用于预防和治疗高脂血症及其心血管并发症的3-羟基氨基苯甲酸(3-haa)疗法

文档序号:1249224阅读:759来源:国知局
用于预防和治疗高脂血症及其心血管并发症的3-羟基氨基苯甲酸(3-haa)疗法
【专利摘要】本发明涉及色氨酸代谢物3-羟基氨基苯甲酸(3-HAA)或其功能类似物在预防和/或治疗哺乳动物、尤其是人的高脂血症及其心血管并发症即粥样斑形成、心肌梗死和心力衰竭、缺血性中风和短暂缺血发作、肾损伤、主动脉瘤和动脉粥样硬化导致的临界性肢体缺血中的用途。
【专利说明】用于预防和治疗高脂血症及其心血管并发症的3-羟基氨基苯甲酸(3-HAA)疗法发明领域
[0001]本发明涉及色氨酸代谢物3-羟基氨基苯甲酸(3-HAA)或其功能类似物在治疗高脂血症中的用途。特别地,本发明包括:3-HAA或其功能类似物照此或与适合的载体一起作为预防和/或治疗高脂血症和与高脂血症相关的心血管并发症的降脂疗法的用途,所述的与高脂血症相关的心血管并发症特别是粥样斑形成、心肌梗死、缺血性中风和短暂缺血发作、肾损伤、主动脉瘤和动脉粥样硬化导致的临界性肢体缺血。
[0002]发明背景[0003]心血管疾病(CVD)主要因动脉中形成动脉粥样硬化粥样斑导致,其为西方世界中的主要死亡原因并且在发展中国家也逐渐递增^然而,使用降脂药例如他汀类药物预防高脂血症中的进展对一级预防(即在无CVD临床证据的个体中)和二级预防(即在具有确立的CVD的患者中)都具有经证实的存活有益性2_4。另外,已经证实升高HDL水平的其他类型的药物例如贝特类在临床试验中减缓了冠心病进展5’6并且在结果研究中降低了心血管事件的发生率7’8。
[0004]动脉粥样硬化是动脉壁中包含脂蛋白、特别是低密度脂蛋白(LDL)的载脂蛋白BlOO (Ap0BlOO)保留和蓄积引起的慢性炎症性病症,从而导致一组不适合的巨噬细胞和T细胞应答并且在动脉中形成粥样斑9’1(1。因此,减少循环Ap0BlOO脂蛋白除降低脂质蓄积在动脉壁中的可能性外,还可能具有另外的有益作用。
[0005]高水平的LDL及其前体颗粒极低密度脂蛋白(VLDL)与心肌梗死、中风和其他粥样斑并发症的风险增加相关。升高的LDL和VLDL水平在血清或血浆样品中的高胆固醇和甘油三酯水平中反映出来。这种升高的血脂水平构成了高脂血症情况,它如举出的与心肌梗死、中风和其他动脉粥样硬化并发症的风险增加相关。
[0006]高脂血水平在欧洲心脏病学会(European Society of Cardiology) SCORE标准中有定义,它也鉴定了应通过降脂疗法达到的目标水平n。受高LDL胆固醇或总胆固醇影响的心血管风险在HDL胆固醇水平高时降低,正如同一公开文献中概述的。反之亦然,低HDL水平增加升高的总胆固醇或LDL胆固醇的心血管风险。目前由瑞典医疗产品管理部门(Swedish Medical Products Agency) (LSkemede〗SVei*ket)定义的高脂血水平为:总胆固醇 >Smmol /T,, LDL-胆固醇 >3mmol/L 和 HDL-胆固醇〈lmmol/L12。
[0007]HDL颗粒通过介导从细胞中除去胆固醇而发挥其对动脉的保护效应。在掺入HDL后,胆固醇分子被输送至肝,转化成胆汁酸并且通过肠消除。
[0008]目前用于高脂血症的疗法以一组称作他汀类的药物为主。这些化合物对大部分个体中的LDL胆固醇具有良好作用,而对HDL具有较小的作用13。此外,一些个体不耐受他汀类药物或其他降脂药。由于这些原因,所以对研发新降脂药存在需求。
[0009]修饰的LDL磷脂类例如溶血卵磷脂和1-棕榈酰基-2- (5'-氧代戊酰基)-sn_甘油-3-磷酸胆碱(POVPC)可以刺激内皮细胞、平滑肌细胞和巨噬细胞14’15。目前已知这种致动脉粥样化脂质通过活化Toll-样受体启动先天免疫应答16_18。此外,蓄积在已经摄如LDL颗粒的巨噬细胞中的胆固醇可以形成直接活化炎性体的微晶体,从而导致产生促炎细胞因子白细胞介素-1 β 18O这些数据共同启示修饰LDL生成内源性配体,其触发可以促进粥样斑形成的先天免疫应答活化。
[0010]获得性免疫性在动脉粥样硬化粥样斑出现中起关键作用。抗原呈递细胞遇到抗原并且将其摄入内膜,包括通过清除剂受体摄入的LDL颗粒19。在蛋白水解后,LD蛋白质Ap0BlOO片段在胞内与MHC II类蛋白质结合,输送至细胞表面并且呈递给T细胞。后面的事件导致T细胞活化并且产生触发和维持局部炎症的细胞因子2°。
[0011]除对局部病理学过程的作用外,免疫细胞和介体还在全身水平上调节脂质代谢。因此,促炎细胞因子肿瘤坏死因子(TNF)抑制脂蛋白脂肪酶,即在甘油三酯代谢中的关键酶,从而导致高甘油三酯血症21。另一种TNF-样蛋白LIGHT通过在肝中其作用抑制另一种脂肪酶肝脂肪酶22’23。这导致甘油三酯分解代谢减少并且以包含甘油三酯类和胆固醇的大脂蛋白蓄积在血液中。作为第三种实例,他汀类降胆固醇药通过减少T细胞活化并且抑制几种自身免疫疾病发挥显著的免疫调节作用24’25。
[0012]所有这些数据显示了免疫与代谢系统之间的复杂的交叉干扰并且启示可以通过使用免疫细胞-依赖性途经治疗高脂血症和预防粥样斑形成。
[0013]近期数据显示IDO (吲哚胺2,3-双加氧酶)和IDO-催化的色氨酸代谢在诱导免疫抑制和耐受方面起关键作用(综述在26中)。IDO由IDOl基因编码(由人类染色体8、8pl2-pll中的10个外显子编码)。该酶将L-色氨酸(L-Trp)代谢成N-甲酰犬尿氨酸,即快速地被甲酰胺酶转化成L-犬尿氨酸(KYN)的产物,由此可以进入血流或进一步被代谢成下游犬尿氨酸(Kyns)。这些Kyns包括3-羟基犬尿氨酸(3-HK)、3_羟基氨基苯甲酸(3-HAA)和喹啉酸(QUIN)270
[0014]已经证实下游色氨酸代谢物例如3-羟基氨基苯甲酸(3-HAA,图1)可以抑制Thl和Th2细胞功能并且增加调节T细胞(Tregs)百分比。此外,已经证实施用3-HAA可减少Thl7细胞诱导的炎症并且防止小鼠发生自身免疫性脑炎28,29。实际上,数据启示3-HAA可以通过直接对T细胞起作用或通过树突细胞和巨噬细胞上改变的抗原呈递的间接作用控制自身免疫性3°
[0015]发明概述
[0016]高脂血症是异常升高的血脂水平,特别是在血浆脂蛋白LDL和VLDL中输送的胆固醇和甘油三酯类。高脂质水平随后发生动脉壁中LDL的内皮下保留和蓄积;这导致巨噬细胞和T细胞的慢性不适合炎症性应答和粥样斑形成。在本文的上下文中,使用降脂药例如他汀类药物和贝特类预防高脂血症已经证实减少了心血管事件发生的数量并且增加了处于确立的CVD风险中或具有CVD的患者的存活率2_4’7’8。
[0017]本发明的发明人发现,免疫调节化合物3-HAA对高脂血症显示令人意外的有效作用并且在一系列实验中显著地降低了总血浆胆固醇和甘油三酯水平。除此之外,3-HAA还显著地升高了 HDL水平并且降低了 VLDL/HDL和LDL/HDL之比。因此,血浆脂质有益改变伴随动脉粥样硬化斑块出现显著减少。因此,3-HAA及其功能类似物可以被视为一类新的降脂药,其用于预防和治疗高脂血症及其心血管并发症,即粥样斑形成、心肌梗死、缺血性中风和短暂缺血发作、肾损伤、主动脉瘤和动脉粥样硬化导致的临界性肢体缺血。
[0018]因此,本发明涉及3-HAA或其功能类似物在治疗高脂血症或预防高脂血症的心血管并发症中的用途。
[0019]由于使用了 3-HAA的功能类似物,所以关注3-HAA产品和取代的3-HAA变体的氧化和还原,它们对脂质代谢具有与3-HAA相同或基本上相同的作用。
[0020]根据一个实施方案,闻脂血症选自闻胆固醇血症、闻甘油二酷血症和合并的闻脂血症(形式)。在一个优选的实施方案中,高脂血症与血浆中高密度脂蛋白(HDL)的低水平相关。
[0021]在一个优选的实施方案中,高脂血症的心血管并发症是粥样斑形成。
[0022]在本发明的另一个实施方案中,高脂血症的心血管并发症是粥样斑形成的临床表现。
[0023]根据一个实施方案,3-HAA或其功能类似物用于预防心肌梗死和/或心力衰竭。[0024]在一个实施方案中,3-HAA或其功能类似物用于预防心绞痛。
[0025]在一个优选的实施方案中,3-HAA用于预防缺血性中风和/或短暂缺血发作。
[0026]在另一个实施方案中,3-HAA或其功能类似物用于预防外周局部缺血、坏疽、肾损伤、主动脉瘤和/或临界性肢体缺血。
[0027]根据本发明的一个实施方案,高脂血症的并发症是高脂血症的皮肤病并发症。
[0028]根据另一个实施方案,高脂血症的皮肤病并发症是黄瘤。
[0029]附图简述
[0030]图1.3-羟基氨基苯甲酸(3-HAA)的分子表征
[0031]分子式:C7H7N03。分子量153.14g/mol。LIUPAC名称:2_氨基-3-羟基苯甲酸。
[0032]图2.通过腹膜巨噬细胞的FITC-oxLDL摄取
[0033]在37°C将来自注射了 3-HAA(200mg/Kg)或PBS (8周治疗)的Ldlr-/-小鼠的腹膜巨噬细胞与20 μ g蛋白质/ml浓度的FITC-oxLDL —起温育2h。通过流式细胞计量术对摄取量进行定量。(A)给出的值为FITC-oxLDL的MFI,对每只小鼠是一式三份孔的平均值土 SE (n=5和6,分别3-HAA或PBS)。(B)示意图显示来自3-HAA或PBS治疗小鼠的腹膜巨噬细胞的有代表性的直方图。* * )P〈0.01。
[0034]图3.血浆脂质分析
[0035]评价来自3-HAA或PBS治疗小鼠(8周治疗)的血浆中㈧总胆固醇和⑶甘油三酯类水平。(C)来自3-HAA或PBS治疗小鼠的血浆的脂蛋白谱大小分析。将每种级分中的胆固醇浓度(y轴)对保留级分数量(X轴)绘图;曲线显示3-HAA和PBS治疗小鼠的平均值土 SEM。将值表示为平均值土 SEM(n=5和6,分别为3-HAA或PBS)。* * )P〈0.01。
[0036]图4.3-HAA减少粥样斑发生
[0037]用3-HAA或作为对照的PBS治疗12周龄Ldlr-/-小鼠。在使用西方膳食8周后处死小鼠。用苏丹IV完全染色剖离的主动脉弓并且使用Image J图像分析软件(NIH,Bethesda7MD)计算总血管面积的损害面积%。将指定的主动脉弓中的所有斑块的累加面积计算为该主动脉弓总表面积的百分比。(n=7和10,分别为3-HAA或PBS)。* * *)P〈0.001。
[0038]实验
[0039]方法
[0040]推定可以通过每周3次腹膜内注射3-HAA(200mg/kg)持续8周诱导保护性免疫,其中对代谢和炎症有效果。用3-HAA或PBS治疗12周龄Ldlr-/-小鼠作为对照组。在首次注射后2天开始给小鼠饲喂高脂肪膳食,直到8周后用CO2处死为止。
[0041]使用酶比色试剂盒、根据制造商的方案测定血浆胆固醇和甘油三酯类。用苏丹IV完全染色剖离的主动脉弓并且计算总血管面积的损害面积%。另外,评价来自3-HAA或PBS治疗小鼠的腹膜巨噬细胞培养物中3-HAA对摄取的oxLDL的作用。
[0042]材料和方法
[0043]动物和动物处理
[0044]使Ldlr-/-小鼠繁殖,并且寄居在Karolinska大学医院(Karolinska UniversityHospital)的分子医学中心(Center for Molecular Medicine)的动物实验单位(AnimalExperimentation Unit)中。小鼠(n=7_10只/组)每周接受3次腹膜内注射PBS (200 μ I)或3-HAA(200mg/Kg的PBS溶液),持续6周,并且在接下来的2周中每周接受I次注射(总计注射24次),用CO2处死小鼠。在治疗开始后2天开始给小鼠饲喂高脂肪膳食(玉米淀粉、可可脂、酪蛋白、葡萄糖、蔗糖、纤维素粉、矿物质和维生素;17.2%蛋白质、21%脂肪(62.9%饱和、33.9不饱和以及3.4%多不饱和)、0.15%胆固醇、43%碳水化合物、10% H2O和 3.9%纤维素纤维;R638 Lantmannen, Sweden) O
[0045]低密度脂蛋白(LDL)分离 [0046]如31所述的通过超离心从健康供体的采集血浆中分离LDL(d=l.019-1.063g/mL)。在制备血浆后即刻加入2mM苄脒、0.5mMlU/ml抑肽酶并且在分离后对PBS广泛透析LDL。向LDL等分部分中加入I毫摩尔EDTA以防止LDL颗粒改变。
[0047]FITC (异硫氰酸荧光素)标记的氧化LDL (FITC-oxLDL)的制备
[0048]使用在先所述方法的改进方法32标记LDL。简言之,将LDL(1.5_2mg/ml)对500mM NaHC03pH9.5透析过夜。接下来对每LDL中的蛋白质加入溶于DMS0(lmg/ml)的50 μ gFITC (Sigma-Aldrich, St.Louis, MO, USA)并且在室温温育2小时。温育后,通过凝胶过滤,使用F1DlO柱(GE Healthcare, Uppsala, Sweden)从游离突光染料中分离缀合物,并且使用PBS洗脱。通过在495nm对FITC标准曲线的吸收光谱法评价FITC缀合。通过Bradford测定法(Biorad,CA,USA)测定蛋白质浓度。通过在20 μ M CuSO4的存在下在37°C将 Iml FITC-LDL (lmg/ml)温育 18h 得到氧化的 FITC-LDL (FITC-oxLDL)。如 33 所述的,通过TBARS测定法评价氧化程度。
[0049]腹膜巨噬细胞的OxLDL摄取
[0050]在最终注射3-HAA或PBS后24小时,通过用PBS腹膜灌洗从Ldlr-/-小鼠中分离腹膜巨噬细胞。在PBS中2-3小时后,将巨噬细胞以IxlO5细胞的密度在每孔具有20 μ g/ml FITC-oxLDL的包含I % FCS的RPMI1640的培养基的96-孔培养板中铺板。在37°C温育2h后,用PBS将细胞洗涤2次,用4%低聚甲醛的PBS溶液固定。用CyAn? ADP流式细胞测定仪(Dako, Glostrup, Denmark)分析细胞。
[0051]血浆脂质分析
[0052]使用酶比色试剂盒(Randox Lab.Ltd.Crumin,UK),根据制造商的说明测定血衆胆固醇和甘油三酯类。
[0053]脂蛋白谱
[0054]使用Okazaki等人的方法的改进方法34测定血浆胆固醇脂蛋白谱。简言之,使用 HR10/30 琼脂糖 6 柱(GE Healthcare, Uppsala, Sweden)和 Discovery BIO GFC-500 作为前置柱(5cm χ7.81.d.; SupelCO?, Sigma-Aldrich, PA,USA)对来自用 3-HAA 或 PBS
治疗的小鼠的血浆样品(50μ1)进行分级分离,所述的前置柱偶联Prominence UFLC系统
(Shimadzu, Kyoto, Japan)并且用Tris-缓冲盐水ρΗ7.4平衡。使用Foxy Jr?级分采集
器(Teledyne Isco Inc,NE,USA)采集200 μ I级分,并且使用酶比色试剂盒(Randox Lab.Ltd.Crumin, UK)测定每种级分中的总胆固醇。
[0055]损害分析
[0056]使用苏丹IV染色测定来自3-HAA和PBS治疗小鼠的主动脉弓中的总脂质蓄积。简言之,用4%中性缓冲福尔马林固定剖离的主动脉弓。然后纵切样品,展开,针刺,进行苏丹IV染色(红色)。使用连接Leica MZ6立体显微镜(Leica,ffetzlar, Germany)的LeicaDC480照相机俘获影像。将指定主动脉弓中的所有斑块的累加面积计算为主动脉的总表面积的百分比(不包括分枝血管)。使用Image J软件(NIH,Bethesda, USA)对斑块进行定量。
[0057]统计学分析
[0058]除非另有指示,否则将数值表示为平均值土平均值的标准误差(SEM)。非参数曼-惠特尼u检验用于在两组之间比较。将低于0.05的P值视为显著性差异。
[0059]结果
[0060]3-羟基氨基苯甲酸抑制oxLDL摄取
[0061]如方法部分中所述通过流式细胞计量术对荧光FITC-oxLDL摄取进行定量。如图2中所示,来自用3-HAA治疗的小鼠的腹膜巨噬细胞展示出约79%的FITC-oxLDL摄取减少。因此,3-HAA抑制修饰的LDL颗粒摄取,即泡沫细胞形成中的关键事件。
[0062]3-羟基氨基苯甲酸具有强效的降脂作用
[0063]对免疫调节化合物令人意外的是将3-HAA给Ldlr-/-小鼠施用与血浆总胆固醇(约50%)和甘油三酯类(约72%)显著性地具有统计学意义的降低相关(图3)。另外,3-HAA有效地升高HDL水平并且降低VLDL/HDL(4.0±(λ 55和L 4±0.31,分别是PBS和3-ΗΑΑ治疗的小鼠的平均值土SEM ;Ρ〈0.01)和LDL/HDL比(2.3±0.24和1.4±0.16,分别为PBS和3-ΗΑΑ治疗的小鼠的平均值土SEM ;Ρ<0.05)。这些数据将3-ΗΑΑ鉴定为一类新的降脂药。3-ΗΑΑ施用对体重无影响(数据未显示)。
[0064]3-羟基氨基苯甲酸诱导的血浆脂质减少导致粥样斑形成减少
[0065]最后,我们检验了 3-ΗΑΑ是否具有影响粥样斑形成。用3-ΗΑΑ将用高脂肪膳食处理时发生动脉粥样硬化损害的Ldlr-/-小鼠治疗8周。总血浆胆固醇和甘油三酯水平显著降低导致总主动脉弓制品中的动脉粥样硬化损害区域减少约90% (图4)。
[0066]参考文献
[0067]1.Rosamond ff, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N,Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C,Nichol G, 0' Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T,Wasserthiel-Smoller S, Hong Y.Heart disease and stroke statistics—2007update:A report from the american heart association statistics committee and strokestatistics subcommittee.Circulation.2007 ;115:e69_171[0068]2.Baigent CiKeech AiKearney PM,BlackwelI L,Buck G,Pollicino CiKirby A,Sourjina T,Peto R,Collins R,Simes R.Efficacy and safety of cholesterol-loweringtreatment !Prospective meta-analysis of data from 90,056participantsinl4randomised trials of statins.Lancet.2005 ;366:1267-1278
[0069]3.Cannon CP, Steinberg BA,Murphy SA, Mega JL, Braunwald E.Meta-analysisof cardiovascular outcomes trials comparing intensive versus moderate statintherapy.J Am Coll Cardiol.2006 ;48:438-445
[0070]4.Leeper NJiArdehali R,deGoma EM,Heidenreich PA.Statin use in patientswith extremely low low-density lipoprotein levels is associated with improvedsurvival.Circulation.2007 ;116:613-618
[0071]5.Ruotolo G,Ericsson CG, Tettamanti C,Karpe F,Grip L,Svane B,NilssonJ, de Faire U, Hamsten A.Treatment effects on serum lipoprotein lipids,apolipoproteins and low density lipoprotein particle size and relationshipsof lipoprotein variables to progression of coronary artery disease in thebezafibrate coronary atherosclerosis intervention trial (becait).J Am CollCardiol.1998 ;32:1648-1656
[0072]6.Ericsson CG, Nilsson J,Grip L,Svane B,Hamsten A.Effect ofbezafibrate treatment over five years on coronary plaques causing20% to50%diameter narrowing (the bezafibrate coronary atherosclerosis interventiontrial [becait]).Am J Cardiol.1997 ;80:1125-1129
[0073]7.Boden WE.High-density lipoprotein cholesterol as an independentrisk factor in cardiovascular disease !Assessing the data from framinghamto the veterahs affairs high—density lipoprotein intervention trial.Am JCardiol.2000 ;86:19L-22L
[0074]8.Rubins HB, Robins SJ, Collins D,Fye CL,Anderson JW, Elam MB,FaasFH, Linares E,Schaefer EJ, Schectman G,Wilt TJ, Wittes J.Gemfibrozil for thesecondary prevention of coronary heart disease in men with low levels ofhigh-density lipoprotein cholesterol.Veterans affairs high-density lipoproteincholesterol intervention trial study group.N Engl J Med.1999 ;341:410-418
[0075]9.Tabas I,Williams KJ,Boren J.Subendothelial lipoprotein retention asthe initiating process in atherosclerosis:Update and therapeutic implications.Circulation.2007 ;116:1832-1844
[0076]10.Hansson GK.1nflammation,atherosclerosis, and coronary arterydisease.The New England journal of medicine.2005 ;352:1685-1695
[0077]11.Reiner Z,Catapano AL,De Backer G,Graham I,Taskinen MR,Wiklund0,Agewall S,Alegria E,Chapman MJ, Durrington P,Erdine S,Halcox J,Hobbs R,Kjekshus J,Filardi PP,Riccardi G,Storey RF,Wood D,Bax J,Vahanian A,AuricchioA,Baumgartner H,Ceconi C,Dean V,Deaton C,Fagard R,Filippatos G,Funck-BrentanoC,Hasdai D,Hoes A,Kearney P,Knuuti J,Kolh P,McDonagh T,Moulin C,PoldermansD, Popescu BA, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vardas P, WidimskyP, Windecker S, Reviewers D, Berkenboom G, De Graaf J, Descamps 0, Gotcheva N,Griffith K,Guida GF, Gulec S,Henkin Y,Huber K,Kesaniemi YA, Lekakis J,ManolisAJ,Marques-Vidal P,Masana L,McMurray J,Mendes M,Pagava Z,Pedersen T,PrescottE, Rato Q, Rosano G, Sans S, Stalenhoef A, Tokgozoglu L, Viigimaa M, WittekoekME,Zamorano JLEsc/eas guidelines for the management of dyslipidaemias:Thetask force for the management of dyslipidaemias of the european society ofcardiology(esc) and the european atherosclerosis society(eas).Eur Heart J.2011 ;
32:1769-1818
[0078]I 2Lakemedelsverket, Forebyggande a v
ateroskierotisk hjirtkarisjuMom.1nformation Mn lakemedelsverket.2006 ;
3[0079]13.Barter P,Gotto AM,LaRosa JC, Maroni J,Szarek M,Grundy SM,KasteleinJJ, Bittner V,Fruchart JC.Hdl cholesterol,very low levels of Idl cholesterol,and cardiovascular events.N Engl J Med.2007 ;357:1301-1310
[0080]14.Watson AD, Leitinger N,Navab M,Faull KF, Horkko S,Witztum 几,Palinski W,Schwenke D,Salomon RG,Sha W,Subbanagounder G, Fogelman AM,BerlinerJA.Structural identification by mass spectrometry of oxidized phospholipids inminimally oxidized low density lipoprotein that induce monocyte/endothelialinteractions and evidence for their presence in viv0.J Biol Chem.1997 ;272:13597-13607
[0081]15.Gharavi NM,Alva JA, Mouillesseaux KP, Lai C,Yeh M,Yeung W, JohnsonJ,Szeto WL, Hong L,Fishbein M,Wei L,Pfeffer LM, Berliner JA.Role of the jak/stat pathway in the regulation of interleukin_8transcription by oxidizedphospholipids in vitro and in atherosclerosis in viv0.The Journal of biologicalchemistry.2007 ;282:31460-31468
[0082]16.Seimon TA,Nadolski MJ, Liao X,Magallon J,Nguyen M,Feric NT,Koschinsky ML, Harkewicz R, Witztum JL, Tsimikas S, Golenbock D, Moore KJ, Tabas1.Atherogenic lipids and lipoproteins trigger cd36-tlr2_dependent apoptosis inmacrophages undergoing endoplasmic reticulum stress.Cell metabolism.2010 ; 12:467-482
[0083]17.Stewart CR,Stuart LM,Wilkinson K,van Gils JM,Deng J,Halle A,RayherKJ, Boyer L,Zhong R,Frazier WA, Lacy-Hulbert A,El Khoury J,Golenbock DT, MooreKJ.Cd361igands promote sterile inflammation through assembly of a toll-likereceptor4and6heterodimer.Nat Immunol.2010 ;11:155-161
[0084]18.Duewell P,Kono H,Rayner KJ, Sirois CM,Vladimer G,Bauernfeind FG,Abela GS, Franchi L,Nunez G,Schnurr M,Espevik T,Lien E,Fitzgerald KA, RockKL, Moore KJ, Wright SD, Hornung V,Latz E.Nlrp3inflammasomes are required foratherogenesis and activated by cholesterol crystals.Nature.2010 ;464:1357-1361
[0085]19.Andersson J,Libby P,Hansson GK.Adaptive immunity andatherosclerosis.Clin Immunol.2010 ;134:33-46
[0086]20.Libby P,Ridker PMiHansson GK.Progress and challenges in translatingthe biology of atherosclerosis.Nature.2011 ;473:317-325
[0087]21.Beutler B, Greenwald D,HuImesJD,Chang M,Pan YC,Mathison J, UlevitchR,Cerami A.1dentity of tumour necrosis factor and the macrophage-secretedfactor cachectin.Nature.1985 ;316:552-554
[0088]22.Lo JC, Wang Y,Tumanov AV, Bamj i M,Yao Z,Reardon CA,Getz GS,Fu YX.Lymphotoxin beta receptor-dependent control of lipid homeostasis.Science.2007;316:285-288
[0089]23.Hansson GK.Medicine.Light hits the liver.Science.2007 ;316:206-20724.Youssef S,Stuve 0,Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, BravoM,Mitchell DJ, Sobel RA, Steinman L, Zamvil SS.The hmg—coa reductase inhibitor,atorvastatin, promotes a th2bias and reverses paralysis in central nervoussystem autoimmune disease.Nature.2002 ;420:78-84
[0090]25.McCarey DWiMcInnes IBiMadhok R,Hampson R,Scherbakov 0,Ford IiCapellHA,Sattar N.Trial of atorvastatin in rheumatoid arthritis (tara):Double_blind,randomised placebo-controlled trial.Lancet.2004 ;363:2015-2021
[0091]26.Grohmann U, Bronte V.Control ofimmune response by amino acidmetabolism.1mmunological reviews.2010 ;236:243-264
[0092]27.Stone TW, Darlington LG.Endogenous kynurenines as targets fordrugdiscovery and development.Nat Rev Drug Discov.2002 ;1:609-620
[0093]28.Platten M,Ho PP, Youssef S,Fontoura P,Garren H,Hur EM, Gupta R,LeeLY, Kidd BA,Robinson WH, Sobel RA,Selley ML,Steinman L Treatment of autoimmuneneuroinflammation with a synthetic tryptophan metabolite.Science.2005 ;310:850-855
[0094]29.Yan YP, Zhang GX, Gran B,Fallarino F,Yu S,Li HM, Cullimore ML,Rostami A,Xu H.1do upregulates regulatory t cells via tryptophan cataboliteand suppresses encephalitogenic t cell responses in experimental autoimmuneencephalomyelitis.Journal of Immunology.2010 ;185:5953-5961
[0095]30.Munn DH,Mellor AL.1ndoleamine2,3-dioxygenase and tumor-1nducedtolerance.Journal of Clinical Investigation.2007 ;117:1147-1154
[0096]31.Havel RJ, Eder HA, Bragdon JH.The distribution and chemicalcomposition of ultracentrifugalIy separated lipoproteins in human serum.J ClinInvest.1955 ;34:1345-1353
[0097]32.Schmitz G, Wulf G,Bruning T,Assmann G.Flow-cytometric determinationof high-density-lipoprotein binding sites on human leukocytes.Clin Chem.1987 ;
33:2195-2203[0098]33.Puhl H,Waeg G,Esterbauer H.Methods to determine oxidation oflow-density lipoproteins.Methods Enzymol.1994 ;233:425-441
[0099]34.0kazaki M,Ohno Y,Hara 1.Rapid method for the quantitationof cholesterol in human serum lipoproteins by high performance liquidchromatography.J ournal ofbiochemistry.1981 ;89:879-887
【权利要求】
1.用于治疗高脂血症或预防高脂血症的心血管并发症的3-HAA或其功能类似物。
2.用于权利要求1的3-HAA或其功能类似物,其中所述高脂血症选自高胆固醇血症、高甘油三酯血症和合并的(形式)高脂血症。
3.用于权利要求1或2的3-HAA或其功能类似物,其中所述高脂血症与血浆中高密度脂蛋白(HDL)水平低相关。
4.用于上述权利要求任一项的3-HAA或其功能类似物,其中所述的高脂血症的心血管并发症是粥样斑形成。
5.用于权利要求1-3任一项的3-HAA或其功能类似物,其中所述的高脂血症的心血管并发症是粥样斑形成的临床表现。
6.用于权利要求4-5任一项的3-HAA或其功能类似物,其用于预防心肌梗死和/或心力衰竭。
7.用于权利要求4-5任一项的3-HAA或其功能类似物,其用于预防心绞痛。
8.用于权利要求4-5任一项的3-HAA或其功能类似物,其用于预防缺血性中风和/或短暂缺血发作。
9.用于权利要求4-5任一项的3-HAA或其功能类似物,其用于预防外周局部缺血、坏疽、肾损伤、主动脉瘤和/或动脉粥样硬化导致的临界性肢体缺血。
10.用于权利要求1或2的3-HAA或其功能类似物,其中高脂血症的并发症是高脂血症的皮肤病并发症。
11.用于权利 要求10的3-HAA或其功能类似物,其中高脂血症的皮肤病并发症是黄瘤。
【文档编号】A61K31/196GK103841967SQ201280043297
【公开日】2014年6月4日 申请日期:2012年7月13日 优先权日:2011年7月29日
【发明者】约兰·K·汉松, D·凯特胡斯 申请人:约兰·K·汉松
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1