用于治疗及诊断衣原体感染的化合物和方法

文档序号:1078671阅读:541来源:国知局
专利名称:用于治疗及诊断衣原体感染的化合物和方法
技术领域
本发明普遍涉及衣原体感染的检测与治疗。特别是,本发明涉及含有衣原体抗原的多肽,这些多肽在衣原体感染的血清学诊断和治疗中的应用。
背景技术
衣原体是引起多种重要的人类及动物感染的胞内细菌病原体。沙眼衣原体(Chlamydia trachomatis)是最常见的性传播疾病的病原体之一,能引起骨盆炎症疾病(PID),导致输卵管梗阻和不育。沙眼衣原体也可能在男性不育中起作用。1990年,美国治疗PID的费用估计为40亿美元。由于眼睛感染沙眼衣原体引起的沙眼是世界范围内可预防的失明的主要病因。肺炎衣原体(Chamydia pneumonia)是人类急性呼吸道感染的主要原因,也认为其在动脉粥样硬化特别是冠状心脏病的发病机理中起作用。含有高效价肺炎衣原体抗体的个体患冠状心脏病的可能性比血清阴性个体至少高两倍。因此衣原体感染在美国和世界范围内都是一个重要的健康问题。
衣原体感染通常是无症状的。例如,到妇女对PID引起医学注意时,可能已发生不可逆的损伤,导致不育。因此在本领域中需要改进的疫苗和药用组合物来预防和治疗衣原体感染。本发明满足了这一需要,并进一步具有其他相关优点。
发明概述本发明提供用于诊断和治疗衣原体感染的组合物和方法。一方面,本发明提供含有衣原体抗原的免疫原性部分的多肽,或这种抗原的变体。某些部分和其他变体有免疫原性,使得该变体与抗原特异性抗血清反应的能力基本上不减弱。在某些实施方案中,这种多肽含有一种由选自下列的多核苷酸序列编码的氨基酸序列(a)SEQ ID NO1,15,21-25,44-64,66-76,79-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-290的序列;(b)这些序列的互补序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的序列。在特定实施方案中,本发明的多肽含有至少一部分衣原体蛋白,其包含选自SEQ ID NO5-14,17-20,26,28,30-32,34,39-43,65,89-109,138-158,167,168,224-262,246,247,254-256,292所列序列的氨基酸序列,及其变体。
本发明进一步提供编码如上所述的多肽的多核苷酸,或其部分(如编码衣原体蛋白至少15个氨基酸残基的部分),含有这些多核苷酸的表达载体,和用这些表达载体转化或转染的宿主细胞。
在有关方面,也提供了编码以上多肽的多核苷酸序列,含有一种或多种这些多核苷酸序列的重组表达载体,和用这些表达载体转化或转染的宿主细胞。
另一方面,本发明提供了含有本发明的多肽、或含有本发明的多肽和已知衣原体抗原的融合蛋白,以及编码这些融合蛋白的多核苷酸,与生理学可接受的载体或免疫刺激物一起用作药用组合物和疫苗。
本发明进一步提供含有下列成分的药用组合物(a)一种可与衣原体蛋白特异结合的多克隆或单克隆抗体,或其抗原结合片段;和(b)生理学可接受的载体。在其他方面中,本发明提供含有此处公开的一种或多种衣原体多肽,或编码这种多肽的多核苷酸分子,和生理学可接受的载体的药用组合物。本发明也提供用于预防和治疗目的的疫苗,其含有一种或多种此处所述的多肽和免疫刺激物,以及含有一种或多种编码这些多肽的多核苷酸序列和免疫刺激物的疫苗。
另一方面,提供了在患者中诱导保护性免疫的方法,其包括对患者施用一种有效量的一种或多种上述药用组合物或疫苗。
再另一方面,提供了治疗患者的衣原体感染的方法,该方法包括从患者中获得外周血单核细胞(PBMC),将PBMC与本发明的多肽(或编码这种多肽的多核苷酸)温育,产生温育的T细胞,并对患者施用这种温育的T细胞。本发明还提供治疗衣原体感染的方法,包括将抗原递呈细胞与本发明的多肽(或编码这种多肽的多核苷酸)温育,产生温育的抗原递呈细胞,并对患者施用这种温育的抗原递呈细胞。增殖的细胞在对患者施用前可以但不必克隆。在某些实施方案中,抗原递呈细胞选自树突细胞、巨噬细胞、单核细胞、B细胞和成纤维细胞。也提供了用于治疗衣原体感染的组合物,其含有已与本发明的多肽或多核苷酸一起温育的T细胞或抗原递呈细胞。在有关方面中,提供了包含下列成分的疫苗(a)一种表达如上所述的多肽的抗原递呈细胞,和(b)一种免疫刺激物。
在其他方面,本发明还提供从生物样品中除去衣原体感染的细胞的方法,其包括使生物样品接触可与衣原体蛋白特异反应的T细胞,其中在足以从样品中除去表达该蛋白的细胞的条件下和时间内进行此接触步骤。
在相关方面,提供了抑制患者衣原体感染发展的方法,包括对患者施用如上所述处理的生物样品。在本发明的其他方面中,提供了检测患者衣原体感染的方法和诊断试剂盒。在一个实施方案中,该方法包括(a)使生物样品接触此处公开的至少一种多肽或融合蛋白;和(b)检测样品中可与该多肽或融合蛋白结合的结合剂的存在,从而检测生物样品中的衣原体感染。合适的生物样品包括全血、痰、血清、血浆、唾液、脑脊液和尿。在一个实施方案中,诊断试剂盒含有此处公开的一种或多种多肽或融合蛋白,以及检测试剂。在另一个实施方案中,诊断试剂盒含有一种可与本发明的多肽结合的单克隆抗体或多克隆抗体。
本发明也提供了检测衣原体感染的方法,包括(a)从患者中获得生物样品;(b)在聚合酶链反应中使样品接触至少两种寡核苷酸引物,至少一种寡核苷酸引物对于此处公开的多核苷酸序列是特异的;和(c)检测样品中在寡核苷酸引物存在下扩增的多核苷酸序列。在一个实施方案中,寡核苷酸引物含有此处公开的多核苷酸序列或可与之杂交的序列的至少约10个连续核苷酸。
另一方面,本发明提供了检测患者衣原体感染的方法,包括(a)从患者中获得生物样品;(b)使样品接触一种对于此处公开的多核苷酸序列特异的寡核苷酸探针;和(c)检测样品中可与该寡核苷酸探针杂交的多核苷酸序列。在一个实施方案中,寡核苷酸探针含有此处公开的多核苷酸序列的至少约15个连续核苷酸,或可与之杂交的序列。
在参考以下的详细叙述后,本发明的这些及其他方面将是显然的。此处公开的所有参考文献均在此完全引用作为参考。序列标识SEQ ID NO1是沙眼衣原体克隆1-B1-66的确定的DNA序列。
SEQ ID NO2是沙眼衣原体克隆4-D7-28的确定的DNA序列。
SEQ ID NO3是沙眼衣原体克隆3-G3-10的确定的DNA序列。
SEQ ID NO4是沙眼衣原体克隆10-C10-31的确定的DNA序列。
SEQ ID NO5是1-B1-66的预测的氨基酸序列。
SEQ ID NO6是4-D7-28的预测的氨基酸序列。
SEQ ID NO7是3-G3-10的第一种预测的氨基酸序列。
SEQ ID NO8是3-G3-10的第二种预测的氨基酸序列。
SEQ ID NO9是3-G3-10的第三种预测的氨基酸序列。
SEQ ID NO10是3-G3-10的第四种预测的氨基酸序列。
SEQ ID NO11是3-G3-10的第五种预测的氨基酸序列。
SEQ ID NO12是10-C10-31的预测的氨基酸序列。
SEQ ID NO13是合成肽1-B1-66/48-67的氨基酸序列。
SEQ ID NO14是合成肽1-B1-66/58-77的氨基酸序列。
SEQ ID NO15是沙眼衣原体血清变型LGV II克隆2C7-8的确定的DNA序列。
SEQ ID NO16是沙眼衣原体血清变型D的第一个推断开放阅读框的确定的DNA序列。
SEQ ID NO17是由沙眼衣原体血清变型D的第一个推断开放阅读框编码的预测的氨基酸序列。
SEQ ID NO18是合成肽CtC7.8-12的氨基酸序列。
SEQ ID NO19是合成肽CtC7.8-13的氨基酸序列。
SEQ ID NO20是由沙眼衣原体血清变型D的第二个推断开放阅读框编码的预测的氨基酸序列。
SEQ ID NO21是沙眼衣原体LGV II克隆4C9-18的确定的DNA序列。
SEQ ID NO22是与沙眼衣原体LGV II的硫辛酰胺脱氢酶同源的确定的DNA序列。
SEQ ID NO23是与沙眼衣原体LGV II的假拟蛋白同源的确定的DNA序列。
SEQ ID NO24是与沙眼衣原体LGV II的泛醌甲基转移酶同源的确定的DNA序列。
SEQ ID NO25是沙眼衣原体LGV II的克隆4C9-18#2 BL21 pLysS的确定的DNA序列。
SEQ ID NO26是沙眼衣原体LGV II的4C9-18#2的预测的氨基酸序列。
SEQ ID NO27是肺炎衣原体TWAR株的Cp-SWIB的确定的DNA序列。
SEQ ID NO28是肺炎衣原体TWAR株的Cp-SWIB的预测的氨基酸序列。
SEQ ID NO29是肺炎衣原体TWAR株的Cp-S13的确定的DNA序列。
SEQ ID NO30是肺炎衣原体TWAR株的Cp-S13的预测的氨基酸序列。
SEQ ID NO31是CtC7.8-12和CtC7.8-13的10mer共有肽的氨基酸序列。
SEQ ID NO32是沙眼衣原体LGV II的克隆2C7-8的预测的氨基酸序列。
SEQ ID NO33是显示与克隆2C7-8同源性的沙眼衣原体血清变型D的一个克隆的确定的DNA序列。
SEQ ID NO34是SEQ ID NO33的序列所编码的预测的氨基酸序列。
SEQ ID NO35是肺炎衣原体的C.p.SWIB Nde(5’引物)的DNA序列。
SEQ ID NO36是肺炎衣原体的C.p.SWIB EcoRI(3’引物)的DNA序列。
SEQ ID NO37是肺炎衣原体的C.p.S13 Nde(5’引物)的DNA序列。
SEQ ID NO38是肺炎衣原体的C.p.S13 EcoRI(3’引物)的DNA序列。
SEQ ID NO39是来源于沙眼衣原体LGV II的CtSwib 52-67肽的氨基酸序列。
SEQ ID NO40是来源于肺炎衣原体LGV II的CtSwib 53-68肽的氨基酸序列。
SEQ ID NO41是来源于人SWI域的HuSwib 288-302肽的氨基酸序列。
SEQ ID NO42是来源于沙眼衣原体拓扑异构酶-SWIB融合体的CpSWI-T 822-837肽的氨基酸序列。
SEQ ID NO43是来源于肺炎衣原体拓扑异构酶-SWIB融合体的CpSWI-T 828-842肽的氨基酸序列。
SEQ ID NO44是沙眼衣原体LGV II克隆19783.3,jen.seq(1>509)CTL2#11-3’的第一个确定的DNA序列,代表3’端。
SEQ ID NO45是沙眼衣原体LGV II克隆19783.4,jen.seq(1>481)CTL2#11-5’的第二个确定的DNA序列,代表5’端。
SEQ ID NO46是沙眼衣原体LGV II克隆19784CTL2 12consensus.seq(1>427)CTL2#12的确定的DNA序列。
SEQ ID NO47是沙眼衣原体LGV II克隆19785.4,jen.seq(1>600)CTL2#16-5’的确定的DNA序列,代表5’端。
SEQ ID NO48是沙眼衣原体LGV II克隆19786.3,jen.seq(1>600)CTL2#18-3’的第一个确定的DNA序列,代表3’端。
SEQ ID NO49是沙眼衣原体LGV II克隆19786.4,jen.seq(1>600)CTL2#18-5’的第二种确定的DNA序列,代表5’端。
SEQ ID NO50是沙眼衣原体LGV II克隆19788CTL2 21consensus.seq(1>406)CTL2#21的确定的DNA序列。
SEO ID NO51是沙眼衣原体LGV II克隆19790CTL2 23consensus.seq(1>602)CTL2#23的确定的DNA序列。
SEQ ID NO52是沙眼衣原体LGV II克隆19791CTL2 24consensus.seq(1>145)CTL2#24的确定的DNA序列。
SEQ ID NO53是沙眼衣原体LGV II克隆CTL2#4的确定的DNA序列。
SEQ ID NO54是沙眼衣原体LGV II克隆CTL2#8b的确定的DNA序列。
SEQ ID NO55是沙眼衣原体LGV II克隆15-G1-89的确定的DNA序列,它与硫辛酰胺脱氢酶基因CT557有同源性。
SEQ ID NO56是沙眼衣原体LGV II克隆14-H1-4的确定的DNA序列,它与硫醇特异的抗氧化剂基因CT603有同源性。
SEQ ID NO57是沙眼衣原体LGV II克隆12-G3-83的确定的DNA序列,它与假拟蛋白CT622有同源性。
SEQ ID NO58是沙眼衣原体LGV II克隆12-B3-95的确定的DNA序列,它与硫辛酰胺脱氢酶基因CT557有同源性。
SEQ ID NO59是沙眼衣原体LGV II克隆11-H4-28的确定的DNA序列,它与dnaK基因CT396有同源性。
SEQ ID NO60是沙眼衣原体LGV II克隆11-H3-68的确定的DNA序列,它与PGP6-D毒性蛋白和L1核糖体基因CT318有部分同源性。
SEQ ID NO61是沙眼衣原体LGV II克隆11-G1-34的确定的DNA序列,它与苹果酸脱氢酶基因CT376和糖原水解酶基因CT042有部分同源性。
SEQ ID NO62是沙眼衣原体LGV II克隆11-G10-46的确定的DNA序列,它与假拟蛋白CT610有同源性。
SEQ ID NO63是沙眼衣原体LGV II克隆11-C12-91的确定的DNA序列,它与OMP2基因CT443有同源性。
SEQ ID NO64是沙眼衣原体LGV II克隆11-A3-93的确定的DNA序列,它与HAD超家族基因CT103有同源性。
SEQ ID NO65是沙眼衣原体LGV II克隆14-H1-4的确定的氨基酸序列,它与硫醇特异的抗氧化剂基因CT603有同源性。
SEQ ID NO66是沙眼衣原体LGV II克隆CtL2#9的确定的DNA序列。
SEQ ID NO67是沙眼衣原体LGV II克隆CtL2#7的确定的DNA序列。
SEQ ID NO68是沙眼衣原体LGV II克隆CtL2#6的确定的DNA序列。
SEQ ID NO69是沙眼衣原体LGV II克隆CtL2#5的确定的DNA序列。
SEQ ID NO70是沙眼衣原体LGV II克隆CtL2#2的确定的DNA序列。
SEQ ID NO71是沙眼衣原体LGV II克隆CtL2#1的确定的DNA序列。
SEQ ID NO72是沙眼衣原体LGV II克隆23509.2CtL2#3-5’的第一种确定的DNA序列,代表5’端。
SEQ ID NO73是沙眼衣原体LGV II克隆23509.1CtL2#3-3’的第二种确定的DNA序列,代表3’端。
SEQ ID NO74是沙眼衣原体LGV II克隆22121.2CtL2#10-5’的第一种确定的DNA序列,代表5’端。
SEQ ID NO75是沙眼衣原体LGV II克隆22121.1CtL2#10-3’的第二种确定的DNA序列,代表3’端。
SEQ ID NO76是确定的沙眼衣原体LGV II克隆19787.6CtL2#19-5’的确定的DNA序列,代表5’端。
SEQ ID NO77是肺炎衣原体LGV II克隆CpS13-His的确定的DNA序列。
SEQ ID NO78是肺炎衣原体LGV II克隆Cp_SWIB-His的确定的DNA序列。
SEQ ID NO79是沙眼衣原体LGV II克隆23-G7-68的确定的DNA序列,它与L11、L10和L1核糖体蛋白有部分同源性。
SEQ ID NO80是沙眼衣原体LGV II克隆22-F8-91的确定的DNA序列,它与pmpC基因有同源性。
SEQ ID NO81是沙眼衣原体LGV II克隆21-E8-95的确定的DNA序列,它与CT610-CT613基因有同源性。
SEQ ID NO82是沙眼衣原体LGV II克隆19-F12-57的确定的DNA序列,它与CT858和recA基因有同源性。
SEQ ID NO83是沙眼衣原体LGV II克隆19-F12-53的确定的DNA序列,它与编码谷氨酰tRNA合成酶的CT445基因有同源性。
SEQ ID NO84是沙眼衣原体LGV II克隆19-A5-54的确定的DNA序列,它与隐蔽性质粒基因有同源性。
SEQ ID NO85是沙眼衣原体LGV II克隆17-E11-72的确定的DNA序列,它与OppC_2和pmpD基因有部分同源性。
SEQ ID NO86是沙眼衣原体LGV II克隆17-C1-77的确定的DNA序列,它与CT857和CT858开放阅读框有部分同源性。
SEQ ID NO87是沙眼衣原体LGV II克隆15-H2-76的确定的DNA序列,它与pmpD和SycE基因及CT089 ORF有部分同源性。
SEQ ID NO88是沙眼衣原体LGV II克隆15-A3-26的确定的DNA序列,它与CT858 ORF有同源性。
SEQ ID NO89是肺炎衣原体克隆Cp SWIB-His的确定的氨基酸序列。
SEQ ID NO90是沙眼衣原体LGV II克隆CtL2 LPDA FL的确定的氨基酸序列。
SEQ ID NO91是肺炎衣原体克隆CpS13-His的确定的氨基酸序列。
SEQ ID NO92是沙眼衣原体克隆CtL2_TSA_FL的确定的氨基酸序列。
SEQ ID NO93是沙眼衣原体LGV II的Ct-Swib 43-61肽的氨基酸序列。
SEQ ID NO94是沙眼衣原体LGV II的Ct-Swib 48-67肽的氨基酸序列。
SEQ ID NO95是沙眼衣原体LGV II的Ct-Swib 52-71肽的氨基酸序列。
SEQ ID NO96是沙眼衣原体LGV II的Ct-Swib 58-77肽的氨基酸序列。
SEQ ID NO97是沙眼衣原体LGV II的Ct-Swib 63-82肽的氨基酸序列。
SEQ ID NO98是沙眼衣原体LGV II的Ct-Swib 51-66肽的氨基酸序列。
SEQ ID NO99是肺炎衣原体LGV II的Cp-Swib 52-67肽的氨基酸序列。
SEQ ID NO100是肺炎衣原体LGV II的Cp-Swib 37-51肽的氨基酸序列。
SEQ ID NO101是肺炎衣原体LGV II的Cp-Swib 32-51肽的氨基酸序列。
SEQ ID NO102是肺炎衣原体LGV II的Cp-Swib 37-56肽的氨基酸序列。
SEQ ID NO103是沙眼衣原体LGV II的Ct-Swib 36-50肽的氨基酸序列。
SEQ ID NO104是沙眼衣原体的Ct-S13 46-65肽的氨基酸序列。
SEQ ID NO105是沙眼衣原体的Ct-S13 60-80肽的氨基酸序列。
SEQ ID NO106是沙眼衣原体的Ct-S13 1-20肽的氨基酸序列。
SEQ ID NO107是沙眼衣原体的Ct-S13 46-65肽的氨基酸序列。
SEQ ID NO108是沙眼衣原体的Ct-S13 56-75肽的氨基酸序列。
SEQ ID NO109是肺炎衣原体的Cp-S13 56-75肽的氨基酸序列。
SEQ ID NO110是沙眼衣原体LGV II克隆21-G12-60的确定的DNA序列,其含有假拟蛋白CT875、CT229和CT228的部分开放阅读框。
SEQ ID NO111是沙眼衣原体LGV II克隆22-B3-53的确定的DNA序列,它与GroEL的CT110 ORF有同源性。
SEQ ID NO112是沙眼衣原体LGV II克隆22-A1-49的确定的DNA序列,它与CT660和CT659 ORF有部分同源性。
SEQ ID NO113是沙眼衣原体LGV II克隆17-E2-9的确定的DNA序列,它与CT611和CT610 ORF有部分同源性。
SEQ ID NO114是沙眼衣原体LGV II克隆17-C10-31的确定的DNA序列,它与CT858 ORF有部分同源性。
SEQ ID NO115是沙眼衣原体LGV II克隆21-C7-66的确定的DNA序列,它与dnaK样基因有同源性。
SEQ ID NO116是沙眼衣原体LGVII克隆20-G3-45的确定的DNA序列,其含有pmpB基因CT413的部分。
SEQ ID NO117是沙眼衣原体LGV II克隆18-C5-2的确定的DNA序列,它与S1核糖体蛋白ORF有同源性。
SEQ ID NO118是沙眼衣原体LGV II克隆17-C5-19的确定的DNA序列,其含有CT431和CT430 ORF的部分。
SEQ ID NO119是沙眼衣原体LGV II克隆16-D4-22的确定的DNA序列,其含有在哺乳动物细胞内生长的质粒的ORF3和ORF4的部分序列。
SEQ ID NO120是沙眼衣原体血清变型LGV II Cap1基因CT529的全长确定的DNA序列。
SEQ ID NO121是沙眼衣原体血清变型LGV II Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO122是沙眼衣原体血清变型E Cap1基因CT529的全长确定的DNA序列。
SEQ ID NO123是沙眼衣原体血清变型E Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO124是沙眼衣原体血清变型1A Cap1基因CT529的全长确定的DNA序列。
SEQ ID NO125是沙眼衣原体血清变型1A Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO126是沙眼衣原体血清变型G Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO127是沙眼衣原体血清变型G Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO128是沙眼衣原体血清变型F1 NII Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO129是沙眼衣原体血清变型F1 NII Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO130是沙眼衣原体血清变型L1 Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO131是沙眼衣原体血清变型L1 Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO132是沙眼衣原体血清变型L3 Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO133是沙眼衣原体血清变型L3 Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO134是沙眼衣原体血清变型Ba Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO135是沙眼衣原体血清变型Ba Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO136是沙眼衣原体血清变型MOPN Cap1基因CT529的确定的全长DNA序列。
SEQ ID NO137是沙眼衣原体血清变型MOPN Cap1基因CT529的预测的全长氨基酸序列。
SEQ ID NO138是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#124-139的确定的氨基酸序列。
SEQ ID NO139是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#132-147的确定的氨基酸序列。
SEQ ID NO140是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#138-155的确定的氨基酸序列。
SEQ ID NO141是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#146-163的确定的氨基酸序列。
SEQ ID NO142是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#154-171的确定的氨基酸序列。
SEQ ID NO143是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#162-178的确定的氨基酸序列。
SEQ ID NO144是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#138-147的确定的氨基酸序列。
SEQ ID NO145是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#139-147的确定的氨基酸序列。
SEQ ID NO146是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#140-147的确定的氨基酸序列。
SEQ ID NO147是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#138-146的确定的氨基酸序列。
SEQ ID NO148是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#138-145的确定的氨基酸序列。
SEQ ID NO149是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽#F140->I的确定的氨基酸序列。
SEQ ID NO150是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽##S139>Ga的确定的氨基酸序列。
SEQ ID NO151是沙眼衣原体血清变型L2的Cap1 CT529 ORF肽##S139>Gb的确定的氨基酸序列。
SEQ ID NO152是沙眼衣原体血清变型L2的216aa ORF的肽#2C7.8-6的确定的氨基酸序列。
SEQ ID NO153是沙眼衣原体血清变型L2的216aa ORF的肽#2C7.8-7的确定的氨基酸序列。
SEQ ID NO154是沙眼衣原体血清变型L2的216aa ORF的肽#2C7.8-8的确定的氨基酸序列。
SEQ ID NO155是沙眼衣原体血清变型L2的216aa ORF的肽#2C7.8-9的确定的氨基酸序列。
SEQ ID NO156是沙眼衣原体血清变型L2的216aa ORF的肽#2C7.8-10的确定的氨基酸序列。
SEQ ID NO157是沙眼衣原体血清变型L2的克隆2C7.8内216aaORF的53个氨基酸残基肽的确定的氨基酸序列。
SEQ ID NO158是沙眼衣原体血清变型L2的克隆2C7.8内CT529ORF的53个氨基酸残基肽的确定的氨基酸序列。
SEQ ID NO159是用于克隆全长CT529血清变型L2的5’(正向)引物的确定的DNA序列。
SEQ ID NO160是用于克隆全长CT529血清变型L2的5’(反向)引物的确定的DNA序列。
SEQ ID NO161是用于克隆除L2和MOPN外的全长CT529血清变型的5’(正向)引物的确定的DNA序列。
SEQ ID NO162是用于克隆除L2和MOPN外的全长CT529血清变型的5’(反向)引物的确定的DNA序列。
SEQ ID NO163是用于克隆全长CT529血清变型MOPN的5’(正向)引物的确定的DNA序列。
SEQ ID NO164是用于克隆全长CT529血清变型MOPN的5’(反向)引物的确定的DNA序列。
SEQ ID NO165是用于pBIB-KS的5’(正向)引物的确定的DNA序列。
SEQ ID NO166是用于pBIB-KS的5’(反向)引物的确定的DNA序列。
SEQ ID NO167是血清变型L2的9-mer表位肽Cap1#139-147的确定的氨基酸序列。
SEQ ID NO168是血清变型D的9-mer表位肽Cap1#139-147的确定的氨基酸序列。
SEQ ID NO169是沙眼衣原体pmpI基因的确定的全长DNA序列。
SEQ ID NO170是沙眼衣原体pmpG基因的确定的全长DNA序列。
SEQ ID NO171是沙眼衣原体pmpE基因的确定的全长DNA序列。
SEQ ID NO172是沙眼衣原体pmpD基因的确定的全长DNA序列。
SEQ ID NO173是沙眼衣原体pmpC基因的确定的全长DNA序列。
SEQ ID NO174是沙眼衣原体pmpB基因的确定的全长DNA序列。
SEQ ID NO175是沙眼衣原体pmpI基因的预测的全长氨基酸序列。
SEQ ID NO176是沙眼衣原体pmpG基因的预测的全长氨基酸序列。
SEQ ID NO177是沙眼衣原体pmpE基因的预测的全长氨基酸序列。
SEQ ID NO178是沙眼衣原体pmpD基因的预测的全长氨基酸序列。
SEQ ID NO179是沙眼衣原体pmpC基因的预测的全长氨基酸序列。
SEQ ID NO180是沙眼衣原体pmpB基因的预测的全长氨基酸序列。
SEQ ID NO181是沙眼衣原体pmpI基因的确定的DNA序列减信号序列。
SEQ ID NO182是沙眼衣原体pmpG基因的随后确定的全长DNA序列。
SEQ ID NO183是沙眼衣原体pmpE基因的确定的DNA序列减信号序列。
SEQ ID NO184是代表沙眼衣原体pmpD基因羧基端的第一种确定的DNA序列。
SEQ ID NO185是代表沙眼衣原体pmpD基因氨基端的第二种确定的DNA序列。
SEQ ID NO186是代表沙眼衣原体pmpC基因羧基端的第一种确定的DNA序列。
SEQ ID NO187是代表沙眼衣原体pmpC基因氨基端减信号序列的第二种确定的DNA序列。
SEQ ID NO188是在与Ra12的融合分子中代表肺炎衣原体血清变型MOMPS pmp基因的确定的DNA序列。
SEQ ID NO189是沙眼衣原体pmpI基因的预测的氨基酸序列减信号序列。
SEQ ID NO190是随后预测的沙眼衣原体pmpG基因的氨基酸序列。
SEQ ID NO191是沙眼衣原体pmpE基因的预测的氨基酸序列减信号序列。
SEQ ID NO192是代表沙眼衣原体pmpD基因羧基端的第一种预测的氨基酸序列。
SEQ ID NO193是代表沙眼衣原体pmpD基因氨基端的第二种预测的氨基酸序列减信号序列。
SEQ ID NO194是代表沙眼衣原体pmpC基因羧基端的第一种预测的氨基酸序列。
SEQ ID NO195是代表沙眼衣原体pmpC基因氨基端的第二种预测的氨基酸序列。
SEQ ID NO196是在与Ra12的融合分子中代表肺炎衣原体血清变型MOMPS pmp基因的预测的氨基酸序列。
SEQ ID NO197是用于在SKB疫苗载体中克隆沙眼衣原体pmpC基因的5’oligo引物的确定的DNA序列。
SEQ ID NO198是用于在SKB疫苗载体中克隆沙眼衣原体pmpC基因的3’oligo引物的确定的DNA序列。
SEQ ID NO199是用于在SKB疫苗载体中克隆沙眼衣原体pmpC基因的插入序列的确定的DNA序列。
SEQ ID NO200是用于在SKB疫苗载体中克隆沙眼衣原体pmpD基因的5’oligo引物的确定的DNA序列。
SEQ ID NO201是用于在SKB疫苗载体中克隆沙眼衣原体pmpD基因的3’oligo引物的确定的DNA序列。
SEQ ID NO202是用于在SKB疫苗载体中克隆沙眼衣原体pmpD基因的插入序列的确定的DNA序列。
SEQ ID NO203是用于在SKB疫苗载体中克隆沙眼衣原体pmpE基因的5’oligo引物的确定的DNA序列。
SEQ ID NO204是用于在SKB疫苗载体中克隆沙眼衣原体pmpE基因的3’oligo引物的确定的DNA序列。
SEQ ID NO205是用于在SKB疫苗载体中克隆沙眼衣原体pmpG基因的5’oligo引物的确定的DNA序列。
SEQ ID NO206是用于在SKB疫苗载体中克隆沙眼衣原体pmpG基因的3’oligo引物的确定的DNA序列。
SEQ ID NO207是用于在pET17b载体中克隆沙眼衣原体pmpC基因氨基端部分的5’oligo引物的确定的DNA序列。
SEQ ID NO208是用于在pET17b载体中克隆沙眼衣原体pmpC基因氨基端部分的3’oligo引物的确定的DNA序列。
SEQ ID NO209是用于在pET17b载体中克隆沙眼衣原体pmpC基因羧基端部分的5’oligo引物的确定的DNA序列。
SEQ ID NO210是用于在pET17b载体中克隆沙眼衣原体pmpC基因羧基端部分的3’oligo引物的确定的DNA序列。
SEQ ID NO211是用于在pET17b载体中克隆沙眼衣原体pmpD基因氨基端部分的5’oligo引物的确定的DNA序列。
SEQ ID NO212是用于在pET17b载体中克隆沙眼衣原体pmpD基因氨基端部分的3’oligo引物的确定的DNA序列。
SEQ ID NO213是用于在pET17b载体中克隆沙眼衣原体pmpD基因羧基端部分的5’oligo引物的确定的DNA序列。
SEQ ID NO214是用于在pET17b载体中克隆沙眼衣原体pmpD基因羧基端部分的3’oligo引物的确定的DNA序列。
SEQ ID NO215是用于在pET17b载体中克隆沙眼衣原体pmpE基因的5’oligo引物的确定的DNA序列。
SEQ ID NO216是用于在pET17b载体中克隆沙眼衣原体pmpE基因的3’oligo引物的确定的DNA序列。
SEQ ID NO217是用于在pET17b载体中克隆沙眼衣原体pmpE基因的插入序列的确定的DNA序列。
SEQ ID NO218是用于在pET17b载体中克隆沙眼衣原体pmpE基因的插入序列的氨基酸序列。
SEQ ID NO219是用于在pET17b载体中克隆沙眼衣原体pmpG基因的5’oligo引物的确定的DNA序列。
SEQ ID NO220是用于在pET17b载体中克隆沙眼衣原体pmpG基因的3’oligo引物的确定的DNA序列。
SEQ ID NO221是用于在pET17b载体中克隆沙眼衣原体pmpG基因的插入序列的氨基酸序列。
SEQ ID NO222是用于在pET17b载体中克隆沙眼衣原体pmpI基因的5’oligo引物的确定的DNA序列。
SEQ ID NO223是用于在pET17b载体中克隆沙眼衣原体pmpI基因的3’oligo引物的确定的DNA序列。
SEQ ID NO224是肺炎衣原体Swib肽1-20的确定的氨基酸序列。
SEQ ID NO225是肺炎衣原体Swib肽6-25的确定的氨基酸序列。
SEQ ID NO226是肺炎衣原体Swib肽12-31的确定的氨基酸序列。
SEQ ID NO227是肺炎衣原体Swib肽17-36的确定的氨基酸序列。
SEQ ID NO228是肺炎衣原体Swib肽22-41的确定的氨基酸序列。
SEQ ID NO229是肺炎衣原体Swib肽27-46的确定的氨基酸序列。
SEQ ID NO230是肺炎衣原体Swib肽42-61的确定的氨基酸序列。
SEQ ID NO231是肺炎衣原体Swib肽46-65的确定的氨基酸序列。
SEQ ID NO232是肺炎衣原体Swib肽51-70的确定的氨基酸序列。
SEQ ID NO233是肺炎衣原体Swib肽56-75的确定的氨基酸序列。
SEQ ID NO234是肺炎衣原体Swib肽61-80的确定的氨基酸序列。
SEQ ID NO235是肺炎衣原体Swib肽66-87的确定的氨基酸序列。
SEQ ID NO236是沙眼衣原体OMCB肽103-122的确定的氨基酸序列。
SEQ ID NO237是沙眼衣原体OMCB肽108-127的确定的氨基酸序列。
SEQ ID NO238是沙眼衣原体OMCB肽113-132的确定的氨基酸序列。
SEQ ID NO239是沙眼衣原体OMCB肽118-137的确定的氨基酸序列。
SEQ ID NO240是沙眼衣原体OMCB肽123-143的确定的氨基酸序列。
SEQ ID NO241是沙眼衣原体OMCB肽128-147的确定的氨基酸序列。
SEQ ID NO242是沙眼衣原体OMCB肽133-152的确定的氨基酸序列。
SEQ ID NO243是沙眼衣原体OMCB肽137-156的确定的氨基酸序列。
SEQ ID NO244是沙眼衣原体OMCB肽142-161的确定的氨基酸序列。
SEQ ID NO245是沙眼衣原体OMCB肽147-166的确定的氨基酸序列。
SEQ ID NO246是沙眼衣原体OMCB肽152-171的确定的氨基酸序列。
SEQ ID NO247是沙眼衣原体OMCB肽157-176的确定的氨基酸序列。
SEQ ID NO248是沙眼衣原体OMCB肽162-181的确定的氨基酸序列。
SEQ ID NO249是沙眼衣原体OMCB肽167-186的确定的氨基酸序列。
SEQ ID NO250是沙眼衣原体OMCB肽171-190的确定的氨基酸序列。
SEQ ID NO251是沙眼衣原体OMCB肽171-186的确定的氨基酸序列。
SEQ ID NO252是沙眼衣原体OMCB肽175-186的确定的氨基酸序列。
SEQ ID NO253是肺炎衣原体OMCB肽185-198的确定的氨基酸序列。
SEQ ID NO254是沙眼衣原体TSA肽96-115的确定的氨基酸序列。
SEQ ID NO255是沙眼衣原体TSA肽101-120的确定的氨基酸序列。
SEQ ID NO256是沙眼衣原体TSA肽106-125的确定的氨基酸序列。
SEQ ID NO257是沙眼衣原体TSA肽111-130的确定的氨基酸序列。
SEQ ID NO258是沙眼衣原体TSA肽116-135的确定的氨基酸序列。
SEQ ID NO259是沙眼衣原体TSA肽121-140的确定的氨基酸序列。
SEQ ID NO260是沙眼衣原体TSA肽126-145的确定的氨基酸序列。
SEQ ID NO261是沙眼衣原体TSA肽131-150的确定的氨基酸序列。
SEQ ID NO262是沙眼衣原体TSA肽136-155的确定的氨基酸序列。
SEQ ID NO263是沙眼衣原体CT529/Cap 1基因血清变型I的确定的全长DNA序列。
SEQ ID NO264是沙眼衣原体CT529/Cap 1基因血清变型I的预测的全长氨基酸序列。
SEQ ID NO265是沙眼衣原体CT529/Cap 1基因血清变型K的确定的全长DNA序列。
SEQ ID NO266是沙眼衣原体CT529/Cap 1基因血清变型K的预测的全长氨基酸序列。
SEQ ID NO267是沙眼衣原体克隆17-G4-36的确定的DNA序列,它与serD中DNA引导的RNA聚合酶β亚基-CT315的ORF部分有同源性。
SEQ ID NO268是克隆2E10中沙眼衣原体CT016基因部分序列的确定的DNA序列。
SEQ ID NO269是克隆2E10中沙眼衣原体tRNA合酶基因部分序列的确定的DNA序列。
SEQ ID NO270是克隆2E10中沙眼衣原体clpX基因部分序列的确定的DNA序列。
SEQ ID NO271是沙眼衣原体克隆CtL2gam-30的第一种确定的DNA序列,其代表5’端。
SEQ ID NO272是沙眼衣原体克隆CtL2gam-30的第二种确定的DNA序列,其代表3’端。
SEQ ID NO273是沙眼衣原体克隆CtL2gam-28的确定的DNA序列。
SEQ ID NO274是沙眼衣原体克隆CtL2gam-27的确定的DNA序列。
SEQ ID NO275是沙眼衣原体克隆CtL2gam-26的确定的DNA序列。
SEQ ID NO276是沙眼衣原体克隆CtL2gam-24的确定的DNA序列。
SEQ ID NO277是沙眼衣原体克隆CtL2gam-23的确定的DNA序列。
SEQ ID NO278是沙眼衣原体克隆CtL2gam-21的确定的DNA序列。
SEQ ID NO279是沙眼衣原体克隆CtL2gam-18的确定的DNA序列。
SEQ ID NO280是沙眼衣原体克隆CtL2gam-17的确定的DNA序列。
SEQ ID NO281是沙眼衣原体克隆CtL2gam-15的第一种确定的DNA序列,其代表5’端。
SEQ ID NO282是沙眼衣原体克隆CtL2gam-15的第二种确定的DNA序列,其代表3’端。
SEQ ID NO283是沙眼衣原体克隆CtL2gam-13的确定的DNA序列。
SEQ ID NO284是沙眼衣原体克隆CtL2gam-10的确定的DNA序列。
SEQ ID NO285是沙眼衣原体克隆CtL2gam-8的确定的DNA序列。
SEQ ID NO286是沙眼衣原体克隆CtL2gam-6的第一种确定的DNA序列,其代表5’端。
SEQ ID NO287是沙眼衣原体克隆CtL2gam-6的第二种确定的DNA序列,其代表3’端。
SEQ ID NO288是沙眼衣原体克隆CtL2gam-5的确定的DNA序列。
SEQ ID NO289是沙眼衣原体克隆CtL2gam-2的确定的DNA序列。
SEQ ID NO290是沙眼衣原体克隆CtL2gam-1的确定的DNA序列。
SEQ ID NO291是CT529基因的肺炎衣原体同源物的确定的确定的全长DNA序列。
SEQ ID NO292是CT529基因的肺炎衣原体同源物的预测的全长氨基酸序列。
SEQ ID NO293是用于在SKB疫苗载体中克隆沙眼衣原体pmpG基因的插入序列的确定的DNA序列。
附图描述

图1说明表达克隆4C9-18#2的靶细胞激活的衣原体特异性T细胞系的INF-γ的诱导。图2说明修饰后含有一个Kosak翻译起始位点和终止密码子的反转录病毒载体pBIB-KS1,2,3。图3显示在铬释放测定中用衣原体肽CtC7.8-12(SEQ ID NO18)和CtC7.8-13(SEQ ID NO19)脉冲的P815细胞的特异裂解。图4显示用沙眼衣原体SWIB蛋白免疫的C57BI/6小鼠中的抗体同种型滴度。图5显示用衣原体SWIB蛋白免疫的C3H小鼠的脾细胞中衣原体特异的T细胞增殖反应。图6说明根据肺炎衣原体设计的5’和3’引物序列,其用来从肺炎衣原体中分离SWIB和S13基因。图7A和图7B显示,在用表达衣原体蛋白的单核细胞衍生的树突细胞激活后,能与沙眼衣原体和肺炎衣原体交叉反应的人抗衣原体T细胞系(TCL-8)的INF-γ诱导。图8显示用T细胞系TCL 8 EB/DC对衣原体核糖体S13蛋白中T细胞表位的鉴定。图9说明针对肺炎衣原体感染的树突细胞产生的CP-21 T细胞对重组肺炎衣原体-SEIB蛋白、而不是对沙眼衣原体SWIB蛋白的增殖反应。图10显示来源于无症状供体的初级T细胞系(TCT-10EB)的沙眼衣原体特异性SWIB增殖反应。图11说明用抗原特异性T细胞系(TCL-10EB)对沙眼衣原体SWIB中T细胞表位的鉴定。
发明详述如上所述,本发明普遍涉及用于诊断和治疗衣原体感染的组合物和方法。一方面,本发明的组合物包括至少含有衣原体抗原的一种免疫原性部分的多肽,或其变体。
在特定实施方案中,本发明公开了含有衣原体抗原的免疫原性部分的多肽,其中该衣原体抗原含有一种由多核苷酸分子编码的氨基酸序列,其包括选自下列的序列(a)SEQ ID NO1,15,21-25,44-64,66-76,79-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-290的核苷酸序列,(b)这些核苷酸序列的互补序列,和(c)这些序列的变体。
在此使用时,术语“多肽”包括任何长度的氨基酸链,包括全长的蛋白质(即抗原),其中氨基酸残基通过共价肽键连接。因此,含有本发明抗原之一的免疫原性部分的多肽可完全由该免疫原性部分组成,或可含有其他序列。其他序列可来源于天然衣原体抗原,或者可以是异源的,这些序列可以(但不需要)有免疫原性。
当在此使用时,术语“多核苷酸”是指脱氧核糖核苷酸或核糖核苷酸碱基的单链或双链聚合物,包括DNA和相应的RNA分子,包括HnRNA和mRNA分子,有义链和反义链,并包括全部cDNA、基因组DNA和重组DNA,以及完全或部分合成的多核苷酸。HnRNA分子含有内含子,一般以一对一的方式对应于DNA分子。mRNA分子对应于已从中切下内含子的HnRNA和DNA分子。多核苷酸可由完整基因或其任何部分组成。可操作的反义多核苷酸可含有相应多核苷酸的片段,因此“多核苷酸”的定义包括所有这些可操作的反义片段。
抗原的“免疫原性部分”是能与从衣原体感染的个体中获得的血清反应的部分(即,在此处所述的典型ELISA中,用感染个体的血清产生吸光度读数,其至少比用未感染个体的血清获得的吸光度高三个标准差)。这些免疫原性部分一般含有至少约5个氨基酸残基,更优选地至少约10个,最优选地至少约20个氨基酸残基。制备和鉴定已知序列的抗原的免疫原性部分的方法在本领域中周知,包括在Paul,《基础免疫学》(Fundamental Immunology),第3版,Raven出版社,1993,243-247和此处引用的参考文献中概述的方法。这些技术包括根据与抗原特异性抗体、抗血清和/或T细胞系或克隆反应的能力筛查多肽。在此使用时,如果抗血清和抗体能与抗原特异结合(即,它们在ELISA或其他免疫测定中能与该蛋白质反应,但与不相关的蛋白质无可检测到的反应),则它们是“抗原特异的”。这些抗血清和抗体可如此处所述制备,和用众所周知的技术制备。天然衣原体蛋白的免疫原性部分是可与这些抗血清和/或T细胞以大大低于全长多肽反应性(例如在ELISA和/或T细胞反应性测定中)的水平反应的部分。这些免疫原性部分可在这些测定中以类似于或高于全长多肽的水平反应。这些筛查一般可用本领域技术人员周知的方法进行,如Harlow和Lane,《抗体实验室手册》,冷泉港实验室,1988所述。例如,多肽可固定于固体载体上,并与患者的血清接触,以使血清中的抗体与固定的多肽结合。然后可除去未结合的血清,并用例如125I-标记的蛋白A检测结合的抗体。
本发明涉及的抗原免疫原性部分的例子包括,例如,SEQ ID NO9,10,18,19,31,39,93-96,98,100-102,106,108,138-140,158,167,168,246,247和254-256所示的T细胞刺激表位。通常可单独或联合使用含有此处所述一种或多种衣原体抗原的至少一种免疫原性部分的多肽,来检测患者的衣原体感染。
本发明的组合物和方法也包括上述多肽和多核苷酸分子的变体。这些变体包括但不限于,本发明序列的天然发生的等位变体。特别是,变体包括其他衣原体血清变型,如血清变型D、E和F,以及与此处所述的本发明的多肽和多核苷酸分子同源的几种LGV血清变型。优选地,血清变型同源物显示与此处所述的相应多肽序列有95-99%的同源性。
在此使用时,多肽“变体”是只是由于保守置换和/或修饰而不同于所列多肽的多肽,使得多肽的抗原性保留。在一个优选的实施方案中,变异多肽由于5个或更少氨基酸的置换、缺失或添加而不同于鉴定的序列。这些变体一般可通过修饰上述多肽序列之一并用如此处所述的典型方法评估修饰多肽的抗原性而鉴别。换句话说,变体与抗原特异性抗血清反应的能力相对于天然蛋白质可增强或不变,或者可相对于天然蛋白质减少不到50%,优选地不到20%。这些变体一般可通过修饰上述多肽序列之一并用此处所述的抗原特异性抗体或抗血清评估修饰多肽的反应性而鉴别。优选的变体包括已去除一个或多个部分,如N端前导序列或跨膜区的变体。其他优选的变体包括已从成熟蛋白质的N端和/或C端除去一小部分(例如,1-30个氨基酸,优选地5-15个氨基酸)的变体。多肽变体优选地显示与鉴定的多肽有至少约70%,更优选地至少约90%,最优选地至少约95%的同一性(如下所述测定)。
在此使用时,“保守置换”是将氨基酸置换为具有类似性质的另一种氨基酸的置换,这样,肽化学领域的技术人员能预料到多肽的二级结构和亲水性基本不变。氨基酸置换一般可根据残基极性、电荷、溶解度、疏水性、亲水性和/或两性性质的相似性进行。例如,带负电的氨基酸包括天冬氨酸和谷氨酸;带正电的氨基酸包括赖氨酸和精氨酸;含具有类似亲水性值的不带电极性头基团的氨基酸包括亮氨酸、异亮氨酸和缬氨酸;甘氨酸和丙氨酸;天冬酰胺和谷氨酰胺;丝氨酸、苏氨酸、苯丙氨酸和酪氨酸。可表现保守改变的其他组氨基酸包括(1)ala、pro、gly、glu、asp、gln、asn、ser、thr;(2)cys、ser、tyr、thr;(3)val、ile、leu、met、ala、phe;(4)lys、arg、his;和(5)phe、tyr、trp、his。或者另外,变体也可含有非保守性改变。在一个优选的实施方案中,变体多肽由于5个或更少氨基酸的置换、缺失或添加而不同于天然序列。也可(或另外)通过例如缺失或添加对多肽的免疫原性、二级结构和亲水性有最小影响的氨基酸修饰变体。变体也可或另外含有其他修饰,包括对多肽的抗原性、二级结构和亲水性有最小影响的氨基酸的缺失或添加。例如,一种多肽可在蛋白质的N端与信号(或前导)序列偶联,该信号在翻译时或翻译后引导蛋白质的转移。多肽也可与接头或其他序列偶联,以便于多肽(例如聚-His)的合成、纯化或鉴定,或增强该多肽与固体载体的结合。例如,多肽可与免疫球蛋白Fc区偶联。
多核苷酸“变体”是一种由于含有一个或多个核苷酸缺失、置换或添加而不同于所列核苷酸序列的序列,使得所编码多肽的免疫原性相对于天然蛋白质不降低。对编码多肽的免疫原性的作用一般可如此处所述评估。利用标准诱变技术,如Adelman等人(DNA,2183,1983)所述的寡核苷酸引导的位点特异性诱变,可容易地引入这些修饰。核苷酸变体可以是如下所述的天然发生的等位变体,或非天然发生的变体。变异核苷酸序列优选地显示与所列序列有至少约70%,更优选地至少约80%,最优选地至少约90%的同一性(如下所述测定)。
本发明提供的多肽包括与一种或多种此处所列多核苷酸序列基本同源的多核苷酸序列所编码的变体。在此使用时,“基本同源”是指在中度严格条件下能杂交的多核苷酸序列。合适的中度严格条件包括用5×SSC、0.5%SDS、1.0mM EDTA(pH8.0)溶液预洗;于50-65℃下在5×SSC中杂交过夜,或者,如果有交叉种同源性,于45℃下在0.5×SSC中杂交过夜;随后用含0.1%SDS的2×、0.5×和0.2×SSC的每一种在65℃下洗涤两次20分钟。这些杂交多核苷酸序列也在本发明的范围之内,由于密码简并性而编码与本发明多肽相同的多肽的核苷酸序列也是如此。
在如下所述根据最大一致性对比时,如果两种序列中核苷酸或氨基酸残基的序列相同,则认为两种核苷酸或多肽序列“相同”。两种序列之间的对比一般通过在对比窗口上比较序列而进行,以鉴定并比较序列相似性的局部区域。在此使用时,“对比窗口”是指至少约20个、通常30至约75个、40至约50个连续位点的片段,其中可在最佳对比两种序列后将该序列与相同数量连续位点的参照序列对比。
用于对比的序列最佳排列可用生物信息学软件Lasergene suite(DNASTAR,Inc.,Madison,WI)中的Megalign程序进行,使用缺省参数。该程序包含在下列参考文献中叙述的几种对比方案Dayhoff,M.O.(1978),蛋白质进行改变的模型——检测远亲关系的矩阵。Dayhoff,M.O.(编)《蛋白质序列和结构图集》,国家生物医学研究基金会,华盛顿,第5卷,增3,345-358;Hein J.(1990)对比和系统发生的统一方法,626-645,《酶学方法》,第183卷,Academic Press,Inc.,San Diego,CA;Higgins,D.G.和Sharp,P.M.(1989)利用微型计算机的快速且灵敏的多元序列对比CABIOS 5151-153;Myers,E.W.和Mulle,W.(1988)线性空间的最佳对比CABIOS 411-17;Robinson,E.D.(1971)Comb.Theor11105;Santou,N.Nes,M.(1987)邻接法。一种重建系统发生树的新方法分子生物学进展(Mol.Biol.Evol.)4406-425;Sneath,P.H.A.和Sokal,R.R.(1973)《数字分类学——数字分类学的原则和实践》,FreemanPress,San Francisco,CA;Wilbur,W.J.和Lipman,D.J.(1983)核酸与蛋白质数据库的快速相似性检索,美国国家科学院院报80726-730。
优选地,通过在至少20个位点的对比窗口上比较两种最佳排列的序列测定“序列同一性百分比”,其中与用于最佳排列两种序列的参照序列(不含添加或缺失)相比,对比窗口中多核苷酸序列的部分可包含20%或更低、通常5-15%%或10-12%的添加或缺失(即缺口)。此百分数的计算方法是,测定在两种序列中存在相同核酸碱基或氨基酸残基的位点数,得到匹配的位点数,匹配位点数除以参照序列中的位点总数(即窗口大小),结果乘以100,得到序列同一性百分数。
本发明范围中也包括编码此处所述核苷酸序列的基因的等位基因。在此使用时,“等位基因”或“等位基因序列”是由核酸序列中至少一种突变引起的另一种形式的基因。等位基因可导致改变的mRNA或多肽,其结构或功能可能或可能不改变。任何给定的基因可能没有、有一个或有多个等位基因形式。产生等位基因的常见突变一般归于天然核苷酸的缺失、添加或置换。这些改变类型的每一种可单独发生或与其他类型同时发生,在给定序列中发生一次或多次。在特定实施方案中,本发明公开了至少含有衣原体抗原(或这种抗原的变体)的免疫原性部分的多肽,其包含由下列序列编码的一种或多种氨基酸序列(a)选自SEQ IDNO1-4,15,21-25,44-64,66-76和79-88的多核苷酸序列;(b)这些DNA序列的互补序列;和(c)与(a)或(b)的序列基本同源的DNA序列。如以下实施例所述,此处公开的几种衣原体抗原可识别一种T细胞系,该T细胞系可识别沙眼衣原体和肺炎衣原体感染的单核细胞衍生的树突细胞,表明它们可能存在沙眼衣原体和肺炎衣原体所共有的免疫反应性表位。因此在疫苗中可使用这些抗原,用于沙眼衣原体生殖道感染和肺炎衣原体感染。实施例6提供了为确定交叉反应性程度而对沙眼衣原体和肺炎衣原体的衣原体抗原的进一步表征。另外,实施例4描述了从沙眼衣原体中分离的cDNA片段(SEQ ID NO15,16和33),其编码能刺激衣原体特异的鼠CD8+T细胞系的蛋白质(SEQ ID NO17-19和32)。
总之,可用多种方法制备衣原体抗原和编码这些抗原的多核苷酸序列。例如,如下所述用衣原体特异的T细胞系筛查,可从衣原体基因组或cDNA表达文库中分离编码衣原体抗原的多核苷酸分子,并用本领域周知的技术测序。另外,如以下详述的,通过筛查用于衣原体相关表达(即,用此处所述典型测定法所测定的,在衣原体感染的细胞中至少两倍于对照的表达)的cDNA微阵列可鉴定多核苷酸。可用Synteni微阵列(Palo Alto,CA)按照使用说明书(基本如Schena等人,美国国家科学院院报9310614-10619,1996和Heller等人,美国国家科学院院报942150-2155,1997所述)进行这些筛查。另外,也可从用表达此处所述蛋白质的细胞制备的cDNA中扩增多肽。这些多核苷酸可通过聚合酶链反应(PCR)扩增。为此,可根据此处提供的序列设计序列特异的引物,也可购买或合成。
抗原可如下所述重组产生,方法是向表达载体中插入编码该抗原的多核苷酸序列,并在合适的宿主中表达该抗原。可评估抗原的希望的性质,如与此处所述衣原体感染个体的血清反应的能力,并可用如传统Edman化学法测序。参见Edman和Berg,欧洲生物化学杂志(Eur.J.Biochem.)80116-132,1967。
编码抗原的多核苷酸序列也可如下获得为可与分离抗原的部分氨基酸序列衍生的简并寡核苷酸杂交的多核苷酸序列,筛查合适的衣原体cDNA或基因组DNA文库。在这种筛查中使用的简并寡核苷酸序列可以设计和合成,筛查可如Sambrook等人,《分子克隆实验室指南》,冷泉港实验室,冷泉港,NY(和此处引用的参考文献)所述进行。也可使用聚合酶链反应(PCR),在本领域周知的方法中使用上述寡核苷酸,以从cDNA或基因组文库中分离核酸探针。然后可用分离的探针进行文库筛查。
可通过众所周知的技术用扩增的部分从合适的文库(例如衣原体cDNA文库)中分离全长基因。在这些技术中,用适于扩增的一种或多种多核苷酸探针或引物筛查(cDNA或基因组)文库。优选地,大小选择一种文库使之包含更大的分子。也可为了鉴定基因的5’和上游区优选随机引物文库。为了获得内含子并延伸5’序列而优选基因组文库。
对于杂交技术,部分序列可用众所周知的技术标记(例如,切口平移或用32P末端标记)。然后用标记探针杂交含变性细菌集落的滤膜(或含有噬斑的筛子)筛查细菌或噬菌体文库(参见,Sambrook等人,《分子克隆实验室指南》,冷泉港实验室,冷泉港,NY,1989)。选择杂交的集落或噬斑并扩充,分离DNA进一步分析。例如,使用来源于部分序列的引物和来源于载体的引物,通过PCR可分析cDNA克隆,确定其他序列的量。可产生限制酶切图谱和部分序列来鉴定一种或多种重叠克隆。然后可用标准技术测定完整序列,其中可包括产生一系列缺失克隆。然后将得到的重叠序列装配为一个连续序列。用众所周知的技术通过连接合适的片段能产生全长cDNA分子。
此外,有大量扩增技术可用于由部分cDNA序列获得全长编码序列。在这些技术中,一般通过PCR进行扩增。可用多种可购得的试剂盒进行这一扩增步骤。引物可用本领域周知的技术设计(参见,例如,Mullis等人,Cold Spring Harbor Symp.Quant.Biol.51263,1987;Erlich编,《PCR技术》,Stockton出版社,NY,1989),也可使用本领域周知的软件。引物优选地长22-30个核苷酸,具有至少50%的GC含量,并可在约68℃-72℃时与靶序列退火。扩增区域可如上所述测序,重叠序列装配为连续序列。
一种这样的扩增技术是反向PCR(参见,Triglia等人,核酸研究168186,1988),它使用限制酶在已知基因区中产生一条片段。然后通过分子内连接环化该片段,在使用来源于已知区的趋异引物的PCR中用作模板。在一种备择方法中,可通过用连接序列的引物和对已知区域特异的引物扩增而重新得到与部分序列相邻的序列。通常用相同的接头引物和对已知区域特异的第二条引物,对扩增的序列进行第二轮扩增。WO96/38591中描述了该方法的一种变化,其使用以相反方向从已知序列开始延伸的两条引物。其他技术包括捕获PCR(Lagerstrom等人,PCR方法应用(PCR Methods Applic.)1111-19,1991)和步移PCR(Parker等人,核酸研究193055-60,1991)。转录介导的扩增或TMA是可用于扩增DNA、rRNA或mRNA的另一种方法,如专利号PCT/US91/03184所述。这一基于自身催化和等温非PCR的方法使用两条引物和两种酶RNA聚合酶和反转录酶。一条引物含有RNA聚合酶的启动子序列。在第一次扩增中,启动子-引物与靶rRNA在特定位点杂交。反转录酶通过从启动子-引物3’端延伸产生靶rRNA的一个DNA拷贝。降解得到的复合体中的RNA,第二条引物与该DNA拷贝结合。反转录酶从引物末端合成一条新的DNA链,产生双链DNA。RNA聚合酶识别DNA模板中的启动子序列并起始转录。每一新合成的RNA扩增子再次进入TMA过程,用作新一轮复制的模板,导致RNA扩增子的指数扩增。也可使用利用扩增的其他方法获得全长cDNA序列。
在某些情况中,通过分析表达序列标记(EST)数据库如GenBank数据库中提供的序列能获得全长cDNA序列。检索重叠EST一般可用众所周知的程序(例如,NCBI BLAST检索)进行,这些EST可用来产生连续的全长序列。全长cDNA序列也可通过基因组片段的分析获得。
多核苷酸变体一般可用本领域所知的任何方法制备,包括化学合成,如固相亚磷酰胺化学合成。也可用标准诱变技术引入核苷酸序列的修饰,如寡核苷酸引导的位点专一诱变(参见Adelman等人,DNA 2183,1983)。此外,假如编码衣原体蛋白的DNA掺入具有适当RNA聚合酶启动子(如T7或SP6)的载体中,也可通过体外或体内转录该DNA序列或其部分产生RNA分子。可用某些部分制备如此处所述的编码多肽。另外,也可对患者施用一种部分,使编码多肽在体内产生(例如,用编码衣原体多肽的cDNA构建体转染抗原递呈细胞如树突细胞,并对患者施用转染的细胞)。
与编码序列互补的序列部分(即反义多核苷酸)也可用作探针,或用来调节基因表达。也可向组织细胞中导入能转录为反义RNA的cDNA构建体,以利于反义RNA的产生。如此所述,可使用反义多核苷酸,抑制衣原体蛋白的表达。能用反义技术通过三股螺旋形成控制基因表达,这减弱了双螺旋为了结合聚合酶、转录因子或调节分子而充分打开的能力(参见Gee等人,Huber和Carr,《分子与免疫学方法》,FuturaPublishing Co.(Mt.Kisco,NY;1994))。此外,可设计一种反义分子与基因的控制区(例如,启动子、增强子或转录起始位点)杂交,并阻断基因转录;或通过抑制转录物与核糖体的结合阻断翻译。
也可设计一部分编码序列或互补序列作为探针或引物检测基因表达。探针可用多种报道基团标记,如放射性核素和酶,长度优选地至少为10个核苷酸,更优选地至少20个核苷酸,更优选地至少30个核苷酸。如上所述的引物优选地为22-30个核苷酸长。
可进一步修饰任何多核苷酸,以提高体内稳定性。可能的修饰包括但不限于在5’和/或3’末端添加侧翼序列;在主链中使用硫代磷酸酯或2’O-甲基而不是磷酸二酯酶连接;和/或含有非传统碱基,如肌苷、queosine和wybutosine,以及乙酰-、甲基-、硫代-和其他修饰形式的腺嘌呤、胞嘧啶、鸟嘌呤、胸腺嘧啶和尿嘧啶。
可用已建立的重组DNA技术将如此处所述的核苷酸序列与多种其他核苷酸序列连接。例如,一种多核苷酸可克隆到多种克隆载体之一中,包括质粒、噬菌粒、λ噬菌体衍生物和粘粒。特定用途的载体包括表达载体、复制载体、探针产生载体和测序载体。通常,一种载体含有一个至少在一种生物中起作用的复制起点、常规限制性核酸内切酶位点和一种或多种选择性标记。其他元件取决于希望的用途,对于本领域技术人员是显然的。
用本领域周知的技术可产生包含少于约100个氨基酸、一般少于约50个氨基酸的合成多肽。例如,这些多肽可用商品化的固相技术合成,如Merrifield固相合成法,其中连续添加氨基酸形成氨基酸链。参见Merrifield,美国化学学会杂志(J.Am.Chem.Soc.)852149-2146,1963。自动合成多肽的装置购自供应商,如Perkin Elmer/Applied BioSystemsDivision,Foster City,CA,并可按照使用说明书操作。
如上所述,可用众所周知的技术制备和鉴定衣原体抗原的免疫原性部分,如Paul,《基础免疫学》,第3版,Raven Press,1993,243-247和此处引用的参考文献所总结的方法。这些技术包括针对免疫原性筛查天然抗原的多肽部分。在这些筛查中一般可使用此处所述的典型ELISA。多肽的免疫原性部分是在这些典型测定中产生一种信号的部分,在这些测定中该信号基本类似于全长抗原所产生的信号。换言之,衣原体抗原的免疫原性部分在此处所述的模式ELISA中产生全长抗原所诱导信号的至少20%、优选地约100%的信号。
衣原体抗原的部分和其他变体可用合成或重组方法产生。天然抗原的变体一般可用标准诱变技术制备,如寡核苷酸引导的位点专一诱变。也可用标准技术除去多核苷酸序列的部分而制备截短的多肽。
含天然抗原的部分和/或变体的重组多肽可用本领域技术人员周知的多种技术由编码该多肽的多核苷酸序列制备。例如,首先可用商品滤膜浓缩向培养基中分泌重组蛋白的适当宿主/载体系统的上清液。浓缩后,将浓缩液加到合适的纯化基质如亲和基质或离子交换树脂上。最后,用一种或多种反相HPLC步骤进一步纯化重组蛋白。
可用本领域技术人员所知的多种表达载体表达此处所述的重组多肽。可在含编码该重组多肽的多核苷酸分子的表达载体所转化或转染的适当宿主细胞中实现表达。合适的宿主细胞包括原核、酵母和高等真核细胞。优选地,使用的宿主细胞是大肠杆菌、酵母或哺乳动物细胞系,如COS或CHO。以这种方式表达的DNA序列可编码天然存在的抗原、天然存在的抗原的部分,或其其他变体。
一般而言,无论制备方法如何,以分离的、极纯的形式制备此处公开的多肽。优选地,多肽纯度至少约80%、更优选地至少约90%、最优选地至少约99%。
在某些特殊实施方案中,多肽可以是一种融合蛋白,其含有此处所述的多种多肽,或含有至少一种此处所述的多肽和一种不相关的序列,如已知的衣原体蛋白。例如,融合配偶体(partner)可参与提供T辅助表位(一种免疫融合配偶体),优选地可被人识别的T辅助表位,或可参与以高于天然重组蛋白的产量表达蛋白质(表达增强子)。某些优选的融合配偶体既是免疫的又是增强表达的融合配偶体。可选择其他融合配偶体,以提高蛋白质的溶解度,或使蛋白质导向希望的胞内区室。其他融合配偶体包括有利于蛋白质纯化的亲和标记。编码本发明的融合蛋白的DNA序列可用已知的重组DNA技术构建,以将如编码第一种和第二种多肽的各DNA序列装配为合适的表达载体。用或不用肽接头,将编码第一种多肽的DNA序列的3’端与编码第二种多肽的DNA序列的5’端连接,使序列的阅读框同步,而使两种DNA序列mRNA翻译为一种保留了第一种和第二种多肽的生物活性的融合蛋白。
可使用一种肽接头序列将第一种和第二种多肽分开一段距离,以充分确保每种多肽折叠为二级和三级结构。用本领域周知的标准技术将这种肽接头序列引入融合蛋白中。可根据下列因素选择合适的肽接头序列(1)其采取灵活延伸构象的能力;(2)其不能采取与第一种和第二种多肽上的功能表位相互作用的二级结构的性质;和(3)可与多肽功能表位相互作用的疏水性或带电残基的缺乏。优选的肽接头序列含有Gly、Asn和Ser残基。在接头序列中也可使用其他接近中性的氨基酸,如Thr和Ala。可用作接头的氨基酸序列包括Maratea等人,基因4039-46,1985;Murphy等人,美国国家科学院院报838258-8562,1986;美国专利号4,935,233和美国专利号4,751,180中公开的序列。接头序列长度可为1个到约50个氨基酸。肽接头序列的另一种应用是(当希望时),能使用第一种和第二种多肽上的非必需N端氨基酸区(当存在时)分开功能域,并阻止空间障碍。
连接的DNA序列与合适的转录或翻译调节元件有效连接。负责DNA表达的调节元件只位于编码第一种多肽的DNA序列的5’。类似地,末端翻译所需的终止密码子和转录终止信号只存在于编码第二种多肽的DNA序列的3’。
也提供了包含本发明的多肽和一种不相关的免疫原性蛋白质的融合蛋白。优选地,该免疫原性蛋白质能引发一种回忆反应。这些蛋白质的例子包括破伤风、结核和肝炎蛋白(参见,例如,Stoute等人,新英格兰医学杂志(New Engl.J.Med.)33686-91,1997)。
在优选的实施方案中,免疫原性融合配偶体来源于蛋白D-革兰氏阴性菌B型流感嗜血菌的一种表面蛋白(WO 91/18926)。优选地,蛋白D衍生物包含该蛋白质的约三分之一(例如,N端前100-110个氨基酸),蛋白D衍生物可脂化。在某些优选实施方案中,N端含有脂蛋白D融合配偶体的前109个残基,产生含有其他外源T细胞表位的多肽,并增强在大肠杆菌中的表达水平(从而作为表达增强子)。脂尾确保抗原向抗原递呈细胞的最佳递呈。其他融合蛋白包括来源于流感病毒的非结构蛋白NS1(血球凝集素)。一般使用N端81个氨基酸,但也可使用含有T辅助表位的不同片段。
在另一个实施方案中,免疫融合配偶体是称作LYTA的蛋白质或其部分(优选地C端部分)。LYTA来源于肺炎链球菌(Streptococcuspneumoniae),该菌合成一种N-乙酰-L-丙氨酸酰胺酶,称作酰胺酶LYTA(由LytA基因编码;基因43265-292,1986)。LYTA是一种自溶素,可特异降解肽聚糖主链中的某些键。LYTA蛋白的C端区域负责与胆碱或某些胆碱类似物如DEAE的亲和力。这种性质已用作发展用于融合蛋白表达的大肠杆菌C-LYTA表达质粒。在氨基端含C-LYTA片段的杂种蛋白的纯化已有描述(参见,生物技术(Biotechnology)10795-798,1992)。在一个优选的实施方案中,LYTA的重复部分可掺入融合蛋白中。在开始于残基178的C端区中发现重复部分。一种特别优选的重复部分含有残基188-305。另外,融合蛋白Ra12可与本发明的多核苷酸连接,促进蛋白质表达。
另一方面,本发明提供使用一种或多种上述多肽或融合蛋白(或编码这些多肽或融合蛋白的多核苷酸)在患者中诱导针对衣原体感染的保护性免疫的方法。在此使用时,“患者”是指任何温血动物,优选的是人。患者可患有一种疾病,或者可能没有可检测的疾病和/或感染。换言之,可诱导保护性免疫,来预防或治疗衣原体感染。
在该方面,在药用组合物或疫苗中一般含有多肽、融合蛋白或多核苷酸分子。药用组合物可含有一种或多种多肽,其每一种可含有一种或多种上述序列(或其变体)和生理学可接受的载体。疫苗可含有一种或多种上述多肽和免疫刺激剂,如佐剂或脂质体(其中掺有多肽)。这些药用组合物和疫苗也可含有或掺入组合多肽中或存在于各自多肽中的其他衣原体抗原。
此外,疫苗可含有编码一种或多种上述多肽或融合蛋白的多核苷酸,使该多肽原位产生。在这些疫苗中,多核苷酸可存在于本领域技术人员周知的多种输送系统之一中,包括核酸表达系统、细菌和病毒表达系统。合适的核酸表达系统含有在患者中表达所必要的多核苷酸序列(如合适的启动子和终止信号)。细菌输送系统包括施用在细胞表面表达多肽免疫原性部分的表达细菌(如卡介苗)。在一个优选的实施方案中,可用病毒表达系统(例如,痘苗或其他痘病毒,反转录病毒或腺病毒)导入多核苷酸,这可能包括非致病性(缺陷)病毒的使用。向这些表达系统中掺入多核苷酸的技术为本领域技术人员所周知。多核苷酸也可作为“裸露的”质粒载体施用,如Ulmer等人,科学2591745-1749,1993所述,Cohen,科学2591691-1692,1993综述。向这些载体中掺入DNA的技术为本领域技术人员所周知。反转录病毒载体另外还可转移或掺入一种选择性标记基因(帮助鉴定或筛选转导的细胞)和/或导向部分,如编码特异靶细胞上受体的配体的基因,而使载体导向特异。也可通过本领域技术人员周知的方法用抗体实现导向。
其他治疗用制剂包括胶态分散系统,如大分子复合物、毫微囊剂、微球体、珠滴,和基于脂质的系统,包括水包油乳剂、胶囊、混合胶囊和脂质体。用作体外和体内输送载体的一种优选的胶态系统是脂质体(即,人工膜载体)。向可生物降解液滴中掺入多核苷酸可增强裸露多核苷酸的摄取,它们能有效地输送到细胞中。这些系统的制备和应用在本领域中周知。
在一个有关的方面,如上所述的多核苷酸疫苗可与本发明的多肽或已知的衣原体抗原同时施用或连续施用。例如,施用“裸露的”或在上述输送系统中的编码本发明的多肽的多核苷酸后,可施用抗原来提高疫苗的保护性免疫作用。
此处公开的多肽和多核苷酸也可在过继免疫治疗中使用以治疗衣原体感染。过继免疫治疗可泛泛地分类为主动或被动的免疫治疗。在主动免疫治疗中,治疗依赖于施用免疫应答调节剂(例如,疫苗、细菌佐剂和/或细胞因子)对内源宿主免疫系统的体内刺激。
在被动免疫治疗中,治疗包括施用具有明确的免疫反应性的生物试剂(如效应细胞或抗体),它们能直接或间接地介导抗衣原体作用,而不必依赖于完整的宿主免疫系统。效应细胞的例子包括T淋巴细胞(例如CD8+细胞毒性T淋巴细胞、CD4+T辅助细胞)、杀伤细胞(如自然杀伤细胞、淋巴因子活化的杀伤细胞)、B细胞或表达此处公开的抗原的抗原递呈细胞(如树突细胞和巨噬细胞)。也可用此处公开的多肽产生抗体或抗独特型抗体(如美国专利号4,918,164),用于被动免疫治疗。
为过继免疫治疗获得适量T细胞的主要方法是在体外培养免疫T细胞。使单个抗原特异性T细胞扩充为几十亿个保留体内抗原识别的T细胞的培养条件在本领域中周知。这些体外培养条件一般在细胞因子如IL-2和不分裂的饲养细胞存在下用抗原断续刺激。如上所述,此处所述的免疫反应性多肽可用来快速扩充抗原特异性T细胞培养物,以产生足量的细胞进行免疫治疗。特别是,抗原递呈细胞如树突细胞、巨噬细胞、单核细胞、成纤维细胞或B细胞可用免疫反应性多肽脉冲,或可用本领域周知的多种标准技术将多核苷酸序列导入抗原递呈细胞中。例如,抗原递呈细胞可用多核苷酸序列转染或转导,其中该序列含有适于增强表达的启动子区,并能表达为重组病毒或其他表达系统的部分。可用几种病毒载体转导抗原递呈细胞,包括痘病毒、痘苗病毒和腺病毒;也可通过多种方法用此处公开的多核苷酸序列转染抗原递呈细胞,包括基因枪技术、脂质介导的输送、电穿孔、渗压休克和颗粒输送机制,经本领域技术人员测定,可导致有效且可接受的表达水平。为了培养的T细胞在治疗中有效,培养的T细胞必须能生长并广泛分布,并能在体内长期存活。研究证明,培养的T细胞能被诱导在体内生长,通过用补充有IL-2的抗原重复刺激能大量地长期存活(参见,例如,Cheever,M.等人,“用培养的T细胞治疗再论原则”,免疫学综述(Immunological Reviews)157177,1997)。
此处公开的多肽也可用来产生和/或分离衣原体反应性T细胞,然后可向患者施用。一种技术,用对应于公开多肽的免疫原性部分的短肽体内免疫,可产生抗原特异的T细胞系。可从患者中分离产生的抗原特异性CD8+或CD4+T细胞克隆,用标准组织培养技术扩充,并回输患者。
此外,如Chang等人(肿瘤学与血液学评述(Crit.Rev.Oncol.Hematol.)22(3),213,1996)所述,通过选择性体外刺激并扩充自体T细胞,也可用对应于多肽免疫原性部分的肽产生衣原体反应性T细胞亚组,提供随后可向患者施用的抗原特异性T细胞。用可购得的细胞分离系统,如购自Nexell Therapeutics,Inc.Irvine,CA的IsolexTM系统,可从患者的外周血中分离免疫系统细胞,如T细胞。用输送载体如微球体中所含的一种或多种免疫反应性多肽刺激分离的细胞,产生抗原特异性T细胞。然后用标准技术扩充抗原特异性T细胞群体,并将这些细胞回输患者。
在其他实施方案中,能克隆、扩充对于此处公开的多肽特异的T细胞和/或抗体受体,并转移到其他载体或效应细胞中在过继免疫治疗中使用。特别是,可用合适的基因转染T细胞,表达衣原体特异的单克隆抗体的可变区,作为胞外识别元件,并与T细胞受体信号链连接,引起T细胞激活、特异裂解和细胞因子释放。这使T细胞能以不依赖MHC的方式重定向其特异性。参见,例如,Eshhar,Z.,癌症免疫学与免疫治疗(Cancer Immunol Immunother)45(3-4)131-6,1997和Hwu,P.等人,癌症研究55(15)3369-73,1995。另一个实施方案可包括衣原体抗原特异的α和βT细胞受体链向另一种T细胞中的转染,如Cole,DJ,等人,癌症研究55(4)748-52,1995。
在另一个实施方案中,同源或自体树突细胞可用对应于此处公开的多肽的至少一种免疫原性部分的肽脉冲。得到的抗原特异性树突细胞可转移给患者,或用来刺激T细胞,产生抗原特异性T细胞,随后可向患者施用。肽脉冲的树突细胞产生抗原特异性T细胞的应用,及随后这些抗原特异性T细胞消除鼠模型中疾病的应用,被Cheever等人,免疫学综述,157177,1997证明。另外,表达公开的多核苷酸的载体可导入采自患者的干细胞中,并在体外无性繁殖,用于自体移植回同一患者。
在某些方面,此处公开的多肽、多核苷酸、T细胞和/或结合剂可掺入药用组合物或免疫原性组合物(即疫苗)中。药用组合物含有一种或多种这样的化合物和一种生理学可接受的载体。疫苗可含有一种或多种这样的化合物和一种免疫刺激剂。免疫刺激剂可以是提高或加强对外源抗原免疫应答的任何物质。免疫刺激剂的例子包括佐剂、可生物降解的微球体(例如,polylactic galactide)和脂质体(其中掺入化合物;参见,例如,Fullerton,美国专利号4,235,877)。例如,M.F. Powell和M.J.Newman编的《疫苗设计(亚基和佐剂方法)》,Plenum出版社(NY,1995)中概述了疫苗制剂。本发明范围内的药用组合物和疫苗也可含有其他化合物,它们可有生物活性或无活性。例如,组合物或疫苗中可含有掺入融合多肽中或作为单独化合物的其他衣原体抗原的一种或多种免疫原性部分。
药用组合物或疫苗可含有编码上述一种或多种多肽的DNA,使得多肽原位产生。如上所述,该DNA可存在于本领域技术人员所知的多种输送系统之一中,包括核酸表达系统、细菌和病毒表达系统。多种基因输送技术在本领域中周知,如Rolland,治疗药物载体系统评述(Crit.Rev.Therap.Drug Carrier Systems)15143-198,1998和此处引用的参考文献所述。合适的核酸表达系统含有在患者中表达所需的DNA序列(如合适的启动子和终止信号)。细菌输送系统包括施用在细胞表面表达多肽免疫原性部分或分泌这种表位的细菌(如卡介苗)。在一个优选的实施方案中,可用病毒表达系统(例如痘苗或其他痘病毒、反转录病毒或腺病毒)导入DNA,可包括使用非致病性(缺陷的)可复制病毒。合适的系统在下列文献中公开,例如Fisher-Hoch等人,美国国家科学院院报86317-321,1989;Flexner等人,纽约科学院年报(Ann.N.Y.Acad.Sci.)56986-103,1989;Flexner等人,疫苗(Vaccine)817-21,1990;美国专利号4,603,112、4,769,330和5,017,487;WO 89/01973;美国专利号4,777,127;GB 2,200,651;EP 0,345,242;WO 91/02805;Berkner,生物技术(Biotechniques)6616-627,1988;Rosenfeld等人,科学252431-434,1991;Kolls等人,美国国家科学院院报91215-219,1994;Kass-Eisler等人,美国国家科学院院报9011498-11502,1993;Guzman等人,循环(Circulation)882838-2848,1993;和Guzman等人,循环研究(Cir.Res.)731202-1207,1993。向这些表达系统中掺入DNA的技术为本领域技术人员所周知。DNA也可以是“裸露的”,如Ulmer等人,科学2591745-1749,1993所述,Cohen,科学2591691-1692,1993所综述。将DNA包被于能有效输送到细胞中的可生物降解的珠上可提高裸露DNA的摄取。
在本发明的药用组合物中可使用本领域技术人员所知的适当载体,但载体类型随施用模式而不同。可为任何适当的施用方式配制本发明的组合物,包括,例如,局部、口服、鼻、静脉内、颅骨内、腹膜内、皮下或肌内施用。至于肠胃外施用,如皮下注射,载体优选地含有水、盐水、醇、脂肪、蜡或缓冲液。至于口服,可使用上述任何载体或固体载体,如甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、滑石粉、纤维素、葡萄糖、蔗糖和碳酸镁。也可用可生物降解的微球体(例如polylactatepolyglycolate)作为本发明的药用组合物的载体。例如,美国专利号4,897,268和5,075,109中公开了合适的可生物降解微球体。
这些组合物也可含有缓冲液(例如,中性缓冲盐水或磷酸缓冲盐溶液)、碳水化合物(例如葡萄糖、甘露糖、蔗糖或葡聚糖)、甘露醇、蛋白质、多肽或氨基酸如甘氨酸、抗氧化剂、螯合剂如EDTA或谷胱甘肽、佐剂(例如氢氧化铝)和/或防腐剂。此外,本发明的组合物可制为冻干品。也可用众所周知的方法将化合物包被于脂质体中。
在本发明的疫苗中可以使用多种免疫刺激剂。例如,可包含一种佐剂。大多数佐剂含有一种用来保护抗原免于快速分解代谢的物质,如氢氧化铝或矿物油,和免疫应答刺激物,如类脂A、Bortadella pertussis或结核杆菌(Mycobacterium tuberculosis)衍生的蛋白质。合适的佐剂可购得,如弗氏不完全佐剂和完全佐剂(Difco Laboratories,Dtroit,MI);Merck佐剂65(Merck Company,Inc.,Rahway,NJ);铝盐如氢氧化铝胶体(明矾)或磷酸铝;钙、铁或锌盐;酰化酪氨酸的不溶性悬液;酰化糖;阳离子或阴离子衍生的多糖;聚磷腈;可生物降解的微球体;单磷酰脂类A和quil A。细胞因子如GM-CSF或白细胞介素-2、-7或-12也可用作佐剂。
在此处提供的疫苗内,在选择条件下,佐剂组合物可用来诱导主要是Th1型或Th2型的免疫应答。高水平的Th1型细胞因子(例如IFN-γ、TNFα、IL-2和IL-12)倾向于诱导对施用抗原的细胞介导的免疫应答。相反,高水平的Th2型细胞因子(例如,IL-4、IL-5、IL-6和IL-10)倾向于诱导体液免疫应答。施用此处提供的疫苗后,患者将支持包括Th1型和Th2型应答的免疫应答。在一个优选实施方案中,其中应答主要是Th1型的,Th1型细胞因子的水平将提高到比Th2型细胞因子水平更高的程度。这些细胞因子的水平可用标准测定法容易地评估。细胞因子家族的综述参见Mosmann和Coffman,免疫学年述(Ann.Rev.Immunol.)7145-173,1989。
用于引发Th1型应答的优选的佐剂包括,例如,单磷酰脂类A优选地3-去-O-酰化单磷酰脂类A(3D-MPL)与铝盐的组合。MPL佐剂可从Ribi Immuno Chem Research Inc.(Hanilton,MT)获得(参见美国专利号4,436,727;4,877,611;4,866,034和4,912,094)。含CpG的寡核苷酸(其中CpG二核苷酸未甲基化)也主要诱导Th1应答。这些寡核苷酸众所周知,例如在WO 96/02555有述。另一种优选的佐剂是皂角苷,优选地QS21,它可单独使用或与其他佐剂一起使用。例如,一种增强的系统包括单磷酰脂类A和皂角苷衍生物的组合,如QS21和3D-MPL的组合,如WO 96/00153所述,或QS21与胆固醇断开的低反应原性组合物,如WO 96/33739所述。其他优选的制剂包括水包油乳剂和生育酚。在WO95/17210中描述了在水包油乳剂中包含QS21、3D-MPL和生育酚的一种特别有效的佐剂制剂。此处提供的任何疫苗可用众所周知的方法制备,导致抗原、免疫应答增强剂和适当载体或赋形剂的组合。
此处所述的组合物可作为缓释制剂的一部分施用(即,施用后实现化合物缓释的制剂,如胶囊、海绵或胶体(例如由多糖组成))。这些制剂一般可用众所周知的技术制备,并通过如口服、直肠或皮下植入或植入希望的靶部分而施用。缓释制剂可含有分散于载体基质中和/或在速度控制膜所围成的容器中所含的多肽、多核苷酸或抗体。在这些制剂中使用的载体是生物适合的,也可以是可生物降解的;优选地该制剂提供相对恒定水平的活性化合物释放。缓释制剂所含活性化合物的量取决于植入的大小、释放的速度和预期的持续时间,和治疗或预防的病情。
在药用组合物和疫苗中可使用多种输送载体中的任一种,以利于针对衣原体感染的细胞的抗原特异性免疫应答的产生。输送载体包括抗原递呈细胞(APC),如树突细胞、巨噬细胞、B细胞、单核细胞和可改造为有效APC的其他细胞。这些细胞可以但不需要遗传修饰来提高递呈抗原的能力,促进T细胞应答的激活和/或保持,本身具有抗衣原体作用,和/或与受体免疫学相容(即匹配的HLA单体型)。APC一般可从多种生物液体和器官中分离,可以是自体、异体、同源或异源的细胞。
本发明的某些优选实施方案使用树突细胞或其祖细胞作为抗原递呈细胞。树突细胞是十分有效的APC(Banchereau和Steinman,自然392245-251,1998),作为生理佐剂可有效地用于引发预防或治疗性免疫(参见Timmerman和Levy,医学年述(Ann.Rev.Med.)50507-529,1999)。通常,树突细胞可根据其典型形状(原位星形,在体外可见的明显的胞质加工(树突))、高效吸收、加工和递呈抗原的能力及其激活幼稚T细胞应答的能力鉴定。当然可改造树突细胞,使之表达在体内或来自体内的树突细胞上不常见的特异性细胞表面受体或配体,本发明设想这些修饰的树突细胞。作为树突细胞的一个选择,分泌的载有囊抗原的树突细胞(称为外来体)可在疫苗中使用(参见Zitvogel等人,自然医学(NatureMed.)4594-600,1998)。
树突细胞及祖细胞可从外周血、骨髓、淋巴结、脾脏、皮肤、脐带血或其他任何合适的组织或液体中获得。例如,向从外周血中收集的单核细胞的培养物中加入细胞因子如GM-CSF、IL-4、IL-13和/或TNFα的组合物,树突细胞可以来自体内地分化。此外,通过向培养基中加入GM-CSF、IL-3、TNFα、CD40配体、LPS、flt3配体和/或可诱导树突细胞分化、成熟和增殖的其他化合物,从外周血、脐带血或骨髓中收集的CD34阳性细胞可分化为树突细胞。
树突细胞常规分类为“未成熟”和“成熟”细胞,这是区别两种明确表征的表型的一种简单方法。然而,该命名法不应看作排除分化中所有可能的中间阶段。未成熟树突细胞特征是具有高抗原摄取和加工能力的APC,与Fcγ受体和甘露糖受体的高表达有关。成熟表型的特征一般在于这些标记的较低表达,负责T细胞激活的细胞表面分子如I类和II类MHC、粘附分子(例如,CD54和CD11)和共刺激分子(例如CD40、CD80、CD86和4-1BB)的高表达。
APC一般可用编码衣原体蛋白(或其部分或其他变体)的多核苷酸转染,使得衣原体多肽或其免疫原性部分在细胞表面表达。这种转染可来自体内地发生,含有这些转染的细胞的组合物或疫苗然后可如此处所述用于治疗目的。此外,也可向患者施用导向树突或其他抗原递呈细胞的基因输送载体,引起体内发生的转染。树突细胞的体内和来自体内的转染一般可用本领域所知的任何方法进行,如WO 97/24447所述方法,或Mahvi等人,免疫学与细胞生物学(Immunology and Cell Biology)75456-460,1997所述的基因枪法。树突细胞的抗原负载的实现方法可以是,将树突细胞或祖细胞与衣原体多肽、(裸露的或质粒载体内的)DNA或RNA或与表达抗原的重组细菌或病毒(例如,牛痘、禽痘、腺病毒或慢病毒载体)温育。在负载前,多肽可与提供T细胞帮助的免疫配偶体(即载体分子)共价结合。此外,树突细胞可用未结合的免疫配偶体在多肽存在下或单独脉冲。
药用组合物和疫苗的施用途径和频率以及剂量因个体而不同。通常,药用组合物和疫苗可通过注射(例如,皮内、肌内、静脉内或皮下)、鼻内(例如吸入)或口服施用。1-36周中可施用1~3剂。优选地,以3~4个月的间隔施用3剂,之后可定期进行加强接种。替代方法可适于个体患者。一种合适的剂量是,当如上所述施用时,能在免疫的患者中引起足以在至少1~2年内保护患者免于衣原体感染的免疫应答的多肽或DNA量。药剂中存在的(或药剂中DNA原位产生的)多肽量约为每kg宿主1pg~1μg,一般为约10pg~1mg,优选地约100pg~1μg。合适的剂量因患者大小而不同,但一般为约0.1mL~5mL。
在本发明的药用组合物中可使用本领域技术人员周知的任何适当载体,载体的类型取决于施用模式。对于肠胃外施用,如皮下注射,载体优选地含有水、盐水、醇、脂肪、蜡或缓冲液。对于口服,可使用上述任何载体或固体载体,如甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、滑石粉、纤维素、葡萄糖、蔗糖和碳酸镁。可生物降解的微球体(例如polylacticgalactide)也可用作本发明的药用组合物的载体。例如,美国专利号4,897,268和5,075,109中公开了合适的可生物降解的微球体。
合适的剂量和治疗方案一般以足以产生治疗和/或预防益处的量提供活性化合物。通过在有关患者中建立比之未治疗的患者提高的临床结果,能监测这种反应。预先存在的对衣原体蛋白免疫应答的增强一般与提高的临床结果有关。这些免疫应答一般可用标准增殖、细胞毒性或细胞因子测定法评估,可用治疗前和治疗后从患者中获得的样品进行。
另一方面,本发明提供用上述多肽诊断衣原体感染的方法。在这一方面,提供了单独或组合使用一种或多种上述多肽检测生物样品中衣原体感染的方法。为清楚起见,当描述本发明诊断方法的具体实施方案时使用术语“多肽”。然而,本领域技术人员应当清楚,也可在这些方法中使用本发明的融合蛋白。
在此使用时,“生物样品”是从患者中获得的任何含抗体样品。优选地,样品是全血、痰、血清或血浆、唾液、脑脊液或尿。更优选地,样品是从患者中获得的血液、血清或血浆样品。如下所述,在测定中使用这些多肽,测定相对于预定的阈值,样品中多肽抗体的存在与否。这些抗体的存在表明以前对可表现衣原体感染的衣原体抗原的致敏。
在使用一种以上多肽的实施方案中,使用的多肽优选地是互补的(即,一种组成多肽能检测样品中的感染,其中另一种组成多肽无法检测该感染)。互补多肽一般可用每种多肽单独鉴定,以评价从已知感染衣原体的一系列患者中获得的血清样品。用每种多肽测定何种样品为阳性(如下所述)后,可配制两种或多种多肽的组合,它们能检测大多数或全部待测样品中的感染。
本领域技术人员已知多种测定法,使用一种或多种多肽检测样品中的抗体。参见,例如,Harlow和Lane,《抗体实验室手册》,冷泉港实验室,1988,在此引用作为参考。在一个优选的实施方案中,测定包括用固定于固体载体上的多肽结合并从样品中去除抗体。然后可用一种含有报道基团的检测试剂检测结合的抗体。合适的检测试剂包括可与抗体/多肽复合物结合的抗体和用报道基团标记的游离多肽(例如在半竞争性测定中)。此外也可使用竞争性测定,其中可与多肽结合的抗体用一种报道基团标记,并使之在抗原与样品温育后能结合固定的抗原。样品成分抑制标记抗体与多肽结合的程度表明样品与固定多肽的反应性。
固体支持物可以是本领域技术人员所知的、抗原可附着的任何固体材料。例如,固体支持物可以是微量平板中的检测孔,或硝酸纤维素或其他合适的膜。此外,支持物也可以是珠或盘,如玻璃、玻璃纤维、乳胶或塑料材料如聚苯乙烯或聚氯乙烯。支持物也可以是磁粉或光纤传感器,如美国专利号5,359,681所公开的。
可用本领域技术人员所知的多种技术使多肽与固体支持物结合。在本发明说明书中,术语“结合”是指非共价结合如吸附和共价结合(可以是抗原与支持物上功能基团之间的直接连接,或者可以是利用交联剂的连接)。通过吸附于微量平板中的孔或膜的结合是优选的。在这些情况中,可通过使适当缓冲液中的多肽与固体支持物接触适当时间实现这种吸附。接触时间因温度而不同,但一般为约1小时至1天。使塑料微量平板的孔(如聚苯乙烯或聚氯乙烯)与约10ng~1μg的一定量多肽接触通常足以结合足量的抗原。
多肽与固体支持物共价结合的方法一般为,首先使支持物与可与支持物和多肽的功能基团如羟基或氨基反应的双功能试剂反应。例如,多肽可与含用苯醌包被的适当聚合物的支持物结合,或通过支持物上醛基与多肽的氨和活性氢缩合(参见,例如,Pierce免疫技术目录和手册,1991,A12-A13)。
在某些实施方案中,测定是酶联免疫吸附测定(ELISA)。该测定的进行方法可以是,首先使已固定于固体载体通常是微量平板孔上的多肽抗原接触样品,使样品中的多肽抗体能与固定的多肽结合。然后从固定的多肽上去除未结合的样品,并加入能结合固定的抗体-多肽复合物的检测试剂。然后用适于特定检测试剂的方法测定结合于固体支持物上的检测试剂的量。
更具体而言,多肽如上所述固定于支持物上后,支持物上保留的蛋白质结合位点一般被封闭。可使用本领域技术人员所知的任何合适的封闭剂,如牛血清白蛋白(BSA)或吐温20TM(Sigma Chemical Co.,St.Louis,MO)。固定的多肽然后与样品温育,使抗体与抗原结合。在温育前样品可用合适的稀释剂如磷酸缓冲液(PBS)稀释。合适的接触时间(即温育时间)一般为足以检测HGE-感染样品中抗体存在的时间。优选地,接触时间足以实现一定水平的结合,至少为结合与未结合抗体间达到的平衡的95%。本领域技术人员应认识到,通过测定一段时间后发生的结合水平可轻易地确定达到平衡所需的时间。在室温下,约30分钟的温育时间一般足够。
然后可通过用适当缓冲液如含0.1%吐温20TM的PBS洗涤固体支持物,去除未结合的样品。然后可向固体支持物上加入检测试剂。合适的检测试剂是可与固定的抗体-多肽复合物结合,并能用本领域所知的多种方法检测的任何化合物。优选地,检测试剂含有与报道基团偶联的结合剂(如蛋白A、蛋白G、免疫球蛋白、凝集素或游离抗原)。优选的报道基团包括酶(如辣根过氧化物酶)、底物、辅因子、抑制剂、染料、放射性核素、发光基团、荧光基团和生物素。结合剂与报道基团的偶联可用本领域技术人员周知的标准方法实现。也可从许多商业来源(例如ZymedLaboratories,San Francisco,CA和Pierce,Rockford,IL)购买与多种报道基团偶联的常见结合剂。
然后将检测试剂与固定的抗体-多肽复合物温育足以检测到结合抗体的一段时间。适当的时间长度一般可根据使用说明书确定,或通过测定一段时间后发生的结合水平确定。然后去除未结合的检测试剂,并用报道基团检测结合的检测试剂。用于检测报道基团的方法取决于报道基团的性质。对于放射性基团,闪烁计数或放射自显影法一般是合适的。分光法可用来检测染料、发光基团和荧光基团。生物素可用与不同报道基团(通常是放射性或荧光基团或酶)偶联的亲和素检测。酶报道基团一般可通过加入底物(一般经过特定的一段时间),随后通过反应产物的分光或其他分析来检测。
为了测定样品中抗衣原体抗体的存在与否,一般将仍与固体支持物结合的报道基团的检测信号与相应于预定的阈值的信号相比较。在一个优选实施方案中,阈值是固定抗原与采自未感染患者的样品温育后获得的平均信号。通常,产生比预定阈值高三个标准差的信号的样品被认为是衣原体感染阳性。在另一个优选实施方案中,根据Sackett等人,《临床流行病学临床医学基础科学》,Little Brown and Co.,1985,106-107的方法,用接收操纵(Receiver Dperator)曲线测定阈值。简言之,在该实施方案中,可从对应于每一可能阈值的真阳性率(即敏感度)和假阳性率(100%特异性)对与诊断检测结果的坐标图上测定阈值。图上最接近上部左角的阈值(即,包围最大区域的值)是最精确的阈值,产生的信号高于用该方法所测得的阈值的样品被认为是阳性。此外,阈值可沿曲线转移到左侧,使假阳性率最低,或移到右侧,使假阴性率最低。产生的信号高于用该方法所测得的阈值的样品通常被认为是衣原体感染阳性。
在一个相关实施方案中,以快速流通或条形试验形式进行测定,其中抗原固定于膜上如硝酸纤维素。在流通检测中,当样品通过膜时,样品中的抗体与固定的多肽结合。然后当含检测试剂的溶液流经膜时,检测试剂(例如,蛋白A-胶态金)与抗体-多肽复合物结合。然后可如上所述进行结合的检测试剂的检测。在条形试验中,膜的多肽结合的一端浸于含样品的溶液中。样品沿膜通过含检测试剂的区域迁移到固定多肽区。多肽处检测试剂的浓度表明样品中抗衣原体抗体的存在。一般而言,该部分的检测试剂浓度产生一种模式,如可见的一条线。没有这种模式表明为阴性结果。一般选择固定于膜上的多肽量,使得当生物样品含有足以在ELISA中产生阳性信号的一定水平的抗体时,如上所述,能产生可目视辨别的模式。优选地,固定于膜上的多肽量为约25ng~1μg,更优选地为约50ng~500ng。这些试验一般能用极少量(如一滴)的患者血清或血液进行。
当然,有大量其他的测定方法适用于本发明的多肽。以上的叙述只是旨在举例。可在这些方法中使用的其他测定法的一个例子是Western印迹,其中在接触结合剂之前凝胶分离生物样品中的蛋白质。这些技术为本领域技术人员所周知。
本发明进一步提供试剂如可特异结合衣原体蛋白的抗体及其抗原结合片段。在此使用时,如果抗体或其抗原结合片段与衣原体蛋白以可检测的水平反应(例如ELISA),而在类似条件下不与无关蛋白可检测地反应,则认为其可“特异结合”衣原体蛋白。在此使用时,“结合”是指两种不同分子非共价结合形成复合体。例如通过测定复合体形成的结合常数能估计结合能力。结合常数是复合物浓度除以成分浓度之积所得的值。一般而言,在本发明说明书中,当复合物形成的结合常数超过约103L/mol时,称这两种化合物“结合”。结合常数可用本领域周知的方法测定。
还能用此处提供的代表性测定法用结合剂区分患或未患衣原体感染的患者。换言之,能结合衣原体蛋白的抗体或其他结合剂在至少约20%疾病患者中将产生表明存在衣原体感染的信号,在至少约90%的未感染个体中产生表明无病的阴性信号。为了确定一种结合剂是否满足这一要求,可如此处所述测定患或无衣原体感染的患者(用标准临床试验确定)的生物样品(例如血液、血清、痰、尿和/或组织活检)中是否存在能与该结合剂结合的多肽。显然应当测定统计学显著数量的有或无疾病的样品。每种结合剂都应满足以上标准;然而,本领域技术人员应当认识到,可组合使用结合剂以提高敏感度。
满足以上需要的任何试剂都可以是结合剂。例如,结合剂可以是有或无肽成分的核糖体,RNA分子或多肽。在一个优选的实施方案中,结合剂是一种抗体或其抗原结合片段。抗体可用本领域技术人员所知的多种技术制备。参见,例如,Harlow和Lane,《抗体实验室手册》,冷泉港实验室,1988。通常可用细胞培养技术产生抗体,包括此处所述的单克隆抗体的产生,或通过抗体基因转染合适的细菌和哺乳动物细胞宿主,以产生重组抗体。在一种技术中,开始将含多肽的免疫原注射到多种哺乳动物(例如小鼠、大鼠、兔、绵羊或山羊)的任一种中。该步骤中,本发明的多肽可用作未加修饰的免疫原。此外,特别是对于相对较短的多肽,如果多肽与载体蛋白如牛血清白蛋白或匙孔戚血蓝蛋白连接,则可引发较强的免疫应答。将免疫原注射到动物宿主中,优选地根据包括一次或多次加强免疫的预定方案,定期对动物采血。然后通过如使用与适当固体载体偶联的多肽的亲和层析法,从这些抗血清中纯化对于多肽特异的多克隆抗体。
对于目的抗原性多肽特异的单克隆抗体可用如Kohler和Milstein,欧洲免疫学杂志6511-519,1976的技术及其改进技术制备。简言之,这些方法包括制备能产生具有希望特异性(即与目的多肽的反应性)的抗体的无限增殖细胞系。可如上所述从获自免疫的动物的脾细胞中产生这些细胞系。然后例如通过融合优选地与免疫动物同源的骨髓瘤细胞融合配偶体,使脾细胞无限增殖化。可使用多种融合技术。例如,脾细胞和骨髓瘤细胞可与非离子去污剂结合几分钟,然后以低密度接种于支持杂种细胞生长但不支持骨髓瘤细胞生长的选择性培养基中。一种优选的筛选技术使用HAT(次黄嘌呤、氨喋呤、胸苷)筛选。经足够的时间后,通常1至2周,观察到杂种集落。选择单集落,检测其培养上清液对多肽的结合活性。优选具有高反应性和特异性的杂交瘤。
可从生长杂交瘤集落的上清液中分离单克隆抗体。另外,可用多种技术提高产量,如向合适的脊椎动物宿主如小鼠的腹膜腔中注射杂交瘤细胞系。然后可从腹水或血液中收集单克隆抗体。可通过常规技术如层析法、凝胶过滤、沉淀和抽提法从抗体中除去污染物。本发明的多肽可在纯化方法如亲和层析步骤中使用。
在某些实施方案中,可优选使用抗体的抗原结合片段。这些片段包括可用标准技术制备的Fab片段。简言之,可通过蛋白A珠柱亲和层析从兔血清中纯化免疫球蛋白(Harlow和Lane,《抗体实验室手册》,冷泉港实验室,1988),并用木瓜蛋白酶消化产生Fab和Fc片段。Fab和Fc片段可通过蛋白A珠柱亲和层析分离。
本发明的单克隆抗体可与一种或多种治疗剂偶联。就此而言,合适的治疗剂包括放射性核素、分化诱导剂、药物、毒素及其衍生物。优选的放射性核素包括90Y、123I、125I、131I、186Re、188Re、211At和212Bi。优选的药物包括氨甲蝶呤和嘧啶和嘌呤类似物。优选的分化诱导剂包括佛波醇酯和丁酸。优选的毒素包括篦麻毒素、相思豆毒素、白喉毒素、霍乱毒素、gelonin、假单胞菌内毒素、志贺氏毒素和美洲商陆抗病毒蛋白。
治疗剂可与合适的单克隆抗体直接或间接(例如通过接头)偶联。当治疗剂与抗体均具有能彼此反应的取代基时,它们之间的直接反应是可能的。例如,其中一种的亲核基团如氨基或巯基能与另一种的含羰基团如酐或酰基卤反应,或与其他的含离去基团(如卤化物)的烷基反应。
此外,希望通过接头偶联治疗剂与抗体。接头能作为使抗体远离治疗剂的间隔区,以避免结合力干扰。接头也能用来提高治疗剂或抗体上取代基的化学反应性,从而提高偶联效率。化学反应性的提高也可利于治疗剂的使用,或否则不可能的治疗剂官能团的使用。
本领域技术人员应当明白,多种相同及不同功能的双功能或多功能试剂(如Pirece Chemical Co.,Rockford,IL目录所述)可用作接头。例如,通过氨基、羧基、巯基或氧化的糖残基可实现偶联。有大量参考文献描述了这些方法,如授予Rodwell等人的美国专利号4,671,958。
当不含本发明的免疫偶联物的抗体部分时治疗剂更有效的情况下,希望使用在向细胞内化期间或之后能切割的接头。已描述了大量可切割的不同接头。治疗剂从这些接头上胞内释放的机制包括,通过二硫键还原(例如,授予Spitler的美国专利号4,489,710)、通过光不稳定键照射(例如,授予Senter等人的美国专利号4,625,014)、通过衍生氨基侧链的水解(例如,授予Kohn等人的美国专利号4,638,045)、通过血清补体介导的水解(例如,授予Rodwell等人的美国专利号4,671,958)和酸催化的水解(参见,授予Blattler等人的美国专利号4,569,789)切割。
希望将一种以上的试剂与一种抗体偶联。在一个实施方案中,一种试剂的多个分子与一种抗体分子偶联。在另一个实施方案中,一种以上的试剂可与一种抗体偶联。无论特定实施方案如何,可用多种方法制备含一种以上试剂的免疫偶联物。例如,一种以上的试剂可直接与一种抗体分子偶联,或能使用提供多个连接位点的接头。此外也能使用载体。
载体可以以多种方式携带试剂,包括直接或通过接头共价键合。合适的载体包括蛋白质如白蛋白(例如,授予Kato等人的美国专利号4,507,234)、肽和多糖如氨基葡聚糖(例如,授予Shih等人的美国专利号4,699,784)。载体也可通过非共价结合或通过包裹于如脂质体囊中而携带试剂(例如,美国专利号4,429,008和4,873,088)。对于放射性核素试剂特异的载体包括放射性卤化小分子和螯合剂。例如,美国专利号4,735,792公开了典型的放射性卤化小分子及其合成。放射性核素螯合物可由螯合剂形成,包括含有氮及硫原子作为供电子原子用于结合金属或金属氧化物、放射性核素的螯合剂。例如,授予Davison等人的美国专利号4,673,562公开了典型的螯合剂及其合成。
抗体和免疫偶联物可使用多种施用途径。施用一般是静脉内、肌内、皮下的,或用适当方法在部分特异的区域。显然抗体/免疫偶联物的精确剂量将随所用的抗体、抗原密度和抗体清除率而不同。
在诊断检测中可使用抗体,用类似于以上详述的测定法或本领域技术人员周知的其他技术检测衣原体抗原的存在,从而提供一种检测患者衣原体感染的方法。
本发明的诊断试剂也可含有编码一种或多种上述多肽的DNA序列或其一种或多种部分。例如,在基于聚合酶链反应(PCR)的测定中至少使用两条寡核苷酸引物扩增生物样品中衣原体特异的cDNA,其中至少一条寡核苷酸引物对于编码本发明的多肽的DNA分子是特异的。然后用本领域周知的技术如凝胶电泳检测扩增的cDNA的存在。类似地,在杂交测定中可使用对于编码本发明的多肽的DNA分子特异的寡核苷酸探针,检测生物样品中本发明的多肽的存在。
在此使用时,术语“对于DNA分子特异的寡核苷酸引物/探针”是指与所述DNA分子有至少约80%、优选地至少约90%、更优选地至少约95%的同一性的寡核苷酸序列。本发明的诊断方法中可用的寡核苷酸引物和/或探针优选地含有至少约10-40个核苷酸。在一个优选实施方案中,寡核苷酸引物含有编码此处公开的多肽之一的DNA分子的至少约10个连续核苷酸。优选地,在本发明的诊断方法中使用的寡核苷酸探针含有编码此处公开的多肽之一的DNA分子的至少约15个连续寡核苷酸。基于PCR的测定和杂交测定技术在本领域周知(参见,例如Mullis等人,同上;Ehrlich,同上)。于是可用引物或探针检测生物样品中衣原体特异的序列。含有上述寡核苷酸序列的DNA探针或引物可单独或互相组合使用。
下列实施例是为了说明而提供,绝非意在限制。
实施例1编码衣原体抗原的DNA序列的分离本发明的衣原体抗原基本如Sanderson等人(实验医学杂志(J.Exp.Med.)1995,1821751-1757)所述通过沙眼衣原体LGV II基因组DNA文库的表达克隆来分离,并显示诱导PBMC增殖和免疫反应性T细胞系中的IFN-γ。
通过用沙眼衣原体LGV II的原生小体刺激无衣原体生殖道感染史的正常供体的PBMC,产生衣原体特异的T细胞系。发现该T细胞系,称为TCL-8,能识别沙眼衣原体和肺炎衣原体感染的单核细胞衍生的树突细胞。
在λZAP(Stratagene,La Jolla,CA)中构建随机剪切的沙眼衣原体LGV II基因组文库,将扩增的文库加以30个克隆/孔的密度涂板于96孔微量滴定板中。在2mM IPTG存在下诱导细胞3小时使之表达重组蛋白,然后沉淀并重悬浮于200μl RPMI 10%FBS中。将10μl诱导的细胞悬液转移到含有自体单核细胞衍生的树突细胞的96孔板中。温育2小时后,洗涤树突细胞除去游离的大肠杆菌,并加入衣原体特异的T细胞。通过测定由集合体引起的IFN-γ产生和T细胞增殖鉴定阳性大肠杆菌集合体。
鉴定出4个阳性集合体,它们分解产生4种纯克隆(被称为1-B1-66、4-D7-28、3-G3-10和10-C10-31),插入片段大小分别为481bp、183bp、110bp和1400bp。SEQ ID NO1-4分别列出了1-B1-66、4-D7-28、3-G3-10和10-C10-31的确定的DNA序列。克隆1-B1-66大致位于沙眼衣原体基因组的536690区中(NCBI沙眼衣原体数据库)。克隆1-B1-66中,鉴定了一个编码以前鉴定的9kDa蛋白质(Stephens等人,Genbank保藏号AE001320)的开放阅读框(ORF)(核苷酸115-375),其序列由SEQ IDNO5列出。克隆4-D7-28是同一ORF的较小区(1-B1-66的氨基酸22-82)。克隆3-G3-10大致位于沙眼衣原体基因组的74559区中。插入片段以相对于基因组方向的反义方向克隆。克隆10-C10-31含有一个对应于以前公布的沙眼衣原体S13核糖体蛋白序列的开放阅读框(Gu,L.等人,细菌学杂志1772594-2601,1995)。SEQ ID NO6和12分别列出了4-D7-28和10-C10-31的预测的蛋白质序列。SEQ ID NO7-11列出了3-G3-10的预测的蛋白质序列。
在相关的一系列筛查研究中,用另一种T细胞系筛查上述沙眼衣原体LGV II的基因组DNA文库。一种衣原体特异的T细胞系(TCT-1)来源于一名患衣原体生殖道感染的患者,方法是用沙眼衣原体LGV II原生小体感染的自体单核细胞衍生的树突细胞刺激患者的PBMC。一个克隆,4C9-18(SEQ ID NO21),含有1256bp插入片段,经标准增殖测定法测定,可引发由衣原体特异的T细胞系TCT-1引起的特异性免疫应答。随后的分析揭示该克隆含有3种已知序列硫辛酰胺脱氢酶(Genbank保藏号AE001326),在SEQ ID NO22中公开;假拟蛋白CT429(Genbank保藏号AE001316),在SEQ ID NO23中公开;泛醌甲基转移酶CT428的开放阅读框的部分(Genbank保藏号AE001316),在SEQ ID NO24中公开。
在关于克隆4C9-18(SEQ ID NO21)的其他研究中,在如SEQ IDNO90所公开的克隆CtL2-LPDA-FL中表达沙眼衣原体(LGV II)的硫辛酰胺脱氢酶的全长氨基酸序列(SEQ ID NO22)。
为了进一步表征含有T细胞刺激表位的开放阅读框,含克隆4C9-18的核苷酸1-695与编码氨基端6X-组氨酸标记的cDNA序列的cDNA片段亚克隆到pET17b载体(Novagen,Madison,WI)的NdeI/EcoRI位点,称为克隆4C9-18#2 BL21 pLysS(SEQ ID NO25,相应的氨基酸序列列于SEQ ID NO26中),并转化大肠杆菌。用2mM IPTG选择性诱导转化的大肠杆菌3小时导致从克隆4C9-18#2 BL21 pLysS中表达26kDa蛋白质,这通过标准考马斯染色的SDS-PAGE得到证实。为了测定克隆4C9-18#2 BL21 pLysS编码的蛋白质的免疫原性,向1×104单核细胞衍生的树突细胞上滴定表达26kDa蛋白质的大肠杆菌,温育2小时。洗涤树突细胞培养物,加入2.5×104个T细胞(TCT-1),再温育72小时,然后通过ELISA测定培养上清液中IFN-γ的水平。如图1所示,通过IFN-γ测定,发现T细胞系TCT-1可对诱导的培养物起反应,表明了对硫辛酰胺脱氢酶序列的衣原体特异的T细胞应答。类似地,标准增殖测定显示克隆4C9-18#2 BL21 pLysS编码的蛋白质能刺激TCT-1T细胞系。
随后用上述CD4+T细胞表达克隆技术鉴定其他沙眼衣原体抗原的研究产生了另外一些克隆。用TCT-1和TCL-8衣原体特异的T细胞系及TCP-21 T细胞系筛查沙眼衣原体LGV II基因组文库。TCP-21 T细胞系来源于一名对肺炎衣原体有体液免疫应答的患者。TCT-1细胞系鉴定出37个阳性集合体,TCT-3细胞系鉴定出41个阳性集合体,TCP-21细胞系鉴定出2个阳性集合体。下列克隆来源于这些阳性集合体中的10个。用TCP-21细胞系鉴定的克隆11-A3-93(SEQ ID NO64)是与HAD超家族(CT103)有同源性的1339bp基因组片段。同一克隆中的第二个插入片段与互补链上存在的fab I基因(CT104)有同源性。用TCP-21细胞系鉴定的克隆11-C12-91(SEQ ID NO63)含有为OMP2基因(CT443)部分的269bp插入片段,与肺炎衣原体的富含半胱氨酸的60kDa外膜蛋白有同源性。
用TCT-3细胞系鉴定的克隆11-G10-46(SEQ ID NO62)含有与假拟蛋白CT610有同源性的688bp插入片段。用TCT-3细胞系鉴定的克隆11-G1-34(SEQ ID NO61)具有两个含1215bp大小插入片段的部分开放阅读框(ORF)。一个ORF与苹果酸脱氢酶基因(CT376)有同源性,另一个ORF与糖原水解酶基因(CT042)有同源性。用TCT-3细胞系鉴定的克隆11-H3-68(SEQ ID NO60)含有两个总插入大小为1180bp的ORF。一个部分ORF编码质粒编码的PGP6-D毒性蛋白,而第二个ORF是L1核糖体基因(CT318)的完整ORF。用TCT-3细胞系鉴定的克隆11-H4-28(SEQ ID NO59)含有一个大小为552bp的插入片段,是dnaK基因(CT396)的ORF的部分。用TCT-1细胞系鉴定的克隆12-B3-95(SEQ ID NO58)含有大小为463bp的插入片段,是硫辛酰胺脱氢酶基因(CT557)的ORF的一部分。用TCT-1细胞系鉴定的克隆15-G1-89和12-B3-95相同(分别为SEQ ID NO55和58),含有一个大小为463bp的插入片段,是硫辛酰胺脱氢酶基因(CT557)的ORF的一部分。用TCT-1细胞系鉴定的克隆12-G3-83(SEQ ID NO57)含有大小为1537bp的插入片段,含有假拟蛋白CT622的ORF的一部分。
用TCT-3细胞系鉴定的克隆23-G7-68(SEQ ID NO79)含有950bp的插入片段,并含有一小部分L11核糖体ORF,L1核糖体蛋白的完整ORF和L10核糖体蛋白的一部分ORF。用TCT-1细胞系鉴定的克隆22-F8-91(SEQ ID NO80)含有395bp的插入片段,该插入片段在克隆的互补链上含有pmp C ORF的一部分。用TCT-3细胞系鉴定的克隆21-E8-95(SEQ ID NO81)含有2085bp的插入片段,该插入片段含有CT613ORF的一部分、CT612的完整ORF、CT611的完整ORF和CT610的部分ORF。用TCT-3细胞系鉴定的克隆19-F12-57(SEQ ID NO82)含有405bp的插入片段,该插入片段含有部分CT858 ORF和一小部分recA ORF。用TCT-3细胞系鉴定的克隆19-F12-53(SEQ ID NO83)含有379bp的插入片段,该插入片段是编码谷氨酰tRNA合成酶的CT455的ORF的一部分。用TCT-3细胞系鉴定的克隆19-A5-54(SEQ ID NO84)含有715bp的插入片段,该插入片段是隐蔽性质粒的ORF3的一部分(该克隆的互补链)。用TCT-1细胞系鉴定的克隆17-E11-72(SEQ ID NO85)含有476bp的插入片段,该插入片段是Opp_2和pmpD的ORF的一部分。该克隆的pmpD区被克隆15-H2-76的pmpD区所覆盖。用TCT-3细胞系鉴定的克隆17-C1-77(SEQ ID NO86)含有一个1551bp的插入片段,该插入片段是CT857的ORF的一部分,以及CT858的ORF的一部分。用TCT-1细胞系鉴定的克隆15-H2-76(SEQ ID NO87)含有3031bp的插入片段,该插入片段含有大部分pmpD ORF、部分CT089ORF,以及部分SycE ORF。克隆15-A3-26(SEQ ID NO88)含有976bp插入片段,该插入片段含有CT858 ORF的一部分。用TCT-10细胞系鉴定的克隆17-G4-36(SEQ ID NO267)含有680bp的插入片段,该插入片段在该质粒中与beta-gal处于读框内,并与DNA引导的RNA聚合酶beta亚基的部分ORF(SerD中的CT315)同源。
上述几个克隆与多种多形膜蛋白有同源性。沙眼衣原体的基因组序列含有9个多形膜蛋白基因的家族,称作pmp。这些基因被命名为pmpA、pmpB、pmpC、pmpD、pmpE、pmpF、pmpG、pmpH和pmpI。由这些基因表达的蛋白质被认为与产生对衣原体感染的保护性免疫应答有生物学相关性。特别是,pmpC、pmpD、pmpE和pmpI含有可预测的信号肽,提示它们是外膜蛋白,因此是潜在的免疫学靶标。
根据沙眼衣原体LGV II血清变型序列,设计引物对以PCR扩增pmpC、pmpD、pmpE、pmpG、pmpH和pmpI的全长片段。将得到的片段亚克隆到DNA疫苗载体JA4304或JAL中,JAL是含有一个修饰的接头的JA4304(SmithKline Beecham,伦敦,英格兰)。具体地,用分别如SEQ ID NO197和198所示的5’oligo GAT AGG CGC GCC GCAATC ATG AAA TTT ATG TCA GCT ACT GCT G和3’oligo CAG AACGCG TTT AGA ATG TCA TAC GAG CAC CGC A将pmpC亚克隆到JAL载体中。在将短核苷酸序列GCAATC(SEQ ID NO199)插入ATG下游后,在本领域众所周知的条件下PCR扩增该基因,并连接到JAL载体的5’ASCI/3’MluI位点,产生Kozak样序列。得到的表达载体含有全长pmpC基因,该基因包含具有假定信号序列的5325个氨基酸(SEQID NO173),编码187kD蛋白质(SEQ ID NO179)。用下列oligo PCR扩增该基因后,将pmpD基因亚克隆到JA4304疫苗载体中5’oligo-TGCAAT CAT GAG TTC GCA GAA AGA TAT AAA AAG C(SEQ IDNO200)和3’oligo-CAG AGC TAG CTT AAA AGA TCA ATC GCAATC CAG TAT TC(SEQ ID NO201)。用本领域众所周知的标准技术将该基因连接到JA4304疫苗载体的5’平端HIII/3’MluI位点。将CAATC(SEQ ID NO202)插入ATG上游,产生Kozak样序列。该克隆是唯一的,因为由于平端化过程,HinDIII位点的最后一个苏氨酸丢失,Kozak样序列的最后一个甘氨酸同样如此。插入的4593核苷酸片段(SEQ IDNO172),是含有假定信号序列的pmpD的全长基因,其编码161kD蛋白质(SEQ ID NO178)。用5’oligo-TGC AAT CAT GAA AAA AGCGTT TTT CTT TTT C(SEQ ID NO203)和3’oligo-CAG AAC GCGTCT AGA ATC GCA GAG CAA TTT C(SEQ ID NO204)将pmpE亚克隆到JA4304载体中。PCR扩增后,将该基因连接于JA4304的5’平端HIII/3’MluI位点。为便于此,向起始密码子上游添加一个短核苷酸序列——TGCAATC(SEQ ID NO293),产生Kozak样序列,并重建HindIII位点。该插入片段是全长的pmpE基因(SEQ ID NO171),含有假定的信号序列。pmpE基因编码105kD蛋白质(SEQ ID NO177)。用5’oligo-GTG CAA TCA TGA TTC CTC AAG GAA TTT ACG(SEQID NO205)和3’oligo-CAG AAC GCG TTT AGA ACC GGA CTT TACTTC C(SEQ ID NO206)PCR扩增pmpG基因,并将其亚克隆到JA4304载体中。对pmpI和pmpK基因进行类似的克隆策略。另外,设计引物对以PCR扩增全长的或重叠的pmp基因片段,然后为蛋白质表达亚克隆到pET17b载体(Novagen,Madison,WI)中,并转染大肠杆菌BL21pLysS进行表达,随后用Novagen提供的组氨酸-镍层析法纯化。如下所述,编码重组蛋白质的几种基因缺乏天然信号序列而利于蛋白质表达。通过表达代表氨基端和羧基端的两个重叠片段完成pmpC的全长蛋白质表达。缺乏信号序列的pmpC氨基端部分(SEQ ID NO187,其相应的氨基酸序列如SEQ ID NO195所示)向载体5’NdeI/3’KPN克隆位点的亚克隆使用5’oligo-CAG ACA TAT GCA TCA CCA TCA CCA TCACGA GGC GAG CTC GAT CCA AGA TC(SEQ ID NO207)和3’oligo-CAG AGG TAC CTC AGA TAG CAC TCT CTC CTA TTA AAGTAG G(SEQ ID NO208)。将该基因的羧基端部分——pmpC羧基端片段(SEQ ID NO186,其相应的氨基酸序列如SEQ ID NO194所示)亚克隆到该表达载体的5’NheI/3’KPN克隆位点,其中使用下列引物5’oligo-CAG AGC TAG CAT GCA TCA CCA TCA CCA TCA CGT TAAGAT TGA GAA CTT CTC TGG C(SEQ ID NO209)和3’oligo-CAGAGG TAC CTT AGA ATG TCA TAC GAG CAC CGC AG(SEQ IDNO210)。PmpD也表达为两种重叠蛋白质。缺乏信号序列的pmpD氨基端部分(SEQ ID NO185,其相应的氨基酸序列如SEQ ID NO193所示)含有pET17b的起始密码子,表达为一种80kD的蛋白质。为了蛋白质表达和纯化,起始密码子后有一个六组氨酸标记,并在该基因的第28个氨基酸(核苷酸84)处融合。使用下列引物5’oligo-CAG ACA TATGCA TCA CCA TCA CCA TCA CGG GTT AGC(SEQ ID NO211)和3’oligo-CAG AGG TAC CTC AGC TCC TCC AGC ACA CTC TCT TC(SEQ ID NO212),剪接到该载体的5’NdeI/3’KPN克隆位点。PmpD羧基端部分(SEQ ID NO184)表达为一种92kD蛋白质(SEQ IDNO192)。为了表达及随后的纯化,含有另外的甲硫氨酸、丙氨酸和丝氨酸,其代表pET17b的起始密码子和前两个氨基酸。甲硫氨酸、丙氨酸和丝氨酸下游的六组氨酸标记在基因的第691个氨基酸(核苷酸2073)处融合。使用5’oligo-CAG AGC TAG CCA TCA CCA TCA CCA TCACGG TGC TAT TTC TTG CTT ACG TGG(SEQ ID NO213)和3’oligo-CAG AGG TAC TTn AAA AGA TCA ATC GCA ATC CAG TATTCG(SEQ ID NO214),将插入片段亚克隆到表达载体的5’NheI/3’KPN克隆位点。PmpE表达为一种106kD蛋白质(SEQ ID NO183,其相应的氨基酸序列如SEQ ID NO191所示)。PmpE插入片段也缺乏天然信号序列。PCR扩增在本领域周知的条件下进行,使用下列oligo引物5’oligo-CAG AGG ATC CAC ATC ACC ATC ACC ATC ACG GAC TAGCTA GAG AGG TTC(SEQ ID NO215)和3’oligo-CAG AGA ATT CCTAGA ATC GCA GAG CAA TTT C(SEQ ID NO216),将扩增的插入片段连接到JA4304的5’BamHI/3’EcoRI位点。如SEQ ID NO217所示的短核苷酸序列插入起始密码子上游,产生Kozak样序列并重建HindIII位点。表达的蛋白质含有pET17b表达载体的起始密码子和下游21个氨基酸,即MASMTGGQQMGRDSSLVPSSDP(SEQ ID NO218)。另外,如上所述的序列上游含有一个六组氨酸标记,在基因的第28个氨基酸(核苷酸84)处融合,去掉了假定的信号肽。SEQ ID NO183所示的序列不包含这些另外的序列,其相应的氨基酸序列如SEQ ID NO191所示。pmpG基因(SEQ ID NO182,其相应的氨基酸序列如SEQ IDNO190所示)在本领域周知的条件下PCR扩增,使用下列oligo引物5’oligo-CAG AGG TAC CGC ATC ACC ATC ACC ATC ACA TGATTC CTC AAG GAA TTT ACG(SEQ ID NO219)和3’oligo-CAGAGC GGC CGC TTA GAA CCG GAC TTT ACT TCC(SEQ IDNO220),连接到表达载体的5’KPN/3’NotI克隆位点。表达的蛋白质在氨基端含有另外的氨基酸序列,即,MASMTGGQQNGRDSSLVPHHHHHH(SEQ ID NO221),其含有pET17b表达载体的起始密码子和其他序列。pmpI基因(SEQ IDNO181,其相应的氨基酸序列如SEQ ID NO189所示)在本领域周知的条件下PCR扩增,使用下列oligo引物5’oligo-CAG AGC TAG CCATCA CCA TCA CCA TCA CCT CTT TGG CCA GGA TCC C(SEQ IDNO222)和3’oligo-CAG AAC TAG TCT AGA ACC TGT AAG TGGTCC(SEQ ID NO223),连接到表达载体的5’NheI/3’SpeI克隆位点。表达的95kD蛋白质在该蛋白质的氨基端含有pET17b载体的起始密码子和另一个丙氨酸和丝氨酸。另外,在该基因的第21个氨基酸处融合有一个六组氨酸标记,这除去了假定的信号肽。
用TCT-3细胞系鉴定的克隆14H1-4(SEQ ID NO56)含有TSA基因的完整ORF,硫醇特异的抗氧化剂-CT603(CT603 ORF是肺炎衣原体CPn0778的同系物)。扩增克隆14-H1-4中的TSA开放阅读框,使表达的蛋白质含有另一个甲硫氨酸和一个6×组氨酸标记(氨基端)。将扩增的插入片段亚克隆到pET17b载体的Nde/EcoRI位点。用IPTG诱导该克隆后,通过Ni-NTA琼脂糖亲和层析纯化22.6kDa蛋白质。SEQ IDNO65中列出了编码TSA基因的克隆14-H1-4的195氨基酸ORF的确定的氨基酸序列。进一步的分析产生了TSA基因的全长克隆,称为CTL2-TSA-FL,其全长氨基酸序列如SEQ ID NO92所示。
进一步的研究得到了如上所述用TCT-1和TCT-3 T细胞系鉴定的另外10个克隆。用TCT-1系鉴定的这些克隆是16-D4-22、17-C5-19、18-C5-2、20-G3-45和21-C7-66;用TCT-3细胞系鉴定的克隆是17-C10-31、17-E2-9、22-A1-49和22-B3-53。克隆21-G12-60用TCT-1和TCT-3细胞系均能识别。用TCT-1细胞系鉴定的克隆16-D4-22(SEQ IDNO119)含有953bp插入片段,该插入片段含有两个基因——在哺乳动物细胞中生长的沙眼衣原体质粒的开放阅读框3(ORF3)和ORF4的部分。克隆17-C5-19(SEQ ID NO118)含有951bp插入片段,该插入片段含有编码clpP_1蛋白酶的DT431 ORF的部分,和CT430(二氨基庚酸差向异构酶)一部分ORF。克隆18-C5-2(SEQ ID NO117)是含有446bp插入片段的S1核糖体蛋白ORF的一部分,可用TCT-1细胞系鉴定。用TCT-1细胞系鉴定的克隆20-G3-45(SEQ ID NO116)含有是pmpB基因(CT413)一部分的437bp插入片段。用TCT-1细胞系鉴定的克隆21-C7-66(SEQ ID NO115)含有编码dnaK样蛋白质一部分的995bp插入片段。该克隆的插入片段不与TCT-3克隆11-H4-28(SEQ ID NO59)的插入片段重叠,它是dnaK基因CT396的一部分。用TCT-3细胞系鉴定的克隆17-C10-31(SEQ ID NO114)含有976bp插入片段。该克隆含有CT858-含有IRBP和DHR域的蛋白酶-ORF的一部分。克隆17-E2-9(SEQ ID NO113)含有两种基因的部分ORFCT611和CT610,它们跨越1142bp插入片段。用TCT-3系鉴定的克隆22-A1-49(SEQ IDNO112)在698 bp插入片段中也含有两个基因。CT660(DNA促旋酶{gyrA_2})的部分ORF位于项链上,而假拟蛋白CT659的完整ORF位于互补链上。用TCT-1系鉴定的克隆22-B3-53(SEQ ID NO111)含有编码GroEL(CT110)部分ORF的267bp插入片段。用TCT-1和TCT-3细胞系鉴定的克隆21-G12-60(SEQ ID NO110)含有1461bp插入片段,该插入片段含有假拟蛋白CT875、CT229和CT228的部分ORF。
其他衣原体抗原的获得方法是,用本领域众所周知的技术,用来自几名衣原体感染个体的混合血清筛查Lambda Screen-1载体(Novagen,Madison,WI)中沙眼衣原体(LGV II血清变型)的基因组表达文库。鉴定下列免疫反应性克隆,测序含有衣原体基因的插入片段CTL2#1(SEQ ID NO71);CTL2#2(SEQ ID NO70);CTL2#3-5’(SEQ IDNO72,代表5’端的第一种确定的基因组序列);CTL2#3-3’(SEQ IDNO73,代表3’端的第二种确定的基因组序列);CTL2#4(SEQ IDNO53);CTL2#5(SEQ ID NO69);CTL2#6(SEQ ID NO68);CTL2#7(SEQ ID NO67);CTL2#8b(SEQ ID NO54);CTL2#9(SEQ IDNO66);CTL2#10-5’(SEQ ID NO74,代表5’端的第一种确定的基因组序列);CTL2#10-3’(SEQ ID NO75,代表3’端的第二种确定的基因组序列);CTL2#11-5’(SEQ ID NO45,代表5’端的第一种确定的基因组序列);CTL2#11-3’(SEQ ID NO44,代表3’端的第二种确定的基因组序列);CTL2#12(SEQ ID NO46);CTL2#16-5’(SEQ ID NO47);CTL2#18-5’(SEQ ID NO49,代表5’端的第一种确定的基因组序列);CTL2#18-3’(SEQ ID NO48,代表3’端的第二种确定的基因组序列);CTL2#19-5’(SEQ ID NO76,代表5’端的确定的基因组序列);CTL2#21(SEQ ID NO50);CTL2#23(SEQ ID NO51);和CTL2#24(SEQ IDNO52)。
其他沙眼衣原体抗原用血清学表达克隆鉴定。这些研究使用如上所述来自几名衣原体感染个体的混合血清,但除用IgG作为第二抗体外还使用IgA和IgM抗体。用该方法筛查的克隆增强了根据对衣原体感染的早期免疫应答(即粘膜体液免疫应答)识别的抗原的检测。表征了下列免疫反应性克隆,并测序含有衣原体基因的插入片段CTL2gam-1(SEQID NO290)、CTL2gam-2(SEQ ID NO289)、CTL2gam-5(SEQ IDNO288)、CTL2gam-6-3’(SEQ ID NO287,代表3’端的第二种确定的基因组序列)、CTL2gam-6-5’(SEQ ID NO286,代表5’端的第一种确定的基因组序列)、CTL2gam-8(SEQ ID NO285)、CTL2gam-10(SEQID NO284)、CTL2gam-13(SEQ ID NO283)、CTL2gam-15-3’(SEQ IDNO282,代表3’端的第二种确定的基因组序列)、CTL2gam-15-5’(SEQID NO281,代表5’端的第一种确定的基因组序列)、CTL2gam-17(SEQID NO280)、CTL2gam-18(SEQ ID NO279)、CTL2gam-21(SEQ IDNO278)、CTL2gam-23(SEQ ID NO277)、CTL2gam-24(SEQ IDNO276)、CTL2gam-26(SEQ ID NO275)、CTL2gam-27(SEQ IDNO274)、CTL2gam-28(SEQ ID NO273)、CTL2gam-30-3’(SEQ IDNO272,代表3’端的第二种确定的基因组序列)和CTL2gam-30-5’(SEQID NO271,代表5’端的第一种确定的基因组序列)。
实施例2沙眼衣原体抗原对T细胞增殖和干扰素-γ产生的诱导如下测定了重组沙眼衣原体抗原诱导T细胞增殖和干扰素-γ产生的能力。
蛋白质用IPTG诱导并用Ni-NTA琼脂糖亲和层析纯化(Webb等人,免疫学杂志1575034-5041,1996)。然后根据诱导PBMC制剂中T细胞增殖的能力筛查纯化的多肽。来自于沙眼衣原体患者及已知其T细胞可因衣原体抗原而增殖的正常供体的PBMC,在补加有10%混合人血清和50μg/ml庆大霉素的RPMI 1640培养基中培养。以0.5-10μg/ml的浓度一式两份加入纯化的多肽。在96孔圆底培养板中以200μl体积培养6天后,从每一孔中取出50μl培养基,如下所述测定IFN-γ水平。然后用1μCi/孔含氚胸苷脉冲培养板18小时,收获,并用气体闪烁计数仪测定氚摄取。如果在两份中的增殖均比单独培养基中培养的细胞的增殖高3倍,则认为该级分为阳性。
IFN-γ用酶联免疫吸附测定(ELISA)测定。用溶于PBS的抗人IFN-γ鼠单克隆抗体(PharMingen,San Diego,CA)在室温下包被ELISA板4小时。然后用含5%(W/V)无脂奶粉的PBS在室温下封闭1小时。用PBS/0.2%吐温20洗板6次,在ELISA板中用培养基1∶2稀释的样品在室温下温育过夜。再次洗涤平板,向每孔中加入用PBS/10%正常山羊血清1∶3000稀释的多克隆兔抗人IFN-γ血清。然后在室温下温育平板2小时,洗涤,并以在PBS/5%无脂奶粉中1∶2000的稀释度加入辣根过氧化物酶偶联的抗兔IgG(Sigma Chemical So.,St.Louis,MO)。在室温下再温育2小时后,洗板,并加入TMB底物。20分钟后用1N硫酸终止反应。用570nm作为参照波长测定450nm的光密度。如果在两份中OD均比单独培养基中培养的细胞的平均OD高2倍,加3个标准差,则认为该级分为阳性。
利用上述方法,发现重组1B1-66蛋白(SEQ ID NO5)以及分别对应于SEQ ID NO5的氨基酸残基48-67(SEQ ID NO13;称为1-B1-66/48-67)和58-77(SEQ ID NO14,称为1B1-66/58-77)的两种合成肽可诱导衣原体特异的T细胞系的增殖反应和IFN-γ产生,用来筛查衣原体LGV II的基因组文库。
进一步的研究已鉴定了核糖体S13蛋白中沙眼衣原体特异的T细胞表位。利用本领域众所周知的标准表位作图技术,用来自供体CL-8的衣原体特异的T细胞系(T细胞系TCL-8 EB/DC)鉴定核糖体S13蛋白(rS13)中的两个T细胞表位。图8显示,第一种肽,rS13 1-20(SEQ IDNO106),与相应的肺炎衣原体序列100%相同,解释了T细胞系与重组沙眼衣原体和肺炎衣原体-rS13的交叉反应性。对第二种肽rS13 56-75(SEQ ID NO108)的应答是沙眼衣原体特异的,表明在健康无症状供体中的rS13应答是通过接触沙眼衣原体而不是肺炎衣原体或其他任何微生物感染引起的。
如实施例1所述,用TCP-21细胞系鉴定的克隆11-C12-91(SEQ IDNO63)含有是OMP2基因(CT443)部分的269bp插入片段,与肺炎衣原体的60kDa富含半胱氨酸外膜蛋白—称为OMCB—有同源性。为进一步确定反应性表位,用一系列重叠肽和以前描述的免疫测定进行表位作图。简言之,在1×104单核细胞衍生的树突细胞存在下,通过用来源于沙眼衣原体和肺炎衣原体的非传染性原生小体,或来源于沙眼衣原体或肺炎衣原体OMCB蛋白质的蛋白序列的肽(0.1μg/ml),刺激2.5×104TCP-21 T细胞,测定增殖反应。TCP-21 T细胞对表位CT-OMCB#167-186、CT-OMCB#171-190、CT-OMCB#171-186起反应,与CT-OMCB#175-186较低程度地起反应(分别为SEQ ID NO249-252)。尤其是,TCP-21 T细胞也对同源肺炎衣原体肽CT-OMCB#171-186(SEQ IDNO253)有增殖反应,其等于或大于对沙眼衣原体肽的反应。位点2(即,Asp置换Glu)和位点4(即,Cys置换Ser)的氨基酸置换不改变T细胞的增殖反应,从而证明该表位是沙眼衣原体和肺炎衣原体间的交叉反应性表位。
为了进一步确定上述表位,在表位作图实验中使用另一种T细胞系--TCT-3。如上所述进行免疫测定,不同之处在于只检测来源于沙眼衣原体的肽。T细胞对CT-OMCB#152-171和CT-OMCB#157-176(分别为SEQ ID NO246和247)两种肽有增殖反应,从而确定了在沙眼衣原体富含半胱氨酸外膜蛋白中的另一免疫原性表位。
克隆14H1-4(SEQ ID NO56,其相应的全长氨基酸序列如SEQ IDNO92所示)在以前所述的CD4 T细胞表达克隆系统中用TCT-3细胞系鉴定,显示其含有硫醇特异的抗氧化剂基因(CT603)的完整ORF,称为TSA。为进一步确定该表位,如上所述进行表位作图免疫测定。TCT-3T细胞系显示对重叠肽CT-TSA#96-115、CT-TSA#101-120和CT-TSA#106-125(分别为SEQ ID NO254-256)有强增殖反应,证明其为沙眼衣原体血清变型LGV II的硫醇特异性抗氧化剂基因中的免疫反应性表位。
实施例3
合成多肽的制备可使用Millipore 9050肽合成仪用FMOC化学以HPTU(O-苯并三唑-N,N,N’,N’-四甲基脲鎓六氟磷酸)活化合成多肽。Gly-Cys-Gly序列可与该肽的氨基端连接,从而提供了一种偶联或标记肽的方法。从固体载体上切下肽可用下列切割混合物进行三氟乙酸∶乙二硫醇∶茴香硫醚∶水∶酚(40∶1∶2∶2∶3)。切割2小时后,可在冷甲基叔丁醚中沉淀肽。然后将肽沉淀溶解于含0.1%三氟乙酸(TFA)的水中并冻干,之后用C18反相HPLC纯化。用0-60%的乙腈(含0.1%TFA)水(含0.1%TFA)溶液梯度洗脱肽。待纯级分冻干后,可用电喷质谱法和氨基酸分析法表征这些肽。
实施例4用反转录病毒表达载体系统对编码衣原体抗原的DNA序列的分离和表征及随后的免疫学分析通过用BamHI、BglII、BstYi和MboI限制酶限制性消化构建沙眼衣原体LGV II的基因组文库。随后将限制消化片段连接到反转录病毒载体pBIB-KS1,2,3的BamHI位点。修饰该载体组,使之含有Kosak翻译起始位点和终止密码子,以便能从短DNA基因组片段表达蛋白质,如图2所示。如Pear,W.S.,Scott,M.L.和Nolan,G.P.,“通过瞬时转染产生高效价、无辅助病毒的反转录病毒。”《分子医学方法基因治疗方法》,人类出版社,Totowa,NJ,41-57所述,制备80个克隆的DNA集合体,转染反转录病毒包装系Phoenix-Ampho。然后用反转录病毒形式的衣原体文库转导表达H2-Ld的P815细胞,然后用作靶细胞刺激抗原特异的T细胞系。
如Starnbach,M.,免疫学杂志,1535183,1994所述,通过用照射的沙眼衣原体感染的J774细胞和照射的同源脾细胞重复刺激,在培养中扩充衣原体特异的鼠H2d限制CD8+T细胞系。用该衣原体特异的T细胞系筛查上述由反转录病毒转导的P815细胞表达的衣原体基因组文库。用Elispot分析通过检测IFN-γ产生鉴定阳性DNA集合体(参见Lalvani等人,实验医学杂志(J.Experimental Medicine)186859-865,1997)。
通过IFN-γElispot测定鉴定出两个阳性集合体,称为2C7和2E10。通过有限稀释,克隆集合体2C7的P815细胞的稳定转导子,并根据其引起衣原体特异CTL系产生IFN-γ的能力筛选各克隆。从这一筛查过程中鉴定出4个阳性克隆,称为2C7-8、2C7-9、2C7-19和2C7-21。同样,进一步筛查阳性集合体2E10,产生含有三个插入片段的另一个阳性克隆。这三个插入片段是CT016、tRNA合酶和clpX基因片段(分别为SEQ IDNO268-270)。
为选择性扩增衣原体DNA插入片段,用pBIB-KS特异性引物PCR扩增来自这4种阳性2C7.8克隆的转基因DNA。凝胶纯化并测序扩增的插入片段。一个免疫反应性克隆,2C7-8(SEQ ID NO15,其预测的氨基酸序列如SEQ ID NO32所示),是与沙眼衣原体血清变型D的核苷酸597304-597145(NCBI,BLASTN检索;SEQ ID NO33,预测的氨基酸序列如SEQ ID NO34所示)同源的160bp片段。上述高度同源区的两个推断开放阅读框内的克隆2C7-8图谱序列,尤其是由298个氨基酸片段组成的这两个推断开放阅读框之一(SEQ ID NO16,预测的氨基酸序列如SEQ ID NO17所示),证明有免疫活性。
用纯化的沙眼衣原体L2基因组DNA作为模板,用5’-ttttgaagcaggtaggtgaatatg(正向)(SEQ ID NO159)和5’-ttaagaaatttaaaaaatccctta(反向)(SEQ ID NO160)引物PCR扩增,获得血清变型L2的298个氨基酸片段的全长克隆(称为CT529和/或Cap1基因)。凝胶纯化该PCR产物,克隆到pCRBlunt(Invitrogen,Carlsbad,CA)中测序,然后亚克隆到pBIB-KMS的EcoRI位点,pBIB-KMS是pBIB-KS的用于表达的衍生物。SEQ ID NO291列出了CT529的肺炎衣原体同系物,SEQ ID NO292列出了其相应的氨基酸序列。
基本如述(Denamur,E.,C.Sayada,A.Souriau,J.Orfila,A.Rodolakis和J.Elion,1991,普通微生物学杂志(J.Gen.Microbiol.)1372525),从含105IFU的细菌裂解物中PCR扩增编码多种CT529血清变型的全长DNA。如述扩增下列血清变型Ba(SEQ ID NO134,其相应的预测氨基酸序列如SEQ ID NO135所示);E(BOUR)和E(MTW447)(SEQ ID NO122,其相应的预测氨基酸序列如SEQ ID NO123所示);F(NI1)(SEQ ID NO128,其相应的预测氨基酸序列如SEQ ID NO129所示);G(SEQ ID NO126,其相应的预测氨基酸序列如SEQ ID NO127所示);Ia(SEQ ID NO124,其相应的预测氨基酸序列如SEQ ID NO125所示);L1(SEQ ID NO130,其相应的预测氨基酸序列如SEQ ID NO131所示);L3(SEQ ID NO132,其相应的预测氨基酸序列如SEQ ID NO133所示);I(SEQ ID NO263,其相应的预测氨基酸序列如SEQ ID NO264所示);K(SEQ ID NO265,其相应的预测氨基酸序列如SEQ ID NO266所示);和MoPn(SEQ ID NO136,其相应的预测氨基酸序列如SEQ IDNO137所示)。用Advantage Genomic PCR试剂盒(Clontech,Palo Alto,CA),用血清变型L2 DNA(ORF外部)特异的引物进行PCR反应。引物序列为5’-ggtataatatctctctaaattttg(正向-SEQ ID NO161)和5’-agataaaaaaggctgtttc,(反向-SEQ ID NO162),而MoPn需要5’-ttttgaagcaggtaggtgaatatg(正向-SEQ ID NO163)和5’-tttacaataagaaaagctaagcactttgt(反向-SEQ ID NO164)。PCR扩增的DNA用QIAquick PCR纯化试剂盒(Qiagen,Valencia,CA)纯化,并克隆到pCR2.1(Invitrogen,Carlsbad,CA)中测序。
用自动化测序仪(ABI 377),用pBIB-KS特异正向引物5’-ccttacacagtcctgctgac(SEQ ID NO165)和反向引物3’-gtttccgggccctcacattg(SEQ ID NO166),对从免疫反应性克隆的PCR扩增片段获得的DNA测序。用T7启动子引物和通用M13正向及M13反向引物,对编码CT529血清变型L2的PCRBlunt克隆的DNA和编码CT529血清变型Ba、E(BOUR)、E(MTW447)、F(NI1)、G、Ia、K、L1、L3和MoPn的pCR2.1克隆的DNA测序。
为确定这两种推断的开放阅读框(SEQ ID NO16和20)是否编码具有相关免疫功能的蛋白质,如实施例3所述合成横跨两个开放阅读框长度的重叠肽(17-20个氨基酸长)。用标准铬释放试验测定肽脉冲的H2d限制性靶细胞的百分特异裂解。在该测定中,在1μg/ml指定肽存在或不存在下,在37℃下用100μCi51Cr标记P815细胞(H2d)等份1小时。温育后,洗涤标记的P815细胞以除去过量的51Cr和肽,随后一式两份以1000个细胞/孔的浓度接种于微量培养板中。以指定的效应物靶比值加入效应CTL(衣原体特异的CD8 T细胞)。温育4小时后,收集上清液,用γ-计数仪测定51Cr向上清液中的释放。源自298氨基酸开放阅读框的两种重叠肽可特异刺激CTL系。合成SEQ ID NO138-156所示的肽,代表血清变型D的CT529开放阅读框(Cap1基因)和216氨基酸开放阅读框的L2同源物的翻译。如图3所示,以10∶1的效应物靶比值,肽CtC7.8-12(SEQ ID NO18,也称为Cap1#132-147,SEQ ID NO139)和CtC7.8-13(SEQID NO19,也称为Cap1#138-155,SEQ ID NO140)分别能引发38-52%的特异裂解。尤其是,这两种肽之间的重叠含有预测的H2d(Kd和Ld)结合肽。合成对应于该重叠序列(SEQ ID NO31)的10氨基酸肽,经elispot测定发现产生对抗衣原体CTL系的强免疫应答。值得注意的是,最近对Genbank数据库的检索显示以前未描述该基因的蛋白质。因此,编码克隆2C7-8(SEQ ID NO15)的推断的开放阅读框确定为一种基因,其包含能以MHC-I限制方式刺激抗原特异性CD8+T细胞的衣原体抗原,证明该抗原能用来发展针对衣原体的疫苗。
为了证实这些结果并进一步对表位作图,制备了截短的肽(SEQ IDNO138-156),并在IFN-γELISPOT测定中测试其被T细胞的识别。Ser139(Cap1#140-147,SEQ ID NO146)或Leu147(Cap1#138-146,SEQ ID NO147)的截短消除了T细胞识别。这些结果表明,9-mer肽Cap1#139-147(SFIGGITYL,SEQ ID NO145)是可被衣原体特异的T细胞识别的最小表位。
选择的沙眼衣原体血清变型的Cap1(CT529)的序列对比(SEQ IDNO121,123,125,127,129,131,133,135,137和139)显示,在所述表位的位点2中发现有氨基酸差异之一。同源的血清变型D肽是SIIGGITYL(SEQ ID NO168)。比较了SFIGGITYL和SIIGGITYL对于靶细胞被衣原体特异T细胞识别的能力。连续稀释的每种肽与P815细胞温育,并如上所述在51Cr释放测定中检测被T细胞的识别。衣原体特异的T细胞可识别最小浓度为1nM的血清变型L2肽,和最小浓度为10nM的血清变型D肽。
进一步的研究显示,Cap1#139-147特异的T细胞克隆可识别沙眼衣原体感染的细胞。为了证实Cap1139-147存在于衣原体感染的细胞表面,用沙眼衣原体血清变型L2感染Balb-3T3(H-2d)细胞,并检测确定这些细胞是否能被对于Cap1#139-147表位(SEQ ID NO145)特异的CD8+T细胞克隆识别。通过有限稀释69系T细胞获得对于Cap1#139-147表位特异的T细胞克隆。该T细胞克隆可特异识别衣原体感染的细胞。在这些实验中,靶细胞是沙眼衣原体感染的(阳性对照)或未感染的Balb/3T3细胞,以30∶1、10∶1和3∶1的效应物靶比值分别显示45%、36%和30%的特异性裂解;或是Cap1#139-147表位(SEQ ID NO145)包被的或未处理的P815细胞,以30∶1、10∶1和3∶1的效应物靶比值分别显示83%、75%和58%的特异性裂解(阴性对照在所有情况中均有低于5%的裂解)。数据表明感染过程中存在表位。
体内研究显示,在鼠感染沙眼衣原体过程中,启动了Cap1#139-147表位特异的T细胞。为确定感染沙眼衣原体是否引发Cap1#139-147表位特异的T细胞应答,小鼠腹膜内感染108IFU沙眼衣原体血清变型L2。感染两周后,杀死小鼠,在用Cap1#139-147表位肽脉冲的照射的同源脾细胞上刺激脾细胞。刺激5天后,在标准51Cr释放测定中用培养物确定培养物中是否存在Cap1#139-147表位特异的T细胞。具体而言,沙眼衣原体血清变型L2免疫的小鼠或注射PBS的对照小鼠的脾细胞,在与Cap1#139-147肽包被的同源脾细胞和能特异识别Cap1#139-147表位的CD8+T细胞培养5天后,以30∶1、10∶1和3∶1的效应物靶比值,分别引起73%、60%和32%的特异性裂解。对照小鼠以30∶1的效应物靶比值具有近似10%的百分裂解,并随E∶T比降低稳定下降。靶细胞是Cap1#139-147肽包被的或未处理的P815细胞。数据表明,在鼠感染沙眼衣原体过程中引发了(primed)Cap1#139-147肽特异的T细胞。
实施例5
衣原体抗原免疫的小鼠中的抗体产生和T细胞应答进行免疫原性研究,以测定用纯化的SWIB或与Montanide佐剂配制的S13蛋白质免疫的小鼠中的抗体和CD4+T细胞应答,或用含有SWIB或S13的DNA序列的pcDNA-3表达载体进行基于DNA的免疫。SWIB也称作克隆1-B1-66(SEQ ID NO1,相应的氨基酸序列如SEQ ID NO5所示),S13核糖体蛋白也称作克隆10-C10-31(SEQ ID NO4,相应的氨基酸序列如SEQ ID NO12所示)。在第一组实验中,每组3只C57BL/6小鼠免疫两次,并监测抗体和CD4+T细胞应答。在尾部皮内进行DNA免疫,多肽免疫通过皮下途径施行。对免疫小鼠脾细胞的标准3H掺入试验结果显示,纯化的重组SWIB多肽(SEQ ID NO5)免疫的组具有强增殖反应。如前所述,通过细胞因子诱导测定的进一步分析证明,SWIB多肽免疫的组产生可测得的IFN-γ和IL-4应答。随后进行基于ELISA的测定,以测定SWIB多肽免疫的实验组中的优势抗体同种型应答。图4显示SWIB免疫的组产生主要为IgG1的体液应答。
在第二组实验中,以3周的间隔,用在PBS或Montanide中配制的10μg纯化的SWIB蛋白(也称作克隆1-BI-66,SEQ ID NO5)免疫C3H小鼠3次,第3次免疫2周后收获。用本领域众所周知的基于ELISA的标准技术测定针对SWIB蛋白的抗体效价,证明用Montanide佐剂配制的SWIB蛋白可诱导强体液免疫应答。T细胞增殖反应用基于XTT的试验测定(Scudiero等人,癌症研究(Cancer Research)1988,484827)。如图5所示,SWIB多肽加Montanide免疫的小鼠的脾细胞引发抗原特异的增殖反应。另外,用上述细胞因子诱导试验测定免疫动物的脾细胞响应可溶性重组SWIB多肽而分泌IFN-γ的能力。Montanide佐剂配制的SWIB多肽免疫组中的所有动物的脾细胞均由于接触SWIB衣原体抗原而分泌IFN-γ,证明衣原体特异的免疫应答。
在另一组实验中,在不同的3个时间点,用与SBAS2佐剂(SmithKline Beecham,伦敦,英格兰)配制的10μg纯化的SWIB或S13蛋白(沙眼衣原体,SWIB蛋白,克隆1-B1-66,SEQ ID NO5,S13蛋白,克隆10-C10-31,SEQ ID NO4)在尾部免疫C3H小鼠。抗原特异的抗体效价用ELISA测定,显示两种抗体均可诱导强IgG应答,效价为1×10-4~1×10-5。该反应中的IgG1和IgG2a成分以相当的量存在。通过标准3H掺入测定对分离自免疫小鼠的脾细胞测定,抗原特异的T细胞增殖反应对于SWIB而言极强(阴性对照以上50,000cpm),而对于S13甚至更强(阴性对照以上100,000cpm)。IFN-γ产生通过标准ELISA技术从增殖培养上清液中测定。用S13蛋白体外重新刺激培养物诱导高水平的IFN-γ产生,约25ng/ml,而阴性对照为2ng/ml。用SWIB蛋白重新刺激也诱导IFN-γ,但程度较低。
在相关实验中,在不同的3个时间点,用与10μg霍乱毒素混合的10μg纯化的SWIB或S13蛋白(沙眼衣原体,SWIB蛋白,克隆1-B1-66,SEQID NO5,S13蛋白,克隆10-C10-31,SEQ ID NO4)免疫C3H小鼠。抗原特异的抗体反应用标准ELISA技术测定。SWIB免疫的小鼠的血液中存在抗原特异的IgG抗体,效价为1×10-3~1×10-4,但在S13免疫的动物中检测不到。根据IFN-γ产生测定,分离的脾细胞的抗原特异T细胞应答,产生与以上对于全身免疫所述类似的结果。
进行动物研究,以测定CT529血清变型LGV II CTL表位的免疫原性,该表位由CT529 10mer共有肽(CSFIGGITYL——SEQ IDNO31)限定,确定为H2-Kd限制性CTL表位。BALB/c小鼠(每组3只小鼠)用结合不同佐剂的25μg肽免疫3次。在SKB佐剂系统SBAS-2”、SBAS-7(Smith Kline Beecham,伦敦,英格兰)或Montanide中,在尾部全身施用该肽。该肽也与10μg霍乱毒素(CT)混合鼻内施用。用普通小鼠作为对照。第3次免疫4周后,用10μg/ml CT529 10mer共有肽脉冲的LPS-胚细胞以不同的效应细胞LPS-胚细胞比6、1.5和0.4以1×106细胞/ml重新刺激脾细胞。两次重复刺激后,用标准铬释放试验检测效应细胞裂解肽脉冲的P815细胞的能力。来源于鸡蛋卵清蛋白的无关肽用作阴性对照。结果证明,对CT529 10mer共有肽引发明显的免疫应答,用肽免疫可产生能裂解肽脉冲靶标的抗原特异性T细胞。特别是,在SBAS-7和CT辅助的组中发现抗原特异的裂解活性,而Montanide和SBAS-2”不能辅助CTL表位免疫。
实施例6肺炎衣原体基因的表达与表征实施例1所述的人T细胞系TCL-8可识别沙眼衣原体及肺炎衣原体感染的单核细胞衍生的树突细胞,提示沙眼衣原体和肺炎衣原体可编码交叉反应性T细胞表位。为了分离与沙眼衣原体LGV II克隆1B1-66——也称作SWIB(SEQ ID NO1)和克隆10C10-31——也称作S13核糖体蛋白(SEQ ID NO4)同源的肺炎衣原体基因,用肺炎衣原体TWAR株(CDC/CWL-029)感染HeLa 229细胞。温育3天后,收获肺炎衣原体感染的HeLa细胞,洗涤并重悬浮于200μl水中,在沸水浴中加热20分钟。用10μl破碎细胞悬液作为PCR模板。
为克隆1B1-66和10C10-31设计肺炎衣原体特异的引物,使5’端插入6X-组氨酸尾和一个Nde I位点,3’端含有一个终止密码子和一个BamHI位点(图6)。用本领域周知的标准技术扩增并测序PCR产物。将肺炎衣原体特异的PCR产物克隆到表达载体pET17B(Novagen,Madison,WI)中,转染大肠杆菌BL21 pLysS进行表达,随后用Novagen提供的组氨酸镍层析法纯化。这样产生来源于肺炎衣原体的两种蛋白质,10-11kDa蛋白称为CpSWIB(分别为SEQ ID NO27,含6X His尾的SEQID NO78,相应的氨基酸序列如SEQ ID NO28所示),15kDa蛋白称作CpS13(分别为SEQ ID NO29,含6X His尾的SEQ ID NO77,相应的氨基酸序列如SEQ ID NO33和91所示)。
实施例7肺炎衣原体抗原对T细胞增殖和干扰素-γ产生的诱导重组肺炎衣原体抗原诱导T细胞增殖和干扰素-γ产生的能力如下测定。
蛋白质用IPTG诱导,并通过Ni-NTA琼脂糖亲和层析纯化(Webb等人,免疫学杂志1575034-5041,1996)。然后根据在PBMC制剂中诱导T细胞增殖的能力筛查纯化的多肽。来源于肺炎衣原体患者及已知其T细胞可因衣原体抗原而扩增的正常供体的PBMC,在含补充有10%合并人血清和50μg/ml庆大霉素的RPMI 1640的培养基中培养。一式两份以0.5~10μg/mL的浓度加入纯化多肽。在96孔圆底培养板中培养6天后,从每孔中取出50μl培养基,如下所述测定IFN-γ水平。然后用1μCi/孔含氚胸苷脉冲18小时,收获并用气体闪烁计数仪测定氚摄取。如果在两份中的增殖均比单独培养基中培养的细胞的增殖高3倍,则认为该级分为阳性。
IFN-γ用酶联免疫吸附测定(ELISA)测定。ELISA板用溶于PBS中的抗人IFN-γ鼠单克隆抗体(PharMingen,San Diego,CA)在室温下包被4小时。然后用含5%(W/V)无脂奶粉的PBS在室温下封闭1小时。用PBS/0.2%吐温20洗板6次,在ELISA板中用培养基1∶2稀释的样品在室温下温育过夜。再次洗涤平板,向每孔中加入用PBS/10%正常山羊血清1∶3000稀释的多克隆兔抗人IFN-γ血清。然后在室温下温育平板2小时,洗涤,并以在PBS/5%无脂奶粉中1∶2000的稀释度加入辣根过氧化物酶偶联的抗兔IgG(Sigma Chemical So.,St.Louis,MO)。在室温下再温育2小时后,洗板,并加入TMB底物。20分钟后用1N硫酸终止反应。用570nm作为参照波长测定450nm的光密度。如果在两份中OD均比单独培养基中培养的细胞的OD高2倍,加3个标准差,则认为该级分为阳性。
用能与沙眼衣原体和肺炎衣原体交叉反应的人抗衣原体T细胞系(TCL-8)确定以上实施例所述的表达蛋白质(即,CpSWIB,分别为SEQID NO27,含6X His标记的SEQ ID NO78,相应的氨基酸序列如SEQ IDNO28所示,以及称作CpS13的15kDa蛋白,分别为SEQ ID NO29,含6X His标记的SEQ ID NO77,相应的氨基酸序列如SEQ ID NO30和91所示)是否具有沙眼衣原体和肺炎衣原本共有的T细胞表位。简言之,对1×104单核细胞衍生的树突细胞滴定表达衣原体蛋白的大肠杆菌。2小时后,洗涤树突细胞培养物,加入2.5×104个T细胞(TCL-8),再温育72小时。然后通过ELISA测定培养上清液中IFN-γ的量。如图7A和7B所示,经IFN-γ的抗原特异性诱导证明,TCT-8 T细胞系可特异识别来源于沙眼衣原体和肺炎衣原体的S13核糖体蛋白,而只有来源于沙眼衣原体的SWIB蛋白能被该T细胞系识别。为了证实这些结果,用一系列重叠肽脉冲的靶细胞和T细胞系TCL-8经表位作图鉴定沙眼衣原体SWIB的T细胞表位。3H胸苷掺入试验证明,称作C.T.SWIB 52-67的SEQID NO39的肽引起最强的TCL-8系增殖。合成对应于肺炎衣原体序列的SWIB(SEQ ID NO40)、肺炎衣原体(SEQ ID NO43)和沙眼衣原体(SEQ ID NO42)的拓扑异构酶-SWIB融合蛋白及人SWI域(SEQ IDNO41)的同源肽,并经上述试验检测。T细胞系TCL-8只能识别SEQ IDNO39的沙眼衣原体肽,不能识别相应的肺炎衣原体肽(SEQ IDNO40),或上述其他相应的肽(SEQ ID NO41-43)。
分别用沙眼衣原体或肺炎衣原体感染的单核细胞衍生的树突细胞刺激供体PBMC,由具有肺炎衣原体阳性血清效价的供体CP-21产生衣原体特异的T细胞系。对肺炎衣原体产生的T细胞可对重组肺炎衣原体-SWIB反应,但不对沙眼衣原体-SWIB反应,而对沙眼衣原体产生的T细胞系不对沙眼衣原体或肺炎衣原体-SWIB反应(见图9)。供体CP-21的肺炎衣原体-SWIB特异的免疫应答证实了肺炎衣原体感染,表明在体内肺炎衣原体感染期间产生肺炎衣原体-SWIB特异的T细胞。
对肺炎衣原体-SWIB的T细胞应答的表位作图显示,Cp-SWIB-特异的T细胞可对重叠肽Cp-SWIB 32-51(SEQ ID NO101)和Cp-SWIB37-56(SEQ ID NO102)反应,表明肺炎衣原体-SWIB特异的T细胞表位Cp-SWIB 37-51(SEQ ID NO100)。
在其他实验中,分别用来源于沙眼衣原体或肺炎衣原体的非传染性原生小体刺激PBMC,由供体CP1,也是肺炎衣原体血清反应阳性的供体,产生T细胞系。特别是,在1×104单核细胞衍生的树突细胞和来源于沙眼衣原体或肺炎衣原体的非传染性原生小体,或重组沙眼衣原体或肺炎衣原体SWIB蛋白存在下,刺激2.5×104T细胞,测定增殖反应。对SWIB的T细胞反应类似于用CP21的T细胞获得的数据,因为肺炎衣原体-SWIB而不是沙眼衣原体-SWIB引发肺炎衣原体T细胞系的反应。另外,沙眼衣原体T细胞系不能响应沙眼衣原体或肺炎衣原体SWIB增殖,但它能响应CT和CP原生小体增殖。如实施例1所述,用TCP-21细胞系鉴定的克隆11-C12-91(SEQ ID NO63)具有269bp的插入片段,它是OMP2基因(CCCT443)的部分,与肺炎衣原体富含半胱氨酸的60kDa外膜蛋白—称作OMCB—有同源性。为了进一步确定反应性表位,用一系列重叠肽和以前所述的免疫测定法进行表位作图。简言之,在1×104单核细胞衍生的树突细胞存在下,用来源于沙眼衣原体或肺炎衣原体的非传染性原生小体,或来源于沙眼衣原体或肺炎衣原体OMCB蛋白序列的肽(0.1μg/ml)刺激2.5×104TCP-21 T细胞,测定增殖反应。TCP-21 T细胞对表位CT-OMCB#167-186、CT-OMCB#171-190、CT-OMCB#171-186起反应,与CT-OMCB#175-186较低程度地起反应(分别为SEQ ID NO249-252)。尤其是,TCP-21 T细胞也对同源的肺炎衣原体肽CT-OMCB#171-186(SEQ ID NO253)有增殖反应,其等于或大于对沙眼衣原体肽的反应。位点2(即,Asp置换Glu)和位点4(即,Cys置换Ser)的氨基酸置换不改变T细胞的增殖反应,从而证明该表位是沙眼衣原体和肺炎衣原体间的交叉反应性表位。
实施例8人PBMC和T细胞系对衣原体抗原的免疫应答此处提供的实施例提示,在已感染沙眼衣原体并产生控制沙眼衣原体感染的保护性免疫应答的普通人群中,有一群健康供体。这此供体仍无临床症状,并且沙眼衣原体血清反应阴性。为了表征正常供体对已经过CD4表达克隆鉴定的衣原体抗原的免疫应答,针对包括沙眼衣原体-SWIB、肺炎衣原体-SWIB、和沙眼衣原体-S13和肺炎衣原体-S13在内的一系列重组衣原体抗原检测从12名健康供体中获得的PBMC。数据总结于下面的表1中。所有供体均为沙眼衣原体血清反应阴性,而6/12有阳性肺炎衣原体滴度。用刺激指数>4作为阳性反应,11/12受试者对沙眼衣原体原生小体起反应,12/12对肺炎衣原体原生小体起反应。一名供体,AD104,对重组肺炎衣原体-S13蛋白起反应,但不对重组沙眼衣原体-S13蛋白起反应,表明是肺炎衣原体特异的反应。12名患者中的3名有沙眼衣原体-SWIB而不是肺炎衣原体特异的反应,证实为沙眼衣原体感染。沙眼衣原体-S13和肺炎衣原体-S13在8/12患者中引起反应,提示衣原体感染。这些数据证明了SWIB和S13在正常受试者的PBMC中引发T细胞应答的能力。
表I正常受试者对衣原体的免疫应答性别 衣原体IgG CT CP CTCP CT CPCT CT滴度 EB EB Swib Swib S13 S13 IpdA TSAD100 男阴性 ++ +++ + -++ ++-n.t.D104 女阴性 +++ ++ - --++-n.t.D108 男CP1256 ++ ++ + +/- ++ +n.t.D112 女阴性 ++ ++ + -+- +/- n.t.D120 男阴性 - +- --- -n.t.D124 女CP1128 ++ ++ - --- -n.t.D128 男CP1512 + ++ - -++ + ++ -D132 女阴性 ++ ++ - -++ --D136 女CP1128 + ++ - -+/- - --D140 男CP1256 ++ ++ - -++ --D142 女CP1512 ++ ++ - -++ +-D146 女阴性 ++ ++ - -++ + +-CT=沙眼衣原体;CP=肺炎衣原体;EB=衣原体原生小体;Swib=重组衣原体Swib蛋白;S13=重组衣原体S13蛋白;lpdA=重组衣原体lpdA蛋白;TSA=重组衣原体TSA蛋白。数值代表标准增殖测定的结果。增殖反应的测定是,用与各重组抗原或原生小体(EB)预温育的1×104单核细胞衍生的树突细胞刺激3×105PBMC。6天后用3H胸苷脉冲最后18小时进行测定。SI刺激指数+/-SI~4+ SI>4++ SI 10-30+++SI>30在第一系列实验中,如前所述,通过用沙眼衣原体LGV II原生小体刺激T细胞,从有生殖器接触沙眼衣原体史的女性个体(CT-10)中获得T细胞系。虽然受试者曾接触沙眼衣原体,但没有血清转化,不发展为临床症状,提示供体CT-10可能已发展了针对沙眼衣原体的保护性免疫应答。如图10所示,来源于供体CT-10的初级衣原体特异性T细胞系可对沙眼衣原体-SWIB但不对肺炎衣原体-SWIB重组蛋白起反应,证实CT-10接触过沙眼衣原体。对沙眼衣原体-SWIB的T细胞应答的表位作图显示,该供体对同一表位Ct-SWIB 52-67(SEQ ID NO39)如T细胞系TCL-8起反应,如图11所示。
如上所述,对于不同沙眼衣原体患者产生其他T细胞系。表II总结了患者临床概况及对沙眼衣原体和肺炎衣原体原生小体和重组蛋白的增殖反应。
表II沙眼衣原体患者的免疫应答患者 临床表现 IgG滴度CT CP CT CP CT CP CT CTEB EB Swib Swib S13 S13 IpdA TSACT-1NGU 阴性 + + --++ ++ ++ +CT-2NGU 阴性 ++ ++ --+ +/- --CT-3无症状 Ct1-512 + + --+ - +-释放Eb Cp11024Dx为HPV Cps1256CT-4无症状 Ct11024 + + --- - --释放EbCT-5BV Ct1256 ++ ++ --+ - --Cp1256CT-6会阴皮疹 Cp11024 + + --- - --CT-7BV Ct1512 + + --+ + +-生殖器溃疡 Cp11024CT-8未知 未测 ++ ++ --- - --CT-9无症状 Ct1128 +++ ++ --++ + +-Cp1128CT-10 外阴轻度搔痒 阴性 ++ ++ --- - --CT-11 BV,异常pap Ct1512 +++ +++ --+++ +/- ++ +CT-12 无症状 Cp1512 ++ ++ --++ + +-NGU=非淋菌性尿道炎;BV=细菌性阴道炎;CT=沙眼衣原体;CP=肺炎衣原体;EB=衣原体原生小体;Swib=重组衣原体Swib蛋白;S13=重组衣原体S13蛋白;lpdA=重组衣原体lpdA蛋白;TSA=重组衣原体TSA蛋白。数值代表标准增殖测定的结果。增殖反应的测定是,用与各重组抗原或原生小体(EB)预温育的1×104单核细胞衍生的树突细胞刺激3×105PBMC。6天后用3H胸苷脉冲最后18小时进行测定。SI刺激指数+/-SI~4+ SI>4++ SI 10-30+++SI>30用如表I和表II总结的一组无症状(如所定义)受试者和沙眼衣原体患者,进行两组PBMC的免疫应答的全面研究。简言之,肺炎衣原体患者及正常供体的PBMC在含补充有10%混合人血清和50μg/ml庆大霉素的RPMI 1640的培养基中培养。一式两份以0.5~10μg/ml的浓度加入纯化的多肽、包括沙眼衣原体-SWIB、肺炎衣原体-SWIB和S13及沙眼衣原体lpdA和TSA在内的一组重组衣原体抗原。在96孔圆底培养板中以200μl体积培养6天后,从每孔中取出50μl培养基,如下所述测定IFN-γ水平。然后用1μCi/孔含氚胸苷脉冲培养板18小时,收集,并用气体闪烁计数仪测定氚摄取。如果在两份中的增殖均比单独培养基中培养的细胞的增殖高3倍,则认为该级分为阳性。
对重组衣原体抗原的增殖反应证明,大多数无症状供体和沙眼衣原体患者可识别沙眼衣原体S13抗原(8/12),大多数沙眼衣原体患者可识别肺炎衣原体S13抗原(8/12),4/12的无症状供体也可识别肺炎衣原体S13抗原。6/12的沙眼衣原体患者和4/12的无症状供体也产生对沙眼衣原体lpdA抗原的增殖反应。结果证明,无症状供体可识别沙眼衣原体和肺炎衣原体S13抗原、沙眼衣原体Swib抗原和沙眼衣原体lpdA抗原,表明这些抗原在接触衣原体期间识别,并引发针对它们的免疫应答。这意味着,这些抗原可能在为人类宿主提供保护性免疫中起作用。另外,沙眼衣原体和肺炎衣原体S13抗原在沙眼衣原体患者中同样识别,因此表明在S13蛋白中可能有沙眼衣原体和肺炎衣原体所共有的表位。表III总结了这些研究的结果。
表III

进行一系列研究测定针对无症状供体和沙眼衣原体患者产生的短期T细胞系的细胞免疫应答。细胞免疫应答如实施例7所述通过标准增殖测定和IFN-γ测定。特别是,大多数抗原为表达衣原体抗原的单大肠杆菌克隆,但在测定中也可使用某些重组蛋白。单大肠杆菌克隆在1×104单核细胞衍生的树突细胞上滴定,2小时后洗涤培养物并加入2.5×104个T细胞。使用重组蛋白的测定如前所述进行。用标准3H-胸苷脉冲最后18小时4天后测定增殖。如上所述,用标准ELISA测定法测定4天后收集的培养上清液的IFN-γ诱导。结果显示,除了沙眼衣原体Swib外,所测的所有沙眼衣原体抗原都引发来源于沙眼衣原体患者的一种或多种不同T细胞系的增殖反应。另外,沙眼衣原体患者和无症状供体中都对下列衣原体基因引发增殖反应CT622、groEL、pmpD、CF610和rS13。
12G3-83克隆除CT622之外也含有CT734和CT764的序列,因此,这些基因序列也可能具有免疫反应性表位。类似地,克隆21G12-60除CT875外还含有假拟蛋白基因CT229和CT228的序列;15H2-76也含有CT812和CT088的序列,并与sycE基因有同源性。克隆11H3-61也含有与PGP6-D毒性蛋白有同源性的序列。
表IV

实施例9利用衣原体抗原的保护性研究用小鼠进行保护性研究,以确定衣原体抗原免疫是否能影响衣原体接种引起的生殖道疾病。使用两种模型使用含有鹦鹉热衣原体(Chlamydia psittaci)株(MTW447)的人分离物的阴道内接种,和使用确定为沙眼衣原体血清变型F(NI1株)的人分离物的子宫内接种模式。这两种菌株均可诱导上生殖道炎症,其类似于妇女中由沙眼衣原体引起的子宫内膜炎和输卵管炎。在第一组实验中,C3H小鼠(每组4只鼠)用含沙眼衣原体SWIB DNA(SEQ ID NO1,其相应的氨基酸序列如SEQID NO5所述)的100μg pcDNA-3表达载体免疫3次。在尾部接种以全身免疫。最后一次免疫两周后,用孕酮处理动物,通过阴道或通过向子宫内注射接种体感染。感染两周后,杀死小鼠,切下生殖道,染色并进行组织病理学检查。对炎症水平评分(从+极轻到+++++极严重)。将归因于每一输卵管/卵巢的分数加和,除以检查的器官数,得到该组的炎症平均得分。在子宫接种模型中,接受空载体的阴性对照免疫的动物显示一致的炎症,卵巢/输卵管平均炎症得分为6.12,而DNA免疫组为2.62。在阴道接种和上行性感染模型中,阴性对照免疫的小鼠卵巢/输卵管平均炎症得分为8.37,而DNA免疫组为5.00。在后一模型中,接种的小鼠显示无输卵管闭塞迹象,而阴性对照接种组在输卵管内腔中有炎症细胞。
在第二组实验中,C3H小鼠(每组4只鼠)用丙交酯乙交酯共聚物微球体(PLG)包裹的含沙眼衣原体SWIB DNA(SEQ ID NO1,其相应的氨基酸序列如SEQ ID NO5所述)的50μg pcDNA-3表达载体免疫3次;腹膜内进行免疫。最后一次免疫两周后,孕酮处理动物,通过阴道内接种鹦鹉热衣原体感染。感染两周后,杀死小鼠,切下生殖道,染色并进行组织病理学检查。如前所述对炎症水平评分。将归因于每一输卵管/卵巢的分数加和,除以检查的器官数,得到该组的炎症平均值。接受PLG包裹的空载体的阴性对照免疫的动物显示一致的炎症,卵巢/输卵管平均炎症得分为7.28,而PLG包裹的DNA免疫组为5.71。对于腹膜中炎症,接种组为1.75,对照组为3.75。
在第三组实验中,C3H小鼠(每组4只鼠)用10μg纯化的重组蛋白——与霍乱毒素(CT)混合的SWIB(SEQ ID NO1,其相应的氨基酸序列如SEQ ID NO5所述)或S13(SEQ ID NO4,其相应的氨基酸序列如SEQ ID NO12所述)——免疫3次;麻醉后以20μl体积鼻内施用该制剂。最后一次免疫两周后,用孕酮处理动物,通过阴道接种鹦鹉热衣原体或通过向子宫内注射沙眼衣原体血清变型F感染。感染两周后,杀死小鼠,切下生殖道,染色并进行组织病理学检查。炎症程度如上所述评分。将归因于每一输卵管/卵巢的分数加和,除以检查的器官数,得到该组的炎症平均得分。在子宫接种模型中,只接受霍乱毒素的阴性对照免疫动物显示卵巢/输卵管平均炎症得分为4.25(只分析了2只小鼠;另2只死亡),而S13加霍乱毒素免疫组为5.00,SWIB加霍乱毒素组为1.00。未治疗的感染动物的卵巢/输卵管平均炎症得分为7。在阴道接种和上行性感染模型中,阴性对照免疫小鼠的卵巢/输卵管平均炎症得分为7.37,S13加霍乱毒素免疫组为6.75,SWIB加霍乱毒素免疫组为5.37。未治疗的感染动物的卵巢/输卵管平均炎症得分为8。
上述三组实验表明,SWIB特异的保护是可获得的。这种保护作用在同源感染模型中更为明显,但在异源感染鹦鹉热衣原体时也存在。
尽管为便于清楚地理解,已通过说明和实施例详细描述了本发明,但也能在不背离附加权利要求书范围所限制的本发明范围的情况下进行改变和修改。
权利要求
1.一种含有衣原体抗原的免疫原性部分的分离的多肽,其中该抗原含有由选自下列的多核苷酸序列编码的氨基酸序列(a)SEQ ID NO1,15,21-25,44-64,66-76,79-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-290所示的序列;(b)与(a)的序列互补的序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的多核苷酸序列。
2.权利要求1的多肽,其中该多肽包含选自SEQ ID NO5,26,32,65,90,92-98,103-108,121,123,125,127,129,131,133,135,137,175-180,189-196,264和266的序列。
3.一种分离的多核苷酸分子,其包含编码根据权利要求1和2任一项的多肽的核苷酸序列。
4.一种含有根据权利要求3的多核苷酸分子的重组表达载体。
5.一种用根据权利要求4的表达载体转化的宿主细胞。
6.权利要求5的宿主细胞,其中该宿主细胞选自大肠杆菌、酵母和哺乳动物细胞。
7.一种包含根据权利要求1和2任一项的多肽的融合蛋白。
8.根据权利要求7的融合蛋白,其中该融合蛋白包含一种表达增强子,该增强子可增强该融合蛋白在用编码该融合蛋白的多核苷酸转染的宿主细胞中的表达。
9.根据权利要求7的融合蛋白,其中该融合蛋白包含一种在权利要求1的多肽中不存在的T辅助表位。
10.根据权利要求7的融合蛋白,其中该融合蛋白包含一种亲和标记。
11.一种分离的多核苷酸,其编码根据权利要求7的融合蛋白。
12.一种分离的单克隆抗体,或其抗原结合片段,其可特异结合包含由根据权利要求1的多核苷酸序列,或上述任一种多核苷酸序列的互补序列编码的氨基酸序列之衣原体蛋白。
13.一种药用组合物,其含有根据权利要求1的多肽和一种生理学可接受的载体。
14.一种药用组合物,其含有根据权利要求3的多核苷酸分子和一种生理学可接受的载体。
15.一种药用组合物,其含有一种多肽和一种生理学可接受的载体,其中该多肽由选自下列的多核苷酸分子编码(a)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列;(b)与(a)的序列互补的序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的序列。
16.一种药用组合物,其含有一种多核苷酸分子和一种生理学可接受的载体,其中该多核苷酸分子包含选自下列的序列(a)SEQ IDNO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列;(b)与(a)的序列互补的序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的序列。
17.一种药用组合物,其含有一种生理学可接受的载体和至少一种选自下列的成分(a)根据权利要求7的融合蛋白;(b)根据权利要求11的多核苷酸;和(c)根据权利要求12的抗体。
18.一种含有根据权利要求1的多肽和一种免疫刺激剂的疫苗。
19.一种含有根据权利要求3的多核苷酸分子和一种免疫刺激剂的疫苗。
20.一种含有一种多肽和一种免疫刺激剂的疫苗,其中该多肽由选自下列的序列编码(a)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列;(b)与(a)的序列互补的序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的序列。
21.一种含有一种DNA分子和一种免疫刺激剂的疫苗,其中该DNA分子包含选自下列的序列(a)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列;(b)与(a)的序列互补的序列;和(c)在中度严格条件下可与(a)或(b)的序列杂交的序列。
22.一种疫苗,其含有一种免疫刺激剂和至少一种选自下列的成分(a)根据权利要求7的融合蛋白;(b)根据权利要求11的多核苷酸;和(c)根据权利要求12的抗体。
23.权利要求18-22中任一项的疫苗,其中所述免疫刺激剂是一种佐剂。
24.一种诱导患者的保护性免疫的方法,其包括向患者施用根据权利要求13-17中任一项的药用组合物。
25.一种诱导患者的保护性免疫的方法,其包括向患者施用根据权利要求18-22中任一项的疫苗。
26.一种分离的多克隆抗体或其抗原结合片段,其可特异结合包含由根据权利要求1的多核苷酸序列或上述任一种多核苷酸序列的互补序列编码的氨基酸序列之衣原体蛋白。
27.一种检测患者衣原体感染的方法,其包括(a)从患者中获得生物样品;(b)使该样品接触一种含有衣原体抗原免疫原性部分的多肽,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ IDNO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(c)检测可与该多肽结合的抗体的存在。
28.一种检测患者衣原体感染的方法,其包括(a)从患者中获得生物样品;(b)使该样品接触一种含多肽的融合蛋白,该多肽含有衣原体抗原的免疫原性部分,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(c)检测可与该多肽结合的抗体的存在。
29.权利要求27和28任一项的方法,其中所述生物样品选自全血、血清、血浆、唾液、脑脊液和尿。
30.一种检测生物样品中衣原体感染的方法,其包括(a)在聚合酶链反应中使样品接触至少两种寡核苷酸引物,其中至少一种寡核苷酸引物对于包含下列序列的多核苷酸分子是特异的SEQ IDNO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291;和(b)检测样品中在该寡核苷酸引物存在下扩增的多核苷酸序列,从而检测衣原体感染。
31.权利要求30的方法,其中至少一种寡核苷酸引物含有下列多核苷酸序列的至少约10个连续核苷酸SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
32.一种检测生物样品中衣原体感染的方法,其包括(a)使样品接触一种或两种寡核苷酸探针,所述探针对于包含下列序列的多核苷酸分子是特异的SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291;和(b)检测样品中可与该寡核苷酸探针杂交的多核苷酸序列,从而检测衣原体感染。
33.权利要求32的方法,其中所述探针含有下列多核苷酸序列的至少约15个连续核苷酸SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
34.一种检测生物样品中衣原体感染的方法,其包括(a)使生物样品接触一种能与包含衣原体抗原免疫原性部分的多肽结合的结合剂,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(b)检测样品中可与该结合剂结合的多肽,从而检测生物样品中的衣原体感染。
35.一种检测生物样品中衣原体感染的方法,其包括(a)使生物样品接触一种能与含多肽的融合蛋白结合的结合剂,该多肽含有衣原体抗原的免疫原性部分,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(b)检测样品中可与该结合剂结合的多肽,从而检测生物样品中的衣原体感染。
36.权利要求34和35任一项的方法,其中所述结合剂是一种单克隆抗体。
37.权利要求34和35任一项的方法,其中所述结合剂是一种多克隆抗体。
38.权利要求34和35中任一项的方法,其中所述生物样品选自全血、痰、血清、血浆、唾液、脑脊液和尿。
39.一种诊断试剂盒,其含有(a)一种含有衣原体抗原免疫原性部分的多肽,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(b)一种检测试剂。
40.一种诊断试剂盒,其含有(a)一种含有一种多肽的融合蛋白,该多肽含有衣原体抗原的免疫原性部分,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列;和(b)一种检测试剂。
41.权利要求39或40的试剂盒,其中所述多肽固定于固体支持物上。
42.权利要求39或40的试剂盒,其中所述检测试剂含有一种与结合剂偶联的报道基团。
43.权利要求42的试剂盒,其中所述结合剂选自抗免疫球蛋白、蛋白G、蛋白A和凝集素。
44.权利要求42的试剂盒,其中所述报道基团选自放射性同位素、荧光团、发光团、酶、生物素和染料颗粒。
45.一种含有至少两种寡核苷酸引物的诊断试剂盒,其中至少一种寡核苷酸引物对于包含下列多核苷酸序列的多核苷酸分子是特异的SEQID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
46.根据权利要求43的诊断试剂盒,其中至少一种寡核苷酸引物含有下列序列的至少约10个连续核苷酸SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
47.一种含有至少一种寡核苷酸探针的诊断试剂盒,该寡核苷酸探针对于包含下列序列的多核苷酸分子是特异的SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
48.根据权利要求47的试剂盒,其中寡核苷酸探针含有下列多核苷酸序列的至少约15个连续核苷酸SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291。
49.一种诊断试剂盒,其含有(a)至少一种根据权利要求22的抗体,或其抗原结合片段;和(b)一种检测试剂。
50.一种治疗患者衣原体感染的方法,其包括下列步骤(a)从患者中获得外周血细胞;(b)在至少一种多肽存在下温育该细胞,该多肽含有衣原体抗原的免疫原性部分,其中该抗原包含由选自下列的多核苷酸序列编码的氨基酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列,使得T细胞增殖;和(c)对患者施用增殖的T细胞。
51.一种治疗患者衣原体感染的方法,其包括下列步骤(a)从患者中获得外周血细胞;(b)在至少一种多核苷酸存在下温育该细胞,该多核苷酸包含选自下列的多核苷酸序列(i)SEQ ID NO1-4,15,16,21-25,27,29,33,44-64,66-88,110-119,120,122,124,126,128,130,132,134,136,169-174,181-188,263,265和267-291所示的序列,(ii)与(i)的序列互补的序列;和(iii)在中度严格条件下可与(i)或(ii)的序列杂交的多核苷酸序列,使得T细胞增殖;和(c)对患者施用增殖的T细胞。
52.权利要求50和51中任一项的方法,其中温育T细胞的步骤重复一次或两次。
53.权利要求50和51中任一项的方法,其中步骤(a)进一步包括从外周血细胞中分离T细胞,步骤(b)中温育的细胞是T细胞。
54.权利要求50和51中任一项的方法,其中步骤(a)进一步包括从外周血细胞中分离CD4+细胞或CD8+T细胞,步骤(b)中增殖的细胞是CD4+或CD8+T细胞。
55.权利要求50和51中任一项的方法,其中步骤(a)进一步包括从外周血细胞中分离γ/δT淋巴细胞,步骤(b)中增殖的细胞是γ/δT淋巴细胞。
56.权利要求50和51任一项的方法,其中步骤(b)进一步包括克隆一种或多种在多肽存在下增殖的T细胞。
57.一种用于治疗患者衣原体感染的药用组合物,其包含在权利要求1的多肽存在下增殖的T细胞,以及一种生理学可接受的载体。
58.一种用于治疗患者衣原体感染的药用组合物,其包含在权利要求3的多核苷酸存在下增殖的T细胞,以及一种生理学可接受的载体。
59.一种治疗患者衣原体感染的方法,其包括下列步骤(a)在至少一种权利要求1的多肽存在下温育抗原递呈细胞;(b)向患者施用温育的抗原递呈细胞。
60.一种治疗患者衣原体感染的方法,其包括下列步骤(a)将至少一种权利要求3的多核苷酸导入抗原递呈细胞中;(b)向患者施用该抗原递呈细胞。
61.权利要求59或60的方法,其中抗原递呈细胞选自树突细胞、巨噬细胞、B细胞、成纤维细胞、单核细胞和干细胞。
62.一种用于治疗患者衣原体感染的药用组合物,其包含在权利要求1的多肽存在下温育的抗原递呈细胞,以及一种生理学可接受的载体。
63.一种用于治疗患者衣原体感染的药用组合物,其包含在权利要求3的多核苷酸存在下温育的抗原递呈细胞,以及一种生理学可接受的载体。
64.一种含有衣原体抗原的免疫原性部分的多肽,其中该免疫原性部分包含SEQ ID NO18,19,31,39,93-96,98,100-102,106,108,138-140,158,167,168,246,247和254-256的序列。
65.一种衣原体抗原的免疫原性表位,其包含SEQ ID NO31,98,106,108,138-140,158,167,168,246,247或254-256的序列。
66.一种分离的多肽,其包含SEQ ID NO5-14,17-20,26,28,30-32,34,39-43,65,89-109,138-158,167,168,224-262,246,247,254-256和292任一个所示的序列。
全文摘要
本发明公开了用于诊断和治疗衣原体感染的化合物方法。提供的化合物包括含有衣原体抗原的至少一个抗原部分的多肽以及编码这种多肽的DNA序列。还提供了含有这种多肽或DNA序列的药物组合物及疫苗,以及针对这种多肽的抗体。含有这种多肽或DNA序列以及适当检测试剂的诊断试剂盒可以用于检测患者和生物学样本中衣原体感染。
文档编号A61P33/00GK1333832SQ99815723
公开日2002年1月30日 申请日期1999年12月8日 优先权日1998年12月8日
发明者P·普罗布斯特, A·巴提亚, Y·A·W·斯凯奇, S·P·弗灵, 任萱, E·J·斯特罗姆伯格 申请人:科里克萨有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1