一种利用超声波强化酶促合成植物甾醇酯/植物甾烷醇酯的方法

文档序号:409503阅读:222来源:国知局
专利名称:一种利用超声波强化酶促合成植物甾醇酯/植物甾烷醇酯的方法
技术领域
本发明涉及一种留醇酯的合成方法,具体涉及一种通过超声辅助强化酶催化酯化合成植物留醇酯/植物留烷醇酯的方法,用于提高酶促酯化的速度和过量脂肪酸的皂化去除效率。
背景技术
研究表明,由植物留醇与脂肪酸通过酯化反应制得的植物留醇酯/植物留烷醇酯,可以大大增加植物留醇/植物留烷醇酯的脂溶性,从而能比较方便地添加到油脂或含油脂食品中。另外,植物留醇酯的吸收利用率是植物留醇的5倍,且具有更好的亲脂性和更佳的降胆固醇效果,是一种新型的功能性食品基料。2010年,植物留醇酯已被我国卫生部列入新食品资源。目前,植物留醇酯/植物留烷醇酯的合成主要有化学法和酶法两种。化学法合成植物留醇酯的途径有直接酯化法、酰氯酯化法、酸酐酯化法、酯交换法等。通常使用甲醇钠、乙醇钠等烷氧基碱金属化合物作为催化剂,易于工业化但容易腐蚀设备;且反应过程需要高温,易产生副产物;同时,由于产物色泽深,还需要脱色等在后处理步骤、易造成三废污染环境等严重缺点。酶催化合成法条件温和,避免了高温产生的副反应,且产物容易分离纯化。但研究发现,脂肪酶虽然可以较好地催化酯化反应的进行,但存在底物(留醇)溶解度差,反应转化率比较低,而且反应时间过长,酶使用量大,产量低,成本高等问题。如何提高产物产率,缩短反应时间同时减少酶的用量成为酶催化留醇酯合成中亟待解决的问题。超声波是弹性介质中的一种机械波,功率超声是一种能量形式,可用于影响或改变媒介的性质。超声波在传播过程中,对介质的影响主要有三个作用加热作用、机械传质作用及空化作用。超声波作用于酶分子时,会促进酶分子的构象发生改变。超声波作为一种物理作用,对加速化学反应,提高反应产率,甚至改变反应历程,都起到一定的作用,并已广泛应用于化学化工,医学和工业等领域。超声波辅助酶法酯化反应报道不多,目前尚未见超声波应用于酶促合成留醇酯/植物留烷醇酯的相关资料公开。

发明内容
本发明的目的在于提供一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,使用本方法不但可以缩短酶促酯化反应的时间和减少酶的使用量,并且可以促进脂肪酸的皂化反应速度,从而提高分离纯化的效率。为实现上述目的,本发明所采取的技术方案如下一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于它包括如下步骤I)配制非均相酶反应体系按摩尔比I : I. 2-2称取植物留醇(或植物留烷醇酯)和脂肪酸(即反应底物),加入反应釜中,然后加入反应溶剂,保持植物留醇或植物甾烷醇酯浓度为100-200mmol/L ;然后加入酶和分子筛,酶加入量为6_20g/L,分子筛加入量为20-60g/L,反应温度控制在50-60°C,采用机械搅拌充分混匀;2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度在50_60°C之间,将超声波探头浸入反应溶液,开启超声波发生器,在机械搅拌下进行持续超声波辐射,辐射时间O. 5-3h,辐射完毕后保持在机械搅拌下继续反应4-10h ;3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,采用皂化反应除去未反应的脂肪酸,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出反应溶剂,得到植物甾醇酯粗品或植物留烷醇酯粗品 ;加入植物留醇酯粗品或植物留烷醇酯粗品体积O. 4-0. 6倍的5wt%碳酸氢钠水溶液(即弱碱水溶液)进行脂肪酸皂化,温度在40-60°C,搅拌速度为100-200rpm,开启超声波发生器持续辐射5_30min,然后停止超声,继续搅拌5_25min,皂化完毕后,得到植物留醇酯/植物留烷醇酯和脂肪酸皂混合物;采用该植物留醇酯/植物甾烷醇酯和脂肪酸皂混合物体积I. 5-2倍的有机溶剂萃取植物留醇酯/植物留烷醇酯,有机溶剂层回收(即脱溶剂),减压除去有机溶剂,即得到精制的植物留醇酯/植物留烷醇酯。按上述方案,步骤I)中所述的植物留醇可以是豆留醇、谷留醇、菜油留醇、菜油甾醇等中的任意一种或二种以上按任意配比的混合物;植物留烷醇由上述植物留醇氢化获得(即由豆留醇、谷留醇、菜油留醇、菜油留醇等中的任意一种或二种以上按任意配比的混合物氢化获得)。按上述方案,步骤I)中所述的脂肪酸为棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸等中的任意一种或二种以上按任意配比的混合物,也可以是植物油水解得到的混合脂肪酸。按上述方案,步骤I)中所述的反应溶剂即超声辅助酶促酯化的反应溶剂)为正己烷、异辛烷、环己烷、正庚烷等中的任意一种或二种以上按任意配比的混合物。优选正己烷。按上述方案,步骤2)中所述的酶为活力大于10000U/g的游离的脂肪酶或固定化的脂肪酶(即固定化酶),包括来来源于微生物发酵的皱褶假丝酵母、解脂假丝酵母、南极假丝酵母或洋葱假单胞菌脂肪酶。优选来源于皱褶假丝酵母、南极假丝酵母和解脂假丝酵母的脂肪酶。按上述方案,步骤2)中超声波发生器的频率为20_40kHz,功率为100-300W ;步骤3)中超声波发生器的频率为30-60kHz,功率为100-200W。按上述方案,步骤3)中有机溶剂可以是正己烷、异辛烷、环己烷或石油醚。步骤I)中配制非均相酶反应体系时,机械搅拌速度为100_300rpm,混合时间为10_30min。步骤2)中超声辅助酶促酯化时只需在反应初始阶段进行超声辐射,超声时间为
O.5-3h ;超声结束后保持机械搅拌下继续反应4-10h,搅拌速度为100-300rpm。本发明采用将超声辐射探头直接浸入反应体系中的超声模式而不是使用超声波清洗机的间接超声模式。本发明的有益结果是(I)超声波在使用适当频率和功率的超声波辐射不仅不会破坏酶的结构,而且可以使脂肪酶的活性位点充分暴露,从而提高酶的催化活性,同时超声波可以促进酶和反应底物的充分接触,与单纯机械搅拌相比,酶促酯化反应时间缩短50% -60%,酶用量减少20% -30%。即采用本方法可以缩短酶促酯化反应的时间并减少酶的使用量。(2)超声波预处理可以显著提高反应底物(植物甾醇/植物甾烷醇)的溶解度,从而提高反应体系中底物的浓度,增大单次反应留醇酯的产量,反应总收率高(反应总收率大于80% ) o(3)由于本发明只需在酶促酯 化反应和皂化去除脂肪酸的初始阶段进行超声辅助,超声时间短,能耗低,且易于实现工业化。(4)由于本发明采用浸入式超声波辐射模式,超声波的能量可以零损失的完全传递到反应体系中,因此只需在常规搅拌反应釜上加装超声波探头和相应的发生装置即可,设备投资小,效率高。(5)本发明超声波辐射可以显著提高皂化去除脂肪酸的效率,只需皂化处理I次,就可以使产品酸价小于I. 0mgK0H/g,过氧化值小于5meq/kg,且处理时间较常规搅拌缩短20%以上。即可以促进脂肪酸的皂化反应速度,从而提高分离纯化的效率。(6)与现有的植物留醇酯/植物留烷醇生产方法相比,本方法制得的植物留醇酯/植物留烷醇酯产品具有色泽浅,品质高的特点,无需进一步吸附脱色,从而减少了吸附脱色等后处理步骤造成的产品损失。


图I为本发明的一个实施的工艺流程框图。
具体实施例方式为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。实施例I :如图I所示,一种利用超声波强化酶促合成植物留醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取413g(lM)植物甾醇(豆甾醇),417g(l. 5M) a-亚麻酸加入反应釜中,然后加入IOL异辛烷(此时植物留醇浓度为100mmol/L),加入解脂假丝酵母脂肪酶150g,分子筛加入量为600g,溶液温度加热至55°C,采用机械搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为55°C,以IOOrpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到20Hz,功率为100W,在机械搅拌超声波辐射40min后停止,继续机械搅拌反应5h,酯化率可达85%以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出异辛烷,大约可得到580g a -亚麻酸留醇酯(留醇酯粗品,体积约为600mL),加入240mL的5wt %碳酸氢钠水溶液进行脂肪酸阜化,温度控制在40°C,搅拌速度为200rpm,开启超声波发生器,调整频率到30kHz,功率为100W,在机械搅拌超声波辐射IOmin后停止,继续搅拌20min,皂化完毕后,得到留醇酯和脂肪酸皂混合物(体积约为800mL);采用1200mL的正己烷(有机溶剂)萃取甾醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约550g精制的植物甾醇酯(甾醇酯产品),反应总收率大于80%。此时得到的甾醇酯含量大于97wt%,酸价小于I. 0mgK0H/g,过氧化值小于5. Omeq/kgo实施例2 一种利用超声波强化酶促合成植物留醇酯的方法,它包括如下步骤
I)配制非均相酶反应体系称取621g(l. 5M)植物甾醇(谷甾醇),630g(2. 25M)亚油酸加入反应釜中,然后加入IOL正己烷(此时植物留醇浓度为150mmol/L),分子筛加入量为400g,加入南极假丝酵母固定化酶IOOg(Novozym 435,诺维信(中国)生物科技有限公司)溶液温度加热至50°C,采用机械搅拌充分混匀。 2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为50°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到25Hz,功率为200W,在机械搅拌超声波辐射Ih后停止,继续机械搅拌反应6h,化率可达87 %以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出正己烷,大约可得到890g亚油酸甾醇酯(甾醇酯粗品,体积约为900mL),加入450mL的5wt%碳酸氢钠水溶液进行脂肪酸皂化,温度控制在50°C,搅拌速度为150rpm,开启超声波发生器,调整频率到30kHz,功率为150W,伴随机械搅拌超声波辐射5min后停止,继续搅拌25min,皂化完毕后,得到留醇酯和脂肪酸皂混合物(体积约为1300mL);加入2600mL正己烷(有机溶剂)萃取甾醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约830g精制甾醇酯产品,反应总收率大于80%。得到的精制甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例3 一种利用超声波强化酶促合成植物留醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取800g(2M)植物甾醇(菜油甾醇),672g(2. 4M)葵花籽油水解得到的混合脂肪酸加入反应釜中,然后加入IOL异辛烷(此时植物留醇浓度为200mmol/L),加入皱褶假丝酵母酶80g,分子筛加入量为200g,溶液温度加热至55°C,采用搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为55°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到30kHz,功率为300W,在机械搅拌超声波辐射I. 5h后停止,继续搅拌反应8h,化率可达90%以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出异辛烷,大约可得到1240g留醇酯(留醇酯粗品,体积约为1250mL),加入750mL的5wt %碳酸氢钠水溶液进行脂肪酸皂化,温度控制在55°C,搅拌速度为200rpm,开启超声波发生器,调整频率到40Hz,功率为200W,伴随机械搅拌超声波辐射IOmin后停止,继续搅拌20min,皂化完毕后,得到留醇酯和脂肪酸皂混合物(体积约为1900mL);加入3000mL正己烷(有机溶剂)萃取甾醇酯,有机溶剂层回收,减压除去有机溶齐U,可得到约1130g精制甾醇酯产品,反应总收率大于82%。得到的精制甾醇酯含量大于98wt%,酸价小于0. 5mgK0H/g,过氧化值小于4. Omeq/kg。实施例4 一种利用超声波强化酶促合成植物留醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取812g(2M)植物甾醇(混合甾醇,豆甾醇、谷甾醇和菜油甾醇的重量各占l/3),1120g(4M)葵花油油水解得到的混合脂肪酸加入反应釜中,然后加入IOL正己烧(此时植物留醇浓度为200mmol/L),加入皱裙假丝酵母酶60g,分子筛加入量为200g,溶液温 度加热至60°C,采用搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为60°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到40Hz,功率为300W,在机械搅拌超声波辐射2h后停止,继续搅拌反应8h,酯化率可达92 %以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出正己烷,大约可得到1280g留醇酯(留醇酯粗品,体积约为1300mL),加入780mL的5wt %碳酸氢钠水溶液进行脂肪酸皂化,温度控制在60°C,搅拌速度为200rpm,开启超声波发生器,调整频率到60kHz,功率为200W,伴随机械搅拌超声波辐射20min后停止,继续搅拌20min,皂化完毕后,得到留醇酯和脂肪酸皂混合物(体积约为2000mL);加入3000mL正己烷萃取甾醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约1171g精制甾醇酯产品,反应总收率大于85%。得到的精制甾醇酯含量大于98wt%,酸价小于O. 5mgK0H/g,过氧化值小于4. Omeq/kg。实施例5 与实施例I基本相同,不同之处在于步骤I)中α-亚麻酸由棕榈酸替代;植物甾醇为豆留醇和谷留醇,豆留醇和谷留醇的质量各占1/2 ;异辛烷由正己烷替代。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于
O.8mgK0H/g,过氧化值小于 5. Omeq/kg。实施例6 与实施例I基本相同,不同之处在于步骤I)中α-亚麻酸由硬脂酸替代。得到的精制的留醇酯产品,反应总收率大于80%。得到的精制的留醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例7 与实施例I基本相同,不同之处在于步骤I)中α -亚麻酸由油酸替代;植物甾醇为菜籽留醇和菜油留醇,菜籽留醇和菜油留醇的质量各占1/2 ;异辛烷由环己烷替代。得到的精制的留醇酯产品,反应总收率大于80%。得到的精制的留醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例8 与实施例I基本相同,不同之处在于步骤I)中α -亚麻酸由棕榈酸和硬脂酸替代,棕榈酸和硬脂酸的质量各占1/2 ;植物留醇为菜籽留醇和菜油留醇,菜籽留醇和菜油甾醇的质量各占1/2 ;异辛烷由环己烷和正庚烷替代,环己烷和正庚烷的质量各占1/2。得到的精制的留醇酯产品,反应总收率大于80%。得到的精制的留醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例9 与实施例I基本相同,不同之处在于步骤I)中α-亚麻酸由亚油酸和Y-亚麻酸替代,亚油酸和亚麻酸的质量各占1/2。得到的精制的留醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例10 与实施例I基本相同,不同之处在于步骤2)中辐射时间为O. 5h ;解脂假丝酵母脂肪酶由皱褶假丝酵母脂肪酶替代。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例11 与实施例I基本相同,不同之处在于步骤2)中在机械搅拌超声波辐射5h后停止,继续机械搅拌反应4h ;超声波发生器的频率为40kHz,功率为IOOW ;解脂假丝酵母脂肪酶由皱褶假丝酵母脂肪酶替代。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例12 与实施例I基本相同,不同之处在于步骤2)中解脂假丝酵母脂肪酶由南极假丝酵母脂肪酶替代。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例13 与实施例I基本相同,不同之处在于步骤2)中解脂假丝酵母脂肪酶由洋葱假单胞菌脂肪酶替代。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例14 与实施例I基本相同,不同之处在于步骤3)中开启超声波发生器持续辐射30min,然后停止超声;超声波发生器的频率为36kHz,功率为IOOW ;萃取的有机溶剂“正己烷”由异辛烷代替。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例15 与实施例I基本相同,不同之处在于步骤3)中萃取的有机溶剂“正己烷”由环己烷代替。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例16 与实施例I基本相同,不同之处在于步骤3)中萃取的有机溶剂“正己烷”由石油醚代替。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例17 与实施例I基本相同,不同之处在于步骤I)中解脂假丝酵母脂肪酶200g,溶液温度加热至60°C;步骤2)中辐射时间3h,辐射完毕后保持在机械搅拌下继续反应10h。步骤3)中温度控制在60°C,搅拌速度为IOOrpm,开启超声波发生器,伴随机械搅拌超声波福射30min后停止,继续搅拌5min。得到的精制的甾醇酯产品,反应总收率大于80%。得到的精制的甾醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。植物甾烷醇的制备将约200g的甾醇溶于正丙醇,放入反应釜中,加入1600mL正丙醇,甾醇质量4%的钯碳催化剂,300r/min的搅拌速率,压力2MPa,65°C下反应7小时,通过测定碘值计算反应氢化率大于95%,得到植物留烷醇。植物留烷醇包 括豆留烷醇、谷留烷醇、菜油留烷醇、菜油留烷醇等中的任意一种或二种以上按任意配比的混合物。实施例18 一种利用超声波强化酶促合成植物留烷醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取411g(lM)植物甾烷醇酯(豆甾烷醇),417g(1.5M) a-亚麻酸加入反应釜中,然后加入IOL异辛烷(此时植物留醇浓度为lOOmmol/L),加入解脂假丝酵母脂肪酶150g,分子筛加入量为600g,溶液温度加热至55°C,采用机械搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为55°C,以IOOrpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到20Hz,功率为100W,在机械搅拌超声波辐射40min后停止,继续机械搅拌反应5h,酯化率可达85%以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出异辛烷,大约可得到580g a -亚麻酸留烷醇酯(留烷醇酯粗品,体积约为600mL),加入240mL的5wt%碳酸氢钠水溶液进行脂肪酸阜化,温度控制在40°C,搅拌速度为200rpm,开启超声波发生器,调整频率到30kHz,功率为100W,在机械搅拌超声波辐射IOmin后停止,继续搅拌20min,皂化完毕后,得到留烷醇酯和脂肪酸皂混合物(体积约为800mL);采用1200mL的正己烷(有机溶剂)萃取甾烷醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约550g精制的植物留烷醇酯(留烷醇酯产品),反应总收率大于80%。此时得到的植物甾烷醇酯含量大于97wt%,酸价小于I. 0mgK0H/g,过氧化值小于 5.0meq/kgo实施例19 一种利用超声波强化酶促合成植物留烷醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取618g(1.5M)植物甾烷醇酯(谷甾烷醇),630g(2. 25M)亚油酸加入反应釜中,然后加入10L正己烷(此时植物甾醇浓度为150mmol/U,分子筛加入量为400g,加入南极假丝酵母固定化酶100g (Novozym 435,诺维信(中国)生物科技有限公司)溶液温度加热至50°C,采用机械搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为50°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到25Hz,功率为200W,在机械搅拌超声波辐射Ih后停止,继续机械搅拌反应6h,酯化率可达87%以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出正己烷,大约可得到890g亚油酸留烷醇酯(留烷醇酯粗品,体积约为900mL),加入450mL的5wt %碳酸氢钠水溶液进行脂肪酸阜化,温度控制在50°C,搅拌速度为150rpm,开启超声波发生器,调整频率到40kHz,功率为150W,伴随机械搅拌超声波辐射5min后停止,继续搅拌25min,皂化完毕后,得到留烷醇酯和脂肪酸皂混合物(体积约为1300mL);加入2600mL正己烷(有机溶剂)萃取甾烷醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约830g精制甾烷醇酯产品,反应总收率大于80%。得到的精制甾烧醇酯含量大于96wt%,酸价小于0. 8mgKOH/g,过氧化值小于5. Omeq/kg。实施例20 一种利用超声波强化酶促合成植物留烷醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取600g(1.5M)植物甾烷醇酯(菜油甾烷醇),672g(2. 4M)葵花籽油水解得到的混合脂肪酸加入反应釜中,然后加入IOL异辛烷(此时植物甾醇浓度为200mmol/L),加入皱褶假丝酵母酶80g,分子筛加入量为200g,溶液温度加热至55°C,采用搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为55°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到30kHz,功率为300W,在机械搅拌超声波辐射I. 5h后停止,继续搅拌反应8h,酯化率可达90%以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出异辛烷,大约可得到1240g留烷醇酯(留烷醇酯粗品,体积约为1250mL),加入750mL的5wt%碳酸氢钠水溶液进行脂肪酸皂化,温度控制在55°C,搅拌速度为200rpm,开启超声波发生器,调整频率到40Hz,功率为200W,伴随机械搅拌超声波辐射IOmin后停止,继续搅拌20min,皂化完毕后,得到留烷醇酯和脂肪酸皂混合物(体积约为1900mL);加入3000mL正己烷(有机溶剂)萃取甾烷醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约1130g精制留烷醇酯产品,反应总收率大于82%。得到的精制留烷醇酯含量大于98wt%,酸价小于0. 5mgK0H/g,过氧化值小于4. Omeq/kg。实施例21 一种利用超声波强化酶促合成植物留烷醇酯的方法,它包括如下步骤I)配制非均相酶反应体系称取810g(2M)植物甾烷醇(混合甾烷醇,豆甾烷醇、谷甾烷醇和菜油留烷醇的重量各占l/3),1120g(4M)葵花油油水解得到的混合脂肪酸加入反应釜中,然后加入IOL正己烷(此时植物留醇浓度为200mmol/L),加入皱褶假丝酵母酶60g,分子筛加入量为200g,溶液温度加热至60°C,采用搅拌充分混匀。2)超声辅助酶促酯化(酶促酯化反应体系)保持反应体系温度为60°C,以200rpm的速度搅拌混合均匀,将超声波探头浸入反应溶液,开启超声波发生器,调整频率到40Hz,功率为300W,在机械搅拌超声波辐射2h后停止,继续搅拌反应8h,酯化率可达92 %以上。3)超声辅助皂化去除脂肪酸酶促酯化反应结束后,待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出正己烷,大约可得到1280g留烷醇酯(留烷醇酯粗品,体积约为1300mL),加入780mL的5wt %碳酸氢钠水溶液进行脂肪酸皂化,温度控制在60°C,搅拌速度为200rpm,开启超声波发生器,调整频率到60kHz,功率为200W,伴随机械搅拌超声波辐射20min后停止,继续搅拌20min,皂化完毕后,得到留烷醇酯和脂肪酸皂混合物(体积约为2000mL);加入3000mL正己烷萃取甾烷醇酯,有机溶剂层回收,减压除去有机溶剂,可得到约1171g精制留烷醇酯产品,反应总收率大于85%。得到的精制留烷醇酯含量大于98wt%,酸价小于0. 5mgKOH/g,过氧化值小于4. Omeq/kg实施例22 与实施例18基本相同,不同之处在于步骤I)中a -亚麻酸由棕榈酸替代;植物甾烷醇为豆留烷醇和谷留烷醇,豆留烷醇和谷留烷醇的质量各占1/2 ;异辛烷由正己烷替代。得到的精制的留烷醇酯产品,反应总收率大于80%。得到的精制的留烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例23 与实施例18基本相同,不同之处在于步骤I)中a-亚麻酸由硬脂酸替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例24 与实施例18基本相同,不同之处在于步骤I)中a-亚麻酸由油酸替代;植物甾烷醇为菜籽留烷醇和菜油留烷醇,菜籽留烷醇和菜油留烷醇的质量各占1/2 ;异辛烷由环己烷替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例25:与实施例18基本相同,不同之处在于步骤I)中a -亚麻酸由棕榈酸和硬脂酸替代,棕榈酸和硬脂酸的质量各占1/2 ;植物留烷醇为菜籽留烷醇和菜油留烷醇,菜籽留烷醇和菜油留烷醇的质量各占1/2 ;异辛烷由环己烷和正庚烷替代,环己烷和正庚烷的质量各占1/2。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例26:与实施例18基本相同,不同之处在于步骤I)中a-亚麻酸由亚油酸和Y-亚麻酸替代,亚油酸和亚麻酸的质量各占1/2。得到的精制的留烷醇酯产品,反应总收率大于80 %。得到的精制的甾烷醇酯含量大于96wt %,酸价小于0. 8mgK0H/g,过氧化值小于5.0meq/kgo实施例27:与实施例18基本相同,不同之处在于步骤2)中辐射时间为0.5h;解脂假丝酵母脂肪酶由皱褶假丝酵母脂肪酶替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例28:与实施例18基本相同,不同之处在于步骤2)中在机械搅拌超声波辐射5h后停止,继续机械搅拌反应4h ;超声波发生器的频率为40kHz,功率为100W ;解脂假丝酵母脂肪酶由皱褶假丝酵母脂肪酶替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于0. 8mgK0H/g,过氧化值小于5. Omeq/kg。
实施例29:与实施例18基本相同,不同之处在于步骤2)中解脂假丝酵母脂肪酶由南极假丝酵母脂肪酶替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例30:与实施例18基本相同,不同之处在于步骤2)中解脂假丝酵母脂肪酶由洋葱假单胞菌脂肪酶替代。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。 实施例31:与实施例18基本相同,不同之处在于步骤3)中开启超声波发生器持续辐射30min,然后停止超声;超声波发生器的频率为36kHz,功率为IOOW ;萃取的有机溶剂“正己烷”由异辛烷代替。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例32:与实施例18基本相同,不同之处在于步骤3)中萃取的有机溶剂“正己烷”由环己烷代替。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例33:与实施例18基本相同,不同之处在于步骤3)中萃取的有机溶剂“正己烷”由石油醚代替。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。实施例34:与实施例18基本相同,不同之处在于步骤I)中解脂假丝酵母脂肪酶200g,溶液温度加热至60°C;步骤2)中辐射时间3h,辐射完毕后保持在机械搅拌下继续反应10h。步骤3)中温度控制在60°C,搅拌速度为IOOrpm,开启超声波发生器,伴随机械搅拌超声波福射30min后停止,继续搅拌5min。得到的精制的甾烷醇酯产品,反应总收率大于80%。得到的精制的甾烷醇酯含量大于96wt%,酸价小于O. 8mgK0H/g,过氧化值小于5. Omeq/kg。本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
权利要求
1.一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于它包括如下步骤 1)配制非均相酶反应体系按摩尔比I: I. 2-2称取植物留醇/植物留烷醇和脂肪酸,加入反应釜中,然后加入反应溶剂,保持植物留醇或植物留烷醇浓度为100-200mmol/L ;然后加入酶和分子筛,酶加入量为6-20g/L,分子筛加入量为20-60g/L,反应温度控制在50-60°C,采用机械搅拌充分混匀; 2)超声辅助酶促酯化保持反应体系温度在50-60°C之间,将超声波探头浸入反应溶液,开启超声波发生器,在机械搅拌下进行持续超声波辐射,辐射时间0. 5-3h,辐射完毕后保持在机械搅拌下继续反应4-10h ; 3)超声辅助皂化去除脂肪酸待反应体系温度降至室温,离心除去酶和分子筛,减压蒸馏出反应溶剂,得到留醇酯粗品或留烷醇酯粗品;加入留醇酯粗品或留烷醇酯粗品体积0. 4-0. 6倍的5wt%碳酸氢钠水溶液进行脂肪酸皂化,温度在40-60°C,搅拌速度为100-200rpm,开启超声波发生器持续辐射5-30min,然后停止超声,继续搅拌5-25min,皂化完毕后,得到留醇酯/留烷醇酯和脂肪酸皂混合物;采用该留醇酯/留烷醇酯和脂肪酸皂混合物体积I. 5-2倍的有机溶剂萃取留醇酯/留烷醇酯,有机溶剂层回收,减压除去有机溶齐U,即得到精制的植物留醇酯/植物留烷醇酯。
2.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤I)中所述的植物留醇是豆留醇、谷留醇、菜籽留醇、菜油留醇中的任意一种或二种以上按任意配比的混合物;植物留烷醇由上述植物留醇经氢化获得。
3.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤I)中所述的脂肪酸为棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸中的任意一种或二种以上按任意配比的混合物,或是植物油水解得到的混合脂肪酸。
4.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤I)中所述的反应溶剂为正己烷、异辛烷、环己烷、正庚烷中的任意一种或二种以上按任意配比的混合物。
5.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤2)中所述的酶为活力大于10000U/g的游离或固定化的脂肪酶,包括来来源于微生物发酵的皱褶假丝酵母、解脂假丝酵母、南极假丝酵母或洋葱假单胞菌脂肪酶。
6.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤2)中超声波发生器的频率为20-40kHz,功率为100-300W ;步骤3)中超声波发生器的频率为30-60kHz,功率为100-200W。
7.根据权利要求I所述的一种利用超声波强化酶促合成植物留醇酯/植物留烷醇酯的方法,其特征在于步骤3)中有机溶剂是正己烷、异辛烷、环己烷或石油醚。
全文摘要
本发明涉及一种甾醇酯的制备方法。一种利用超声波强化酶促合成植物甾醇酯/植物甾烷醇酯的方法,其特征在于它包括如下步骤1)配制非均相酶反应体系按摩尔比1∶1.2-2称取植物甾醇/植物甾烷醇酯和脂肪酸,然后加入反应溶剂;然后加入酶和分子筛;2)超声辅助酶促酯化将超声波探头浸入反应溶液,开启超声波发生器,在机械搅拌下进行持续超声波辐射,辐射时间0.5-3h,辐射完毕后保持在机械搅拌下继续反应4-10h;3)超声辅助皂化去除脂肪酸,得到产品。本发明不但可以显著缩短酶促酯化反应的时间并减少酶的使用量,并且可以加快过量脂肪酸的皂化反应速度,从而提高分离纯化的效率,得到的甾醇酯/甾烷醇酯产品具有色泽浅、纯度高、安全无污染的特点。
文档编号C12P33/02GK102618615SQ20121009943
公开日2012年8月1日 申请日期2012年4月6日 优先权日2012年4月6日
发明者万楚筠, 刘昌盛, 李文林, 杨湄, 杨金娥, 许继取, 邓乾春, 郑明明, 郭萍梅, 钮琰星, 黄凤洪, 黄庆德 申请人:中国农业科学院油料作物研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1