的含 3参数 3层隐式差分格式 (在特殊情况下是 2层 ) ,其截断误差至少可达 O[( Δt) 2 +( Δx) 4]。
2.A class of semi explicit two layer difference schemes containing biparameters are constructed for convective equation  u  t + a  u  x =0.对对流方程 u t+a u x=0 ,构造了一族两层双参数半显式格式 ,适当选择两个参数 ,可以得到精度高稳定性好的半显式格式 。
3.A class of new three-layer difference sehemes containing biparameters are constructed for convective equation Ut=aUx A double-layer scheme will be obtained in case α= 1/2,β=0.对对流方程ut=aux构造一族含双参数的三层差分格式,当参数α=1/2,β=0时得到双层格式。
3)advection equation对流方程
1.In this paper,two high-resolution explicit schemes are given by interpolation based on different pyramidal stencil for the nonlinear advection equation in two dimensional space.文章基于金字塔网格,采用插值的方法,构造了2个二维对流方程的二阶显式格式,并给出了一个判断准则。
2.A higer-order characteristic difference is presented for advection equation.对现有对流方程解的数值格式作了综述,针对现有格式不能很好模拟浓度分布尖陡这一情况,建立了一种近九阶精度的特征差分格式,并给出算例。
4)3-D advection and diffusion equation3D对流扩散方程
5)convection-diffusion equation对流扩散方程
1.Comparative investigation of some high-order explicit schemes combined with QUICK for the convection-diffusion equation of pollutants;污染物对流扩散方程的几种新的高阶QUICK组合显格式比较研究
2.Spline subdomain precise integration scheme for convection-diffusion equation with constant coefficient;一维常系数对流扩散方程的样条子域精细积分法
3.H~1-Galerkin mixed element method for convection-diffusion equation;对流扩散方程H~1-Galerkin混合有限元方法
6)Convection-dispersion equation对流-弥散方程
1.At last,the convection-dispersion equations were approximately normalized and the approximate solutions of the equations were gotten.并借助于摄动矩的理论,求出了随机微分方程质点位移的均值与方差,之后将对流-弥散方程进行正态近似,得到了方程的近似解。
延伸阅读

对流扩散方程  表征流动系统质量传递规律的基本方程,求解此方程可得出浓度分布。此方程系通过对系统中某空间微元体进行物料衡算而得。对于双组分系统,A组分流入某微元体的量,加上在此微元体内因化学反应生成的量,减去其流出量,即为此微元体中组分A的积累量。考虑到组分A进入和离开微元体均由扩散和对流两种作用造成,而扩散通量是用斐克定律(见分子扩散)表述的,于是可得如下的对流扩散方程:      式中DAB为组分A在组分B中的分子扩散系数;rA为单位时间单位体积空间内因化学反应生成组分A的量;CA为组分A的质量浓度;τ为时间;ux、uy和uz分别为流速u的三个分量。对于仅有x方向的定态流动,且无化学反应生成组分A时,则对流扩散方程可简化成为:        将浓度边界层概念运用于传质过程,可将二维对流扩散方程简化,得到传质边界层方程:      上述方程表明,传质与流动密切相关;只有解得速度分布之后,才能从对流扩散方程解得浓度分布,进而求得传质通量。