1)Poisson distributionPoisson分布
1.Multinomial distribution and multi-Poisson distribution;多项分布与多元Poisson分布
2.Optimizing order strategies of twoechelon retailer system with Poisson distributions;基于Poisson分布需求的两级零售系统最优订货策略
3.Several kind of estimates of Poisson distribution s parameter;Poisson分布参数的几种估计
英文短句/例句
1.Multinomial distribution and multi-Poisson distribution;多项分布与多元Poisson分布
2.Several kind of estimates of Poisson distribution s parameter;Poisson分布参数的几种估计
3.Based on the Disstribution of Poisson Call Center Staffing Aralysis;基于Poisson分布的呼叫中心人员配置分析
4.Bayesian Estimate of Poisson Distribution Parameter Under Entropy Loss Function;熵损失函数下Poisson分布参数的Bayes估计
5.A New Method of Calculating n Order Origin Moment about Poisson Distribution;计算Poisson分布n阶原点矩的新方法
6.On a Correlated Two Poisson Risk Model;具有相关性的Poisson分布风险模型
7.Bivariate Mixed Poisson Distribution and Application in Insurance;二元混合Poisson分布及其在保险中的应用
8.The Easily-Ignored Property of Poisson DistributionPoisson分布易被忽视的重要性质
9.Comparison Of Some Confidence Intervals About Poisson DistributionPoisson分布的几种置信区间的比较
10.Conditions on the Stochastic Increase of Mixed Poisson Distribution混合Poisson分布随机递增的条件
11.Empirical Bayesian Estimation for Parameter of Poisson Distribution with Partially Missing Data;具有部分缺失数据时Poisson分布参数的经验Bayes估计
12.Recursive Formula of the Nth Moment of Binomial,Poisson Distribution and Geometric Distribution关于二项分布、Poisson分布和几何分布的高阶矩的递推公式
13.Estimation for Zero-failureprobability of Poisson Distribution under Q-Symmetric Entropy Loss Function;Q-对称熵损失下Poisson分布无失效概率的估计
14.Parameter estimation of Poisson distribution and binomial distribution under Q-symmetric entropy loss functionQ-对称熵损失函数下的Poisson分布及二项分布的参数估计
15.DEFICIT DISTRIBUTION IN DOUBLE COMPOUND POISSON MODEL UNDER HEAVYTAILED CLAIMS;重尾索赔下双复合Poisson模型的赤字分布
16.Poisson distributon and negative binomial distribution fitting for data of cytokinesis-block micronucleus testPoisson及负二项分布对微核试验数据拟合效果
17.Another Choice to the Distribution of Aggregate Claims-compound Poisson-inverse Gaussian Distribution;总理赔量分布的另一种选择:复合Poisson-逆高斯分布(英文)
18.Resolution restoration algorithm based on maximum a posteriori from Poisson-Markov distribution and blind multichannel deconvolution基于Poisson-Markov分布最大后验概率的多通道超分辨率盲复原算法
相关短句/例句
Poisson-Geometric distributionPoisson-Geometric分布
3)Poisson-Geomtric distributionPoisson-Geomtric分布
4)Poisson-Gumbel distributionPoisson-Gumbel分布
5)Poisson type distributionPoisson型分布
1.It is proved in this parper that population X of nonsingula distribution with EX 2<∞ is of Poisson type distribution P(λ,α,1) if and only if the statistic T 2-T 1 has constant regression on T 1 ,where T 1==1n∑ni=1 X i is sample mean and T 2=1n-1∑ni=1(X i-) 2 is sample variance.证明了满足EX2 <∞的具有非退化分布的母体X服从Poisson型分布P(λ ,α ,1)的充要条件是T2 -T1关于T1有常回归 ,其中T1= X =1n ∑ni =1Xi,T2 =1n - 1∑ni=1(Xi- X) 2 分别为子样均值和子样方
6)Mixed Poisson distribution混合Poisson分布
1.Based on the claim numbers subject to mixed Poisson distribution and Poisson-Geometric distribution,when the claim amount of individual guarantee is subject to exponential distribution,this paper gives the distribution of accumulated claim amount and the expression of the mean claim amount of individual guarantee.本文在索赔次数服从混合Poisson分布与复合Poisson-Geometric分布的基础上,当个体保单索赔额服从指数分布时,给出了累计索赔额服从的分布及个体保单的平均索赔额表达式。
延伸阅读
Poisson分布Poisson分布Poisson distribution P‘凶刀l分布tP成岛仪l山目ri加‘阅;nvacco皿ap鱿npe皿e-湘IIHel 取非负整数值k二0,l,·的随机变量X的概率分布(prohabi石ty distribution):X取k的概率为 ,k 尸}X=k}二e一李,. 人!其中参数元>0.Poisson分布的母函数(ge~tmgful犯-tioll)和特征函数(d祖mctel七tic funCtion)相应为 (P(:)=。·“一’)和八t)二以pl元(e“一l)}.数学期望、方差和较高阶半不变量都等于元.Po讹。分布的分布函数 _、钾一刃 F(义)一谷〕“一‘卞·对千k二O,l,…可以表示为 :(、)一共f,人。一、,一1一、;+.(*), k!J了--·,-一:+、,·,,其中S*,.(人)是参数为人十1的f分布(galllma-d治trlbutjojl)函数在点又处的值;因此,特另11有 p{X=k}=S*(元)一S*一J(又);或者表示为 F(k)=1一HZ、+2(2又),其中H:*十2(2又)是白由度为2人一卜2的义2分布(‘cll卜squ:、耐’distributxon)函数在点2元处的值.分别服从参数为之,,…,元。的Po姚on分布的独立随机变量x.,二,龙之和,服从参数为元、十一卜之的Pojsson分布. 相反,如果二独立随机变量XI与XZ之和X,+X:服从Poisson分布则二随机变量X}和戈也都服从Po俪on分布(P:,泛KoB定理(Ra下kovth①rclll)).关于独立随机变量之和的分布收敛于Poisson分布,存在的一般允分必要条件.当只卜的时,随机变量(X一久)/寸下的极限分布是标准正态分布(no眼d distributio一飞). 氏姚on分布.最初是由5.Poisson(1837)在,7(试验次数)很大而p(成功概率)很小的情形下,推导二项分布(bino训al dis创bution)的渐近公式时得到的.见POis,”1定理(Po璐on tlleo爬111 2).Po讹。n分布很好地近似描绘许多物理现象(见【21,1,第6章).Po眺on分布是i午多离散型分布的极限分布,例如.超几何分布(hyperge。叱tric distribution),负二项分布(11eg币ve bino二11 distribution),代妙a分布(玛lyad讯ribution),以及“质点按盒分配”问题中在其参数一定变化情形下产生的分布.在概率模型中,Poisson分布作为精确概率分布有很大作用.在随机过程论(见PI比以价过程(P溅on宜oce骆))中,Poisson分布作为精确概率分布其本质表现得最充分:Poisson分布是在固定时间段t内某些随机事件出现次数X(t)的分布 二(:卜、卜一平,、一。