光-声血栓溶解方法

文档序号:1063678阅读:357来源:国知局
专利名称:光-声血栓溶解方法
遵照美国能源部和加利福尼亚大学之间关于劳伦斯·利夫摩尔国家实验室的运作的第W-7405-ENG-48号协定,美国政府拥有本发明的权利。
本发明涉及去除在管状组织和器官中的阻塞的方法。具体地说,本发明涉及去除血管内闭塞如粥样硬化斑或血栓的方法。
局部缺血症是由在脑供血动脉网中形成的或沉积的血栓造成的。通常在颈动脉中或更高地位于颅腔中的极细血管中发现这些闭塞。为处理在人体任何部位的脉管系统中的上述病灶,急诊心脏病学家和血管外科医生至少已设想出了发病过程。在这些处理方法中包括将一根微导管引入闭塞部位的超声血管成型术。超声换能器与一个在导管内经过且将振动传给在紧靠闭塞的远端处的工作尖端的传递介质相连。用于溶解粥样硬化斑并有助于血块溶解的超声波导管早已有所记载。对这些发明的改进方案集中在对相同的基本装置的操作或功能的改进方面(弗罗戈尔等人的美国专利5,397,301)。传入组织中的振动有助于通过各种超声波机构例如使血块暴露于强大的局部剪切拉伸应力下的空化气泡和微射流来溶解或乳化血块。这些现有技术装置通常与溶解血栓的药物和/或有助于显影的放射线造影剂联合使用。
超声波导管装置都具有相同的结构,其中振动源(换能器)设在导管外面。振动能被传入导管的近端且通过可传递声波的导线被向下传递而经过这段导管。与这种结构有关的缺点是伴随着近距离地加热组织在通过弯曲时存在能量损失;此装置没有小到足以被用于急诊处理且难于按比例地改变成更小的尺寸;由于不可知的和变化的超声波发生器和导管远端之间的耦合效率,所以难于估计或控制剂量。都布卢尔等人的美国专利5,380,273试图通过将先进材料引入传递件中来改进现有技术装置。在导管的远端处设置超声换能器本身因很多原因而不切实际,其中一个原因就是尺寸限制和功率要求。
一种去除闭塞的有关方法是激光血管成型术,其中使激光照向一根光纤以便直接冲击闭塞材料。已经发现激光血管成型装置会对周围组织造成损伤或破坏。在某些情况下,不受控制的加热导致了血管穿孔。采用低重复频率或中等重复频率如大约1Hz-100Hz的高能激光脉冲形成了无差别应力波,它明显损伤了健康组织和/或当不影响健康组织地调节独立的激光参数时会导致目标组织的去除不够充分。人们已经发现,为避免加热而采用高能激光会通过与大空化气泡和冲击波有关的其它机构而造成损伤,这些大空化气泡和冲击波穿过组织或不利地影响组织。
本发明的目的是提供采用低能激光脉冲的高频序列溶解血管闭塞的方法,其中所述的激光脉冲在紧邻闭塞的液体中产生了超声波激励。
由导管传递能量是通过采用一根将激光脉冲导向远端的光纤实现的。但是,与激光血管成型术或激光血栓溶解方法不同的是,本发明不依靠直接切除闭塞部分,而代之以采用低能激光脉冲的高频序列从而在紧邻闭塞的液体中产生超声波激励。于是,通过超声波作用和/或乳化而不是直接通过激光作用地促进了闭塞的溶解。将超声波响应引入组织和液体中的关键在于仔细地控制激光的波长、脉冲宽度、脉冲能量和重复频率。利用光能将超声波激励引入组织中带来了许多优点。可以将光纤加工得很小,但它仍是非常透明的且能够将相当大的光能密度从光源处没有衰减地或略微衰减地送到输出位置。光纤也可以柔软得足以穿过所有被考虑的血管。本发明允许传递足够的能量以便如急诊处理所要求的那样通过小软管产生声激励。此方法也可以联合采用一个用于监视并控制引入组织中的声振动的幅度的反馈装置。


图1A示出了应用本发明的基于光纤的光-声血栓溶解导管的草图。
图1B示出了用附加液体对阻塞实施超声波溶解的情况。
图2A-2C描述了本发明的热弹性效应。
图3A-3C示出了本发明的过热蒸汽膨胀模式。
图4A示出了具有凹尖端的光纤。
图4B示出了具有凸尖端的光纤。
图5示出了一光纤线束。
图6示出了直径可变的光纤。
图7示出了玻璃/塑料光纤的组合物。
本发明体现了一种装有光纤的导管。光纤在近端与一个将光的脉冲输入光纤的高重复频率激光系统相连。光纤在远端发出的光被包围导管的液体吸收。此液体可以是血液、含吸收染料在内的生理盐水、溶解血栓的药物或血栓本身。光纤的作用是传递能量,从而使由激光产生的能量被传给光纤的末端。从光纤的远端发出的激光的脉冲频率为10Hz-100kHz、波长为200nm-5000nm、能量密度为0.01J/cm2-4J/cm2,或者如果由小直径光纤控制的话,其能量密度可高达50J/cm2。所加能量保持在5百万焦耳以下且最好是在1百万焦耳以下。在一个实施例中,脉冲频率为5Hz-25kHz。或者,脉冲频率的下限可以是100Hz、200Hz、400Hz、800Hz,而上限为25Hz、50Hz、100Hz。
在靠近闭塞处的液体中产生的超声波辐射场有助于溶解管状组织中的血栓、粥样硬化斑或其它任何闭塞体。作为一种附加的处理手段,可以采用一种环绕或平行于光纤的工作管道以便分散少量溶解血栓的药剂,从而有助于经过声学血栓溶解处理后留下的任何很大的碎粒(直径大于5μm的颗粒)的进一步溶解。光能-声能的转换可以通过几种机构实现,这些机构可以是热弹性式的、热力式的或其组合。图1A示出了具有一平行的工作管道12的光纤10,光纤10和工作管道12在这里都位于一个已被插入血管16内的导管14中。光纤10的远端位于血管16内的血栓18和狭窄斑20的附近。在图1B中,光纤10传送激光以产生崩溃的空化气泡11和由此生成的扩展声波13。在导管14内的平行工作管道12传送附加液体15以便从血管16内除去闭塞17。
如图2A-2C所示,在热弹性工作方式中,各激光脉冲22通过光纤将一定大小的能量送入液体24,它在少量液体中形成了高的热弹性应力。该应力的扩展方向在图2A中由箭头25表示。被激光脉冲25加热的液体24的体积由液体24中激光的吸收深度决定且必须控制液体24的体积以产生所需的尺寸。例如,适当的尺寸可以是纤维直径或者是与含闭塞的血管部分差不多长短。可以通过控制激光波长或液体的成分来进行调节,从而使大部分激光能量积存在具有所需深度尺寸的液体中。激光脉冲宽度短得足以在短于使声音传过吸收区的最小尺寸的传递时间的时间内将所有的激光能量存储在吸收液体中。这是一个等体积(体积恒定)加热过程。对于直径约为100μm的吸收体积来说,声音传递时间约为70ns,从而存储时间必须明显小于70ns,如为10ns左右。
吸收液体热弹性地响应能量的存储,从而在受热液体量中产生了一个高压区。此高压区的边界衰减成这样的声波形式压力波传离能量存储区(扩散波阵面),而膨胀波传向能量存储区的中心(收敛波阵面)。当膨胀波会聚在最初的存储区的中心时,它产生了一个促进形成空化气泡团的拉伸应力区26,所述空化气泡团聚结成一个大气泡30。最终,空化气泡破裂(32)而形成扩展的声波33。空化气泡的破裂和随后的回弹将在周围液体中产生声音脉冲,这将带走一部分空化气泡的能量。破裂和回弹过程发生在一个原则上由液体密度和最初空化气泡的最大尺寸决定的期间内。在第一次破裂和回弹之后是减低强度的随后破裂和回弹过程,这一过程直到空化气泡的能量散失在液体中才结束。传送随后的激光脉冲以重复或继续这一循环并在一个或数个由激光脉冲频率决定的频率下产生一个超声波辐射场。
总而言之,以第一方式工作的装置在液体中如此地产生了一个超声波辐射场(ⅰ)在一个短于声音穿过光纤尺寸的传递时间的持续时间内将激光能量存储在与光纤尺寸相差不多的液体体积中(如可能通过选择激光波长和吸收液进行控制的情况那样);(ⅱ)如此控制激光能量,即使空化气泡的最大尺寸约等于光纤直径;(ⅲ)在一定的重复频率下使激光能脉动,这样此过程的多次循环在周围液体中产生了一个声辐射场;可以通过使激光脉冲重复频率与空化气泡的持续时间协调而获得共振效应。典型的工作过程形成一个基于液体的换能器,它在1kHz-100kHz下且以100μm-200μm的往复位移循环工作(对于典型的光纤尺寸而言)。此位移与在机械致动的超声波血管成型术装置中发现的位移很接近。
在过热蒸汽膨胀方式中,如图3A-3C所示,在光纤41中,各激光脉冲40在一个与装有导管的血管的特性尺寸相比很小的吸收深度内或比光纤直径更小的吸收深度内将预定大小的能量送入液体中。与在激光脉冲持续时间内的声波传播距离相比,吸收深度也可能很小。激光能量存储足够的能量以便在室压下将在吸收深度内的所有液体加热到远高于液体的汽化温度的温度。在存储激光能量的过程中,在液体中形成了由热弹性产生的声波,此声波从加热区传出。在大于1μs的期间内,过热液体42被汽化,这产生了气泡。当液体汽化时,液体体积44极大地增大了,所以只需要使用一小层液体,从而气泡的最终尺寸不超过如血管直径。
不需要将激光脉冲的持续时间限制为是热弹性方式中的数倍,这是因为气泡膨胀近似于一种等压过程。但是,激光脉冲的持续时间应该短于气泡膨胀时间且它应该大大地短于过热区的典型热松弛时间。(根据瑞利气泡破裂理论,在气泡直径为50μm的情况下,气泡持续时间约为25μs;在数百微秒期间内出现热松弛,从而激光脉冲应该持续几微秒或更短)。气泡膨胀到一个取决于在液体中最初产生的蒸汽压力的最大半径。在最大气泡半径下,膨胀的气泡内的蒸汽压力已显著地降到室压以下且气泡46破裂,这导致形成扩散的声波48。在第一次破裂后可能发生回弹和随后破裂情况。气泡膨胀和破裂将声能输入液体中。可传送随后的激光脉冲以便重复或继续这一循环并在一个或数个由激光脉冲频率决定的频率下产生一个超声波辐射场。与第一方式相似的,可以通过使激光脉冲作用期与空化气泡的持续时间相匹配来获得共振效应。
总而言之,以第二方式工作的装置在液体中如此地产生了一个超声波辐射场(ⅰ)将激光能存储在少量液体中(如可能通过选择激光波长和吸收液来控制的情况那样);(ⅱ)如此控制激光能量,即使空化气泡的最大尺寸约等于光纤直径;(ⅲ)在一定的重复频率下使激光能脉动,从而气泡的产生及其破裂过程的多次循环在周围液体中产生一个声辐射场。与第一种方式不同的是,传送时间不是一个明显的争论焦点,从而可以采用具有较长的脉冲宽度的激光(长达几μs)。
对于任何一种工作方式而言,激光波长、激光脉冲宽度和激光吸收深度必须得到精确的控制,从而才能用最少的激光脉冲能量获得足够的声音响应。对于第一种工作方式来说,这必然带来吸收体积与系统的特性尺寸如光纤直径或血管直径的某部分的匹配并造成使用短的激光脉冲(短于20ns)。对于第二种工作方式来说,这必然带来以极小的吸收深度存储激光能量,以便在少量液体中获得足够水平的过热如可以通过低能量预算所提供的过热且不会产生大到会破坏周围组织的气泡。
这些在组织中将激光能量耦合到声音激励中的光-声方式有许多特征。与高重复频率结合的低至中等激光脉冲能量避免了过份的组织加热或产生高强振动。出现了激光能量的局部吸收。激光能量可热弹性地或热力地与周围液体相互作用。由小的空化气泡在光纤尖端的反复膨胀和破裂产生了一个声辐射场。可以通过使激光脉冲作用期与空化气泡持续时间匹配来获得共振效应。可以通过直接在血栓中形成空化气泡来溶解软纤维的闭塞(血栓)。
对在光纤尖端处存储在液体中的能量的空间暂存分布的控制和/或处理可被用于修正近场的声辐射形式如将声能集中在光纤附近的物体上或是更均匀地分布声辐射。根据上述策略的技术对于热弹性响应的特定情况(第一方式)将更成功,其中激光脉冲宽度短且液体吸收能力也相对较强,从而将激光能量存储在光纤尖端的表面附近的薄层液体内。例如,通过在光纤尖端形成凹面而以相似形状的分布形态将光能存储在液体中。由此凹面分布形态发出的声波将会集中到一个离光纤尖端有一个距离R的点上,其中R是凹面的弯曲半径。平面的光纤尖端将在光纤尖端附近产生一个最初是平面的声波阵面。凸的光纤尖端将产生一个发散的球形波阵面,这个波阵面将使声能在一个较大的立体角范围内散开。另一种修正近场辐射形式的方法可以是采用一束由其传递激光能的光纤并控制存储的激光能的暂存分布形态。可以将激光能布置成在不同时刻到达在导管尖端内的各根光纤且激光能可以与这些单根光纤的不同空间位置一起调节以便控制声辐射形式的方向性和形状,这与雷达所用的相控阵技术相似。图4A示出了一根具有凹形远端52的改进型光纤50。图4B示出了一根具有凸形远端的光纤50。图5示出了由一束光纤58构成的改进光纤56,通过各根光纤可在不同时刻传送激光脉冲能量。
商用光纤通常被套装起来以使其不受环境影响。也可以获得“裸线”或未经套装的光纤。采用光纤涂层有助于使光纤更易于滑入导管。如图6所示,一根变直径的光纤60允许在近端62处有较大的机械强度并允许在远端64处有更大的靠近机会。这可以通过改变现有光纤(从芯部周围剥离保护套)或通过制造定制光纤来实现。定制加工可以通过改变光纤的挤压或拉拔速率来实现。可以作为纤维拉拔函数地改变玻璃或塑料成分,以便更好地从远端控制光纤且不会牺牲光学性能。这样的一个特殊例子是“软化”处理尖端,从而该尖端不会卡在导管套内。另外,尖端的形状记忆功能允许在光纤从导管套的远端伸出时引导光纤。
图7示出了玻璃/塑料光纤的组合物。光纤70包括一个具有一个较短的塑料尖端74的玻璃部分72,所述塑料尖端的长度在一毫米到几厘米的范围内。由于玻璃部分72的刚性,所以可以轻松地将具有这种结构的光纤推入脉管系统。较软的塑料尖端74不象玻璃尖端那样易于穿透静脉壁。这种结构可具有一个附加的玻璃尖端,以便增加光纤的使用寿命。
在本发明中产生了在许多频率下的声能且它们可被认为是产生人体组织结构的声象的信号源。在本发明中可以采用任何依靠声辐射的点源来形成信号的信号探测和分析装置。
本发明的预计用途包括任何一种通过使用导管而在人体组织中产生了局部超声波激励的方法或过程。本发明可被用于(ⅰ)在血管内处理引发局部缺血症的血管闭塞(这种技术可消除血栓并导致患病的大脑组织再灌注);(ⅱ)在血管内处理大脑血管痉挛(这种技术可减轻导致正常灌注的回复的血管收缩并由此进一步防止瞬时局部缺血发症或其它异常的灌注情况);(ⅲ)在血管内处理心血管闭塞(这种技术可消除血栓或从动脉中去除粥样硬化斑);(ⅳ)在血管内处理颈动脉狭窄;(ⅴ)在血管内处理末梢动脉狭窄;(ⅵ)基本恢复在人体腔道的任何部位中的开放状态,其中可以通过经皮刺入法接近所述腔道部位;(ⅶ)用于超声波图象成型,其中在可通过插入导管触及的器官或组织内需要超声波激励的局部(点)源;(ⅷ)用于碎石,其中包括疗法去除胆石、肾结石或在人体内的其它钙化物体;(ⅸ)在超声波调制光学层析X射线摄影术中作为超声波源。
本发明所用的脉冲激光能源可以是以气态、固态或液态介质为基础的激光能源。添加稀土的固态激光器、红宝石激光器、变石激光器、Nd:YAG激光器和Ho:YLF激光器都可以以高重复频率在脉动模式下工作并且它们都是可用于本发明的激光器的例子。这些固态激光器中的任何一种激光器可装有非线性倍频晶体或三倍频晶体以便协调激光的基波长。产生紫外线辐射的相干光束的固态激光器可直接用于本发明或与染料激光器联用以便产生一种可在大部分紫外线范围及可见光谱内调制的输出光束。在宽光谱范围内的可调性提供了使激光波长与位于导管远端的液体的吸收性能匹配的大范围的灵活。通过例如经皮导管由光纤使输出光束与外科手术部位耦合。在手术中,脉冲的光束产生了去除和/或乳化血栓或粥样硬化斑的超声波激励且它与现有技术装置相比很少损伤底层组织和穿透血管壁。
可用各种其它类型的脉冲激光器代替所述激光源。同样,各种染料和结构可用于染料激光器中。除自由流动的染料外的其它形式的染料如浸有染料的塑料膜或电池装染料可替换地用于染料激光器中。染料激光器也可储存许多不同的染料并根据用户发出的控制信号或在使用中遇到的情况(如当从输血环境转换到盐水环境或根据钙质沉积物)自动地用一种染料替换另一种染料。适用于本发明的染料激光器部分中的染料例如包括对三联苯(峰值波长339);BiBuQ(峰值波长385);DPS(峰值波长405);香豆素2(峰值波长448)。
在另一个实施例中,脉冲光源可以是一个由倍频或三倍频固态激光器脉动的光参量振动器(OPO)。OPO系统允许在一个完全由固态光学元件构成的紧凑系统中大范围地调节波长。OPO系统中的激光波长也可以根据用户发出的控制信号或在使用中遇到的情况而自动地调节。
有效地实现了本发明的导管可以有各种形状。例如,一个实施例可由一根外径为3.5mm或3.5mm以下且最好是2.5mm或2.5mm以下的导管构成。放在导管中的光纤的直径可以是400微米,或是较细的硅石(熔融石英)纤维如由Sturbridge,Mass的Spectran公司生产的SG800型纤维。导管可以是多腔型的以便提供进流口和吸孔。在一个实施例中,导管尖端可以是由辐射不透明且耐热的材料制成的。辐射不透明的尖端可被用于将导管固定在X射线荧光检查仪下。
本发明可用于各种导管装置,其中包括在荧光镜的指导下工作的仪器以及引入成像系统如回声探深成像系统或光声成像系统的仪器。例如,作为一个可专门适用于导管环境的光声成像系统的例子,请参见在此被视为参考文献的美国专利US4,504,727。
可以在不超出本发明范围的前提下对以上具体描述的实施例进行修改和改进,而后续的权利要求书的范围意在限定本发明的范围。
权利要求
1.一种用于在经皮透照进入过程中将声能送入脑血管的方法,它包括将一根光纤插入血管中直至一个靠近闭塞的点,其中该光纤包括一个远端和一个近端;以及将激光耦合地输入所述近端,所述激光的脉冲频率为5KHz-25KHz、波长为200nm-5000nm、能量密度为0.01J/cm2-4J/cm2,其中所述激光从远端发出以在一个液体周围介质中产生一个声辐射场,所述声辐射场是通过这样一种机理产生的,即该机理是从包括在该液体周围介质中的热弹性膨胀或在所述液体周围介质中的过热蒸汽膨胀的组中选出的。
2.一种方法,它包括将一根光纤插入血管中直至一个靠近闭塞的点,其中该光纤包括一个近端和一个远端;以及使激光耦合地输入所述近端,其中激光的脉冲频率为10Hz-100kHz、波长为200nm-5000nm、能量密度为0.01J/cm2-4J/cm2,激光从所述远端发出以在一个液体周围介质中产生一个声辐射场。
3.如权利要求2所述的方法,其特征在于,激光的脉冲频率在大于1kHz至25kHz的范围内。
4.如权利要求3所述的方法,其特征在于,激光的脉冲宽度短于200ns,从所述远端发出的激光通过所述液体周围介质的热弹性膨胀而产生所述的声辐射场。
5.如权利要求3所述的方法,其特征在于,从所述远端发出的激光通过过热蒸汽膨胀而产生一个声辐射场。
6.如权利要求3所述的方法,其特征在于,为了除去在所述血管中的血管内闭塞,激光从所述远端发出,以在一个液体周围介质中产生一个声辐射场。
7.如权利要求6所述的方法,其特征在于,所述的血管内闭塞选自包括粥样硬化斑和血栓的组中。
8.如权利要求3所述的方法,其特征在于,所述的液体周围介质选自包括血液、生理盐水、含吸收染料的生理盐水、溶解血栓的药剂和血栓的组中。
9.如权利要求3所述的方法,其特征在于,所述光纤位于一根导管内,所述方法还包括通过所述导管将血栓溶解药注入所述的液体周围介质中,以使所述闭塞乳化。
10.如权利要求9所述的方法,其特征在于,一条工作管道在所述导管内平行于所述光纤地延伸,通过所述导管将血栓溶解药注入所述液体周围介质中以使所述闭塞乳化的步骤包括通过所述导管内的工作管道注入所述的血栓溶解药以使闭塞乳化。
11.如权利要求3所述的方法,其特征在于,所述光纤位于一个导管内,该方法还包括通过所述导管将放射线造影剂注入所述的液体周围介质中以便于显影。
12.如权利要求3所述的方法,还包括通过反馈装置监视并控制引入组织中的声振动的幅度。
13.如权利要求3所述的方法,其特征在于,将光纤插入血管中的步骤包括插入一根具有选自包括凹形尖端、凸形尖端或平面尖端的组中的尖端的光纤。
14.如权利要求3所述的方法,其特征在于,将光纤插入血管中的步骤包括将一根直径变化的光纤插入该血管中。
15.如权利要求3所述的方法,其特征在于,将光纤插入血管中的步骤包括将一根包括玻璃/塑料组合的光纤插入该血管中。
16.如权利要求3所述的方法,其特征在于,为了除去在该血管中的血管内闭塞,激光从所述远端发出以通过选自包括热弹性机理、热力机理或热力机理和热弹性机理的组合的组中的机理在液体周围介质中产生一个声辐射场。
17.如权利要求3所述的方法,其特征在于,激光从所述远端发出以在液体周围介质中产生一个声辐射场从而除去在所述血管中的血管内闭塞,所述激光具有短于200ns的脉冲宽度,从所述远端发出的激光通过所述液体周围介质的热弹性膨胀而产生一个声辐射场,所述激光将其大小受到控制的能量引入所述液体周围介质中,所述能量在少量的所述液体周围介质中产生大的热弹性应力,被激光加热的液体周围介质的所述体积由激光在所述液体周围介质中的吸收深度决定,控制所述的吸收深度以便在所述的液体周围介质体积中产生所需的热弹性应力。
18.如权利要求3所述的方法,其特征在于,为了除去在该血管中的血管内闭塞,激光从所述远端发出以在液体周围介质中产生一个声辐射场,所述激光的脉冲宽度短得足以在一个短于声音传过吸收区的最小尺寸的传递时间的时间内将所有的激光能量存储在吸收液体中,从所述远端发出的激光通过所述液体周围介质的热弹性膨胀而产生一个声辐射场。
19.如权利要求3所述的方法,其特征在于,所述光纤包括一束多根的光纤,在不同的时刻将所述激光耦合地接入所述近端,在所述光纤束的各根光纤中的激光在不同的时刻到达所述远端,调节上述的不同时刻以便控制声辐射场的方向性和形状,与所述的各根光纤的不同空间位置联合起来地调节所述的不同时刻。
20.如权利要求3所述的方法,其特征在于,所述激光被用作产生人体组织结构的声象的信号源。
21.一种用于通过一种位于血管内的液体周围介质的热弹性膨胀而形成一个超声波辐射场的方法,它包括将一根光纤插入所述血管内;在一个短于传过一个与所述光纤的直径相差不多的液体周围介质体积的长度的声传递时间的作用期内将激光能量存入所述液体周围介质体积中;控制激光能量,以致空化气泡的最大尺寸约等于光纤直径;以及在一个重复频率下使激光能脉动,从而该过程的多次循环在周围液体中产生一个声辐射场。
22.如权利要求20所述的方法,还包括使激光能的激光脉冲重复频率与空化气泡持续时间协调以便获得共振效应。
23.一种用于通过一个位于血管内的液体周围介质的蒸汽膨胀而形成一个超声波辐射场的方法,包括将一根光纤插入所述血管内;将激光能量存贮在少量的液体周围介质中以便产生空化气泡;控制激光能量,以致所述空化气泡的最大尺寸约等于所述光纤的直径;以及在一个重复频率下使激光能脉动,从而所述空化气泡的生成及其破裂的多次循环在所述液体环绕介质中产生一个声辐射场。
24.如权利要求23所述的方法,它还包括使激光能的脉冲周期与空化气泡持续时间协调以便获得共振效应的步骤。
25.一种装置,它包括一根用于插入血管中直至一个靠近闭塞的点的光纤,其中该光纤包括一个近端和一个远端;以及一个产生激光以使其被耦合地接入所述近端的激光器,其中所述激光的脉冲频率为10Hz-100kHz、波长为200nm-5000nm、能量密度为0.01J/cm2-4J/cm2,激光从远端发出而在一个液体周围介质中产生声辐射场。
26.如权利要求25所述的装置,其特征在于,激光的脉冲频率在大于1kHz至25kHz的范围内。
27.如权利要求26所述的装置,其特征在于,激光的脉冲宽度小于200ns,从所述远端发出的激光通过所述液体周围介质的热弹性膨胀而产生所述的声辐射场。
28.如权利要求26所述的装置,其特征在于,从所述远端发出的激光通过过热蒸汽膨胀而产生一个声辐射场。
29.如权利要求26所述的装置,其特征在于,为了除去在该血管中的血管内闭塞,所述激光从所述远端发出以在一个液体周围介质中产生一个声辐射场。
30.如权利要求29所述的装置,其特征在于,该血管内闭塞选自包括粥样硬化斑和血栓的组中。
31.如权利要求25所述的装置,其特征在于,所述的液体周围介质选自包括血液、生理盐水、含吸收染料的生理盐水、血栓溶解药剂和血栓的组中。
32.如权利要求25所述的装置,它还包括一根导管,其中所述光纤位于所述导管内,血栓溶解药剂可通过所述导管注入所述的液体周围介质中,以使所述闭塞乳化。
33.如权利要求32所述的装置,它还包括一条在所述导管内平行于所述光纤延伸的工作管道,可以通过该工作管道注入血栓溶解药剂以使闭塞乳化。
34.如权利要求25所述的装置,它还包括一根导管,其中所述光纤位于此导管内,通过该导管可将放射线造影剂注入所述的液体周围介质中以便于显影。
35.如权利要求25所述的装置,它还包括用于监视并控制引入所述液体周围介质中的声辐射场的大小的装置。
36.如权利要求25所述的装置,其特征在于,所述光纤具有一个尖端,该尖端的形状选自包括凹形、凸形和平面形的组中。
37.如权利要求25所述的装置,其特征在于,所述光纤具有可变的直径。
38.如权利要求37所述的装置,其特征在于,所述光纤具有在该纤维尖端处逐渐变细的可变直径。
39.如权利要求25所述的装置,其特征在于,所述光纤包括一种玻璃和塑料的组合体。
40.如权利要求39所述的装置,其特征在于,所述光纤包括玻璃和在光纤尖端的一小段塑料的组合物,其中所述的一小段塑料的长度为3mm-3cm。
41.如权利要求25所述的装置,其特征在于,被激光加热的液体周围介质的体积由激光在该液体周围介质中的吸收深度决定,控制所述的吸收深度以便在所述的液体周围介质体积中产生所需的热弹性应力。
42.如权利要求25所述的装置,其特征在于,所述激光的脉冲宽度短得足以在一个短于声音传过吸收区的最小尺寸的声音传递时间的时间内将所有的激光能量存入吸收液体中,从所述远端发出的激光通过所述液体周围介质的热弹性膨胀而产生一个声辐射场。
43.如权利要求25所述的装置,其特征在于,所述光纤尖端的结构适于作为一个在所述液体周围介质中聚光用的光学元件,所述尖端的结构还可以使所述激光能的光束形状最佳化,以便产生所需的声能。
44.如权利要求25所述的装置,其特征在于,光纤尖端具有一个通过选自研磨、抛光、化学蚀刻的一种加工方式而制得的表面。
45.如权利要求25所述的装置,其特征在于,所述激光具有可调波长。
46.一种用于通过位于血管内的液体周围介质的热弹性膨胀而形成一个超声波辐射场的装置,它包括一根用于插入所述血管中的光纤;用于将激光能存储在一定量的液体周围介质中的装置,其中所述液体周围介质体积与所述光纤的直径差不多,在一个短于声音传过该体积的长度的声音传递时间的持续时间内存入所述激光能;用于如下所述地控制激光能的装置,即空化气泡的最大尺寸约等于光纤的直径;以及用于以一定重复频率使激光能如下所述地脉动的装置,即该过程的多次循环在周围液体中产生一个声辐射场。
47.如权利要求46所述的装置,它还包括用于使激光能的激光脉冲重复频率与空化气泡的持续时间协调的装置。
48.一种用于通过一个位于血管内的液体周围介质的蒸汽膨胀而形成一个超声波辐射场的装置,它包括一根用于插入该血管中的光纤;用于将激光能存储在少量的液体周围介质中以便产生空化气泡的装置;用于控制激光能以致所述空化气泡的最大尺寸约等于光纤直径的装置;以及用于一重复频率下使激光能脉动由此所述该空化气泡的生成及其破裂的多次循环在所述液体环绕介质中产生一个声辐射场的装置。
全文摘要
本发明是一种用于在生理组织中产生超声波激励的基于导管的装置。通过光纤(10)引导脉冲激光以便提供用于产生声振动的发生能。光能被存在水基吸收液如盐水、血栓溶解药剂、血液或血栓中并通过热弹性和/或热力机理在液体中产生声脉冲。由于使激光以一定重复频率(可能从10Hz到100kHz)脉动,可以在介质内局部地建立超声波辐射场。此超声波振动的发生方法可在生活中被用于急诊处理情况,特别是用于溶解血栓或处理血管痉挛。导管(14)也可以使血栓溶解药物治疗表现为附属疗法,它可以与用于成像和反馈控制的超声波探测装置一起工作。它也可以与用于显示血栓类型和血栓坚实度的光学探头一起工作。
文档编号A61B17/22GK1216910SQ97194130
公开日1999年5月19日 申请日期1997年4月23日 优先权日1996年4月24日
发明者彼特·塞利尔斯, 露茨·达席尔瓦, 米歇尔·格林斯凯, 里查德·伦敦, 邓肯·梅特兰, 丹尼斯·马修斯, 约瑟夫·P·菲奇 申请人:加利福尼亚大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1