非接触的心率监测方法、系统、存储介质及设备

文档序号:33897936发布日期:2023-04-21 06:13阅读:45来源:国知局
非接触的心率监测方法、系统、存储介质及设备

本发明涉及心率监测,具体为非接触的心率监测方法、系统、存储介质及设备。


背景技术:

1、本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。

2、传统的心率监测通常依赖有线粘贴式电极和气流传感器来测量心率,该方式限制了人的行为,在一些用于医疗监护设备中使用此类心率监测方式增加了病人心理压力和紧张情绪,导致监测数据与病人真实的生理状况产生一定的差距。

3、其次,目前的心率监测方式使用的接触式电极会出现过敏、汗液引起的功能衰退等问题,不适合用于特定人群,比如婴儿、烧伤患者、皮肤病患者、易过敏者、侵袭性精神病患者以及传染病患者。一些非医疗目的的心率监测装置虽然以无线方式存在,但需要频繁充电,对于特殊人群并不适用。

4、对于非接触式监测方式,目前采用较敏感的压电薄膜、光导纤维等作为传感器部分,当被测人员坐、卧于传感器上时,心跳、脉搏波动等因素使得血流情况呈周期性改变,进而会导致人体传递到接触面的总压力发生微弱的变化,该方式的优点是无需脱衣,但是该方法对传感器精度要求较高,且往往要求被检测者必须保持绝对的静止,这一限制人的活动,从而不便捷且不舒适。


技术实现思路

1、为了解决上述背景技术中存在的技术问题,本发明提供非接触的心率监测方法、系统、存储介质及设备,采用77ghz毫米波雷达监测心率信号以及体动信号,在不限制人活动的基础上,实现非接触的心率参数监测以及运动体征参数监测,并将有效的检测信息实时返回控制端。

2、为了实现上述目的,本发明采用如下技术方案:

3、本发明的第一个方面提供非接触的心率监测方法,包括以下步骤:

4、基于雷达产生调频连续波信号,产生的信号一路朝向受试者发送,另两路分别与获得的回波信号混合,依次经滤波和数模转换得到数字形式的中频信号,经过后处理得到受试者的心率;

5、其中,中频信号经距离傅里叶变换获得受试者的位置,通过提取该位置的相位波形得到受试者的胸腔壁运动波形,经去噪后分解为k个模态分量,提取处于心跳二次谐波频带范围内的模态分量,根据各模态分量样本熵的大小设置权重,基于设置权重后的模态分量重建心跳信号并对重建的心跳信号进行估计,得到受试者的心率。

6、胸腔壁运动波形的去噪过程,具体为:通过对突变点前后的两个值求平均值来修正突变点。

7、胸腔壁运动波形经去噪后分解为k个模态分量,具体为:胸腔壁运动信号经去噪后,使用不同参数的变分模态分解算法分解胸腔壁运动信号,并计算每个模态分量的kl散度值,当kl散度值取得最小值时确定变分模态分解的参数并进行信号分解,将胸腔壁运动信号分解为k个模态分量。

8、胸腔壁运动同时受到心跳和呼吸的影响,通过提取计算处于心跳二次谐波频带范围内的模态分量,滤除呼吸谐波的影响。

9、样本熵反映信号的混乱程度,展示每个模态分量的噪声含量。

10、根据各模态分量样本熵的大小设置权重,基于设置权重后的模态分量重建心跳信号,具体为:将处于心跳二次谐波频带范围内的模态分量作为输入数据,将其分解为若干个信号,设置每个信号不同权重后,重新组合得到心跳二次谐波,即实现了重构。

11、对重建的心跳信号进行估计,具体为:利用旋转不变性算法,对重构的心跳信号进行频率估计,得到受试者的心率。

12、本发明的第二个方面提供实现上述方法所需的系统,包括:

13、发送模块,被配置为:基于雷达产生调频连续波信号,产生的信号一路朝向受试者发送,另两路分别与获得的回波信号混合;

14、接收模块,被配置为:获得返回的回波信号;

15、处理模块,被配置为:混合信号依次经滤波和数模转换得到数字形式的中频信号,经过后处理得到受试者的心率;

16、其中,中频信号经距离傅里叶变换获得受试者的位置,通过提取该位置的相位波形得到受试者的胸腔壁运动波形,经去噪后分解为k个模态分量,提取处于心跳二次谐波频带范围内的模态分量,根据各模态分量样本熵的大小设置权重,基于设置权重后的模态分量重建心跳信号并对重建的心跳信号进行估计,得到受试者的心率。

17、本发明的第三个方面提供一种计算机可读存储介质。

18、一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述所述的非接触的心率监测方法中的步骤。

19、本发明的第四个方面提供一种计算机设备。

20、一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述所述的非接触的心率监测方法中的步骤。

21、与现有技术相比,以上一个或多个技术方案存在以下有益效果:

22、1、雷达信号的回波中包含着呼吸和心跳引发胸腔壁的运动,通过滤波、数字变换以及后续处理,能够减少呼吸谐波带来的干扰,有效分解胸腔壁的运动信号并提取心跳二次谐波信号,从而实现非接触方式的心率监测。

23、2、对分解出的模态分量设置权重再重构的方式,能够削减可能存在于心跳信号中的噪声,使得到的心率信号更加准确。

24、3、利用毫米波雷达监测心率信号以及体动信号,通过滤波、数字变换以及后续处理,能够在不限制被监测者活动的基础上,以非接触方式获得所需的心率参数以及运动体征参数。毫米波雷达检测方案不易受环境因素影响,响应速度更快,检测范围更广。



技术特征:

1.非接触的心率监测方法,其特征在于,包括以下步骤:

2.如权利要求1所述的非接触的心率监测方法,其特征在于,所述胸腔壁运动波形的去噪过程,具体为:通过对突变点前后的两个值求平均值来修正突变点。

3.如权利要求2所述的非接触的心率监测方法,其特征在于,所述胸腔壁运动波形经去噪后分解为k个模态分量,具体为:胸腔壁运动信号经去噪后,使用不同参数的变分模态分解算法分解胸腔壁运动信号,并计算每个模态分量的kl散度值,当kl散度值取得最小值时确定变分模态分解的参数并进行信号分解,将胸腔壁运动信号分解为k个模态分量。

4.如权利要求1所述的非接触的心率监测方法,其特征在于,胸腔壁运动同时受到心跳和呼吸的影响,通过提取计算处于心跳二次谐波频带范围内的模态分量,滤除呼吸谐波的影响。

5.如权利要求1所述的非接触的心率监测方法,其特征在于,所述样本熵反映信号的混乱程度,展示每个模态分量的噪声含量。

6.如权利要求1所述的非接触的心率监测方法,其特征在于,根据各模态分量样本熵的大小设置权重,基于设置权重后的模态分量重建心跳信号,具体为:将处于心跳二次谐波频带范围内的模态分量作为输入数据,将其分解为若干个信号,设置每个信号不同权重后,重新组合得到心跳二次谐波,即实现了重构。

7.如权利要求1所述的非接触的心率监测方法,其特征在于,对重建的心跳信号进行估计,具体为:利用旋转不变性算法,对重构的心跳信号进行频率估计,得到受试者的心率。

8.非接触的心率监测系统,其特征在于,包括:

9.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,该程序被处理器执行时实现如上述权利要求1-7任一项所述的非接触的心率监测方法中的步骤。

10.一种计算机设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1-7任一项所述的非接触的心率监测方法中的步骤。


技术总结
本发明涉及非接触的心率监测方法、系统、存储介质及设备,其中的非接触的心率监测方法,包括以下步骤:基于雷达产生调频连续波信号,产生的信号一路朝向受试者发送,另两路分别与获得的回波信号混合,依次经滤波和数模转换得到数字形式的中频信号,经过后处理得到受试者的心率;其中,中频信号经距离傅里叶变换获得受试者的位置,通过提取该位置的相位波形得到受试者的胸腔壁运动波形,经去噪后分解为K个模态分量,提取处于心跳二次谐波频带范围内的模态分量,根据各模态分量样本熵的大小设置权重,基于设置权重后的模态分量重建心跳信号并对重建的心跳信号进行估计,得到被监测者的心率。

技术研发人员:赵曰峰,苏润松
受保护的技术使用者:山东师范大学
技术研发日:
技术公布日:2024/1/11
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1