切削工具的制作方法

文档序号:1939758阅读:196来源:国知局

专利名称::切削工具的制作方法
技术领域
:本发明涉及一种精密加工用切削工具,尤其涉及一种用于对铝合金、铜合金、无电解镀镍、树脂或玻璃、碳、MMC等硬脆材料或难切削材料等进行精密加工的精密加工用切削工具。
背景技术
:目前在各种材料的精密加工用切削工具中,使用天然单晶金刚石(diamond)、或者合成单晶金刚石。但是,在将单晶金刚石用作切削工具的情况下,存在着在刀尖上产生碎屑(chipping),或使用中在刀尖部产生偏磨损,从而不能进行精密加工的问题。金刚石单晶的结晶格子面的间隔因方位而不同,此外,因各格子面的不同而面内的原子密度不同。因此,具有裂开性,对硬度、耐磨损性具有显著的方向依存性,产生如上述那样的缺陷。现在,工具用出售的多晶金刚石,作为烧结助剂或者粘结剂全都使用Co、Ni、Fe等铁族金属或SiC等陶瓷。通过将金刚石粉末与烧结助剂、粘结剂一起在热力学稳定的高压高温条件下(通常,压力56GPa,温度13001500°C)烧结从而得到金刚石。但是,由于含有10体积%前后的烧结助剂或者粘结剂,所以不能得到高精度的刀尖、作用面,从而无法适用于精密加工工具。还公知有天然产生的多晶金刚石(黑金刚石(carbonado)、半刚石(ballas)),虽然一部分可作为钻头使用,但由于缺陷多,并且材质的差异也大,所以不用于这些用途。另一方面,使石墨(Graphite)或玻璃碳(glassycarbon)、无定形碳(amorphouscarbon)等非金刚石碳在超高压高温下,在没有催化剂或溶剂的情况下直接变换为金刚石,同时烧结而可以得到无结合材料的金刚石单相的多晶体。作为这样的多晶体,例如,在J.Chem.Phys.,38(1963)631-643[F.P.Bundy](非专利文献1)或Japan丄Appl.Phys.,U(1972)578-590[M.Wakatsuki,K.IcWnose,T.Aoki](非专利文献2)、Nature259(1976)38[S.Naka,K.Horii,Y.Takeda,T.Hanawa](非专利文献3)中,公开了将石墨作为起始物料(startingmaterial)并通过14一18GPa、3000K以上的超高压高温下的直接变换而可以得到多晶金刚石。此外,在日本特开2002—66302号公报(专利文献l)中,记载着将碳纳米管(carbonnano-tube)加热到10GPa以上、1600。C以上,从而合成微细的金刚石的方法。进而,在NewDiamondandFrontierCarbonTechnology,14(2004)313[T.Irifime,H.Sumiya](非专利文献4)、SEI技术杂志165(2004)68[角谷、入船](非专利文献5)中,公开了将高纯度石墨作为起始物料,在12GPa以上、220(TC以上的超高压高温下,通过基于间接加热的直接变换烧结从而得到细致且高纯度的多晶金刚石的方法。专利文献l:日本特开2002—66302号公报非专利文献hJ.Chem.Phys.,38(1963)631-643[F.P.Bundy]非专利文献2:Japan.J.Appl.Phys.,ll(1972)578-590[M.Wakatsuki,K.Ichinose,T.Aoki]非专禾!J文献3:Nature259(1976)38[S.Naka,K.Horii,Y.Takeda,T,Hanawa]非专利文献4:NewDiamondandFrontierCarbonTechnology,14(2004)313[T.Irifime,H.Sumiya]非专利文献5:SEI技术杂志165(2004)68[角谷、入舱]但是,由于非专利文献1或非专利文献2、非专利文献3中所述的多晶金刚石,都利用通过对石墨等具有导电性的非金刚石碳直接流通电流来加热的直接通电加热法,所以无法避免未变换石墨残留。此外,金刚石粒子径不均匀,并且部分烧结容易变得不充分。因此,由于硬度、强度等机械特性不够,并且只得到碎片状的多晶体,所以无法得到可作为切削工具而使用的物质。此外,专利文献l公开的方法,由于通过金刚石砧(diamondanvil)对碳纳米管加压,并且用二氧化碳激光器聚光加热,所以无法制造能适用4于切削工具的尺寸的均质的多晶金刚石。进而,由非专利文献4或非专利文献5公开的方法得到的金刚石虽然有时具有非常高的硬度,但其再现性不够,并且机械特性不稳定,因此,当作为切削工具使用时,因试料的原因存在性能有差异的问题。
发明内容本发明为了解决以上现有技术的问题点而提出,其目的在于提供一种切削工具,使通过直接变换烧结得到的多晶金刚石的特性最适合用于切削工具中,不存在现有的单晶金刚石的偏磨损或分裂碎片的问题,并且具有与现有出售的含有粘结材的多晶金刚石相比更高的强度、耐热性更优良的性能。本发明人调査了上述问题点的原因,详细调查了通过直接变换得到的多晶金刚石的微细构造与机械特性、耐磨损特性之间的关系,达县存在具有层状构造和微细的均质构造混合的复合组织的情况,知道了它们以适当的比例分布的结构具有高硬度且耐磨损性优良。此外,在现有的方法中,层状构造和微细的均质构造的比率,因起始物料的石墨的状态或升温时间、压力条件的微妙差别而有差异,知道了这是机械特性、耐磨特性的不稳定的原因。因此,本发明人为了解决上述那样的问题,在超高压高温下使非金刚石碳直接变换为金刚石的方法中,在比较粗的板状石墨或者比较粗的金刚石中添加非石墨型碳物质或者低结晶性或者微粒的石墨,将添加后的物质作为起始物料,从而可以得到在微粒的金刚石的基体(matrix)中分散有层状的或者比较粗的金刚石结晶的组织的多晶金刚石,通过基于该层状或者粗粒金刚石的对塑性变形、微细裂缝(cmck)的进展阻止效果,发现可以极其稳定地得到非常硬且强韧的多晶金刚石。此外,即使用石墨也可以通过升温时间、压力条件进行微细构造的控制,从而也发现了如上述那样的适当的组织。并且,由于使用该素材在工具或部件上形成适当的形状,所以判明根据起始物料或合成条件可以得到耐磨损性高、偏磨损或分裂碎片也少的切削工具,通过起始物料的最适化将多晶金刚石的微细构造最适化,从而发现可以得到具有现有材质的2倍以上的耐久性的非常优异的切削工具,从而实现本发明。艮口,本发明的特征在于,使用一种多晶金刚石,将非金刚石型碳物质作为起始物料,并以在超高压高温下不添加烧结助剂或催化剂而直接变换烧结为金刚石的、实质上仅由金刚石形成,并且多晶金刚石具有金刚石最大粒径为100nm以下且平均粒径为50nm以下的微粒的金刚石和最小粒径为50nm以上且最大粒径10000nm以下的板状或者粒状的粗粒金刚石的混合组织,制成将所述多晶金刚石作为切削刃的切削工具。并且,其特征在于在这些工具上形成适当的形状。并且,以微粒的金刚石的最大粒径为50nm以下,平均粒径为30nm以下为优选,以粗粒的金刚石的最小粒径为50nm以上,最大粒径为1000nm以下为优选。在将该多晶金刚石作为切削工具使用的情况下,以在形成切削工具的切削刃的前倾面和后隙面的边界部上形成有圆角为优选,该圆角的大小以R1002000nm为优选。此外,切削刃当形成为成形(forming)形状的切削刃时有效。例如,在具有圆弧、椭圆、抛物线等任意形状的成形形状的切削刃的情况下,由于与加工材料在各个方向上产生摩擦,所以在单晶金刚石的情况下,由于因该方向磨损量有很大不同,所以很难均匀磨损,从而寿命变短。在本发明的将多晶金刚石作为切削刃使用的切削工具的情况下,由于可以精密切削加工,所以可以进行由现有的多晶金刚石无法加工的精密加工,并且与使用现有的多晶金刚石或单晶金刚石的切削工具相比,可以将寿命大幅度延长。发明效果本发明的切削工具,由于使用通过直接变换得到的金刚石单相的、非常高的硬度且耐磨损性高的多晶金刚石,所以具有现有的切削工具的2倍以上的寿命。具体实施例方式在粒径50nm以上的板状石墨或者金刚石中添加适当量的非石墨型碳物质,将其作为起始物料,当在对金刚石来说热力学稳定的压力条件下直接使其变换烧结为金刚石时,可以得到在平均粒径例如10—20nm的非常微细的金刚石的基体中分散有例如100—200nm的较粗的金刚石的组织的多晶金刚石。由于塑性变形或裂缝的进展被较粗的金刚石部分阻止,所以显示出非常强韧且高的硬度特性,因试料引起的特性差异也大幅度变小。在此,在粒径50nm以上的板状石墨或者金刚石中添加的非石墨型碳物质的添加量优选10体积%以上、95体积%以下。由于当比10体积%少时,层状或者粗粒的金刚石彼此接触,而在其界面产生应力集中,容易产生破裂或裂痕,所以不优选。此外,当超过95体积%时,基于层状或者粗粒的金刚石的对塑性变形或微细裂缝的进展阻止效果就变得不够。此外,作为上述非石墨型碳物质,有玻璃碳、无定形碳、富勒烯(flillerene)、碳纳米管等。此外,也可以使用由行星球磨机(ballmill)等机械粉碎石墨后的粒径50nrn以下的微细的碳。将以上的混合物填充到Mo等的金属容器(capsule)中。在使用被粉碎了的微细碳的情况下,需要在高纯度的惰性气体中进行填充作业。接着,使用多砧(multi-anvil)型超高压装置或带型超高压装置等可进行各向同性加压或静水压加压的超高压高温产生装置,在1500'C以上的温度下,并且以对金刚石来说热力学稳定的压力,保持规定时间。非石墨型碳直接变换为金刚石,同时被烧结。在使用粒径50nm的板状石墨的情况下,为了使其完全变换为金刚石,需要在200(TC以上的高温下进行处理。这样,能够稳定得到在微粒的金刚石的基体中分散有层状或者比较粗的金刚石结晶的组织的多晶金刚石。此外,将石墨作为起始物料,在上述的高压高温处理时,即使加热速度为100100(TC/分,也可以得到相同组织的多晶金刚石。通过用该层状或者粗粒金刚石对塑性变形、微细裂缝的进展阻止效果,多晶体的硬度非常高,在120GPa以上,因此耐磨性非常优良,特性的差异也少。使用该多晶金刚石,在与切削工具的工具主体接合后,通过激光等形成粗略的形状,抛光多晶金刚石的面。抛光后的面的面粗糙度以Ra计算为0.1um以下。当形成这样的面粗糙度时,在切削工具的情况下,可以抑制被切削材的附着等,能够得到可继续稳定的切削,寿命稳定的效果。此外,在形成切削刃的前倾面和后隙面的边界部上形成圆角,该圆角的大小以R1002000nm为优选。这样通过在本发明的多晶金刚石的切削刃上设置圆角,消除在初期的切削刃上线状排列的金刚石粒子的结晶方位的差别引起的不稳定磨损区域,通过利用稳定磨损区域来使用,由于切削刃的凹凸变得更小,所以可以得到加工面粗糙度提高的效果。该切削工具,适合于铝合金、铜合金、无电解镀镍、树脂或玻璃、碳、MMC(金属基复合材料)等硬脆材料、难削材料的精密切削加工。实施例在粒径0.0510lim、纯度99.95%以上的结晶性好的石墨粉末或者粒径0.053um的合成石墨粉末中,添加将石墨进行了超微细粉碎后的粉末或玻璃碳粉末、C60粉末、碳纳米管粉末等各种非石墨型碳材料,将其填充到Mo容器中并密封,使用超高压产生装置,在各种压力、温度条件下将其处理30分钟。通过X射线衍射来鉴别得到的试料的生成相,通过TEM观察研究构成粒子的粒径。此外,将得到的试料的表面镜面抛光,用显微努普(microKnoop)硬度计测量在其抛光面的硬度。实验的结果如表l所示。表18<table>tableseeoriginaldocumentpage9</column></row><table>从该结果来看,在平均粒径50nm以上的石墨或者金刚石中,添加IO体积%以上、95体积%以下的微粒粉碎石墨或者非石墨型碳物质,将添加后的物质作为起始物料,当在超高压高温下直接变换烧结时,能够稳定地得到在平均粒径50nm以下的微粒的金刚石的基体中分散有粒径50nm以上的层状金刚石或者比较粗的金刚石结晶的组织的多晶金刚石。得到的多晶体的硬度远远高于现有的Co粘合剂(binder)的烧结体(6080GPa),此外,判明了在将石墨作为起始物料的多晶体中所看到的硬度特性的差异也不存在。由该结果来看,认为当将实施例110的多晶金刚石用于切削工具或耐磨部件时,寿命大幅度提高。因此,使用由实施例1得到的多晶金刚石来制作切削工具(本工具AE、F、G),进行切削试验。为了比较,也制作了使用现有的单晶金刚石的切削工具(比较工具A),以及使用现有的含有Co粘合剂的烧结金刚石的工具(比较工具B)。工具形状、被切削材料、切削条件如下所述。(试验例1)(1)工具(共同规格)拐角半径0.8mm后角7°前角0°(工具其他规格)本工具A:切削刃的圆角R100nm本工具B:切削刃的圆角R1000nm本工具C:切削刃的圆角R2000nm本工具D:切削刃的圆角R50nm本工具E:切削刃的圆角R3000nm(2)被切削材料铝合金AC4B0>150Xl卯mm(3)加工方式圆筒外周车削湿式切削(水溶性乳剂2%)(4)切削条件主轴转速1,700rpm(转速固定)进给速度0.1mm/rev加工余量①0.2mm/径切削距离30km在上述的条件下进行切削试验的结果是1)作为用本工具AE和比较工具A切削30km后的工具寿命的比较确认了后隙面的磨损量,发现本工具A、D的后隙面磨损为6um,本工具B为6.5um,本工具C为7^m,相对于此,比较工具A(单晶金刚石切削工具)有725%的大磨损,为7.5nm,从而本工具AD的寿命好。本工具E的后隙面磨损为8um,与比较工具A相比磨损更大。2)此外,比较本工具AC和比较工具A的表面粗糙度,都是1.5um,刀痕(toolmark)都是相同的剖面形状,本工具AC可以得到与单晶金刚石切削工具即比较工具A相同的加工面粗糙度。3)另一方面,本工具D在切削刃上产生200500nm程度的微小缺损,在加工面上在刀痕中转印出该缺损引起的切削刃的凹凸,与本工具A及比较工具A相比,加工面质量恶化。4)进而,本工具E在刀痕中观察到稍微的颤痕。(试验例2)此外,在下述的条件下也实施切削试验。(1)工具(共同规格)拐角半径0.8mm后角7°前角0°(工具其他规格)本工具F:切削刃的圆角R500nm比较工具B:切削刃的圆角R500nm(2)被切削材料铝合金AC4B0150mmX190mm4沟断续(3)加工方式圆筒外周车削湿式切削(水溶性乳剂2%)(4)切削条件主轴转速1,700rpm(转速固定)进给速度0.04mm/rev加工余量OO.lmm/径切削距离10km在上述的条件下进行切削试验的结果是1)作为由本工具F和比较工具B切削10km后的工具寿命的比较,确认了后隙面的磨损量,发现本工具F的后隙面磨损为l.Oum,相对于此,比较工具B(烧结金刚石切削工具)为3.5nm,是3.5倍大的磨损,本工具F的寿命好。2)此外,进行本工具F和比较工具B的切削阻力(背向力)的比较,本工具F为0.8N,相对于此,比较工具B为1.6N,是其2倍,从而确认了本工具与现有的烧结金刚石切削工具相比锐度好。(试验例3)使用由实施例1得到的多晶金刚石,进行下述规格的凹圆角切削刃形状的成形切削工具即本工具G的制作。为了比较,制作使用了单晶金刚石的比较工具B。工具的制作工序如以下这样进行。首先,将粗成形的金刚石焊接到基底金属上,然后,在将后隙面加工为凸圆角形状的铜圆盘的外周上涂敷金刚石微粒子,然后按压,在金刚石的后隙面上通过配研抛光来转印凹圆角的形状。此时,本工具G被整面均匀地抛光,但比较工具B在从圆角中心向两侧大概圆弧5。10°的位置处,产生结晶的各向异性引起的抛光面粗的不均一的部位。(1)工具规格后角7°前角0°切削刃形状凹圆角圆角的半径2mm,圆弧区域30。心高10mm,全长100mm,宽度10mm根据该结果,本发明的工具,由于不存在现有的单晶金刚石切削工具那样的结晶的各向异性,所以均匀加工变得容易,在制作的情况下通过X线设定结晶方位,不需要用于确定方向的高精度定位焊接,从而大幅度削减了工具制作工序、时间。(试验例4)使用由试验例3得到的本工具G,为了比较而制作使用了单晶金刚石的比较工具A,使用它们进行碳的加工。(1)工具(工具规格)拐角半径0.8mm后角7°前角0°切削刃的圆角500nm(2)被切削材料碳0)50mmX30mm12沟断续(3)加工方式圆筒外周车削干式切削(4)切削条件主轴转速2,000rpm(转速固定)进给速度0.1mm/rev加工余量①0.2mm/径加工个数20个在上述的条件下进行切削试验的结果是比较工具A的单晶金刚石切削工具产生了认为是结晶裂开的20um大的碎片,但本工具G仅产生1Um程度的碎片,并且可以得到规定的3.2S以下的表面粗糙度。由以上的试验结果可知与使用现有的材料的工具相比,本发明的切削工具在耐磨性、耐缺损性、锐度(切削阻力)或切削后的被切削材料的表面粗糙度方面优异,并且知道工具的制作也容易。权利要求1.一种切削工具,其将多晶金刚石作为切削刃,所述多晶金刚石是以非金刚石型碳物质作为起始物料,并是在超高压高温下不添加烧结助剂或催化剂而直接变换烧结为金刚石的、实质上仅由金刚石形成的多晶金刚石,所述多晶金刚石具有最大粒径为100nm以下且平均粒径为50nm以下的微粒的金刚石和最小粒径为50nm以上且最大粒径为10000nm以下的板状或者粒状的粗粒金刚石的混合组织。2.如权利要求1所述的切削工具,其中,所述微粒的金刚石的最大粒径为50nm以下,平均粒径为30nm以下。3.如权利要求1所述的切削工具,其中,所述粗粒的金刚石的最小粒径为50nm以上,最大粒径为1000nm以下。4.如权利要求l所述的切削工具,其中,在形成所述切削刃的前倾面和后隙面的边界部上形成有圆角。5.如权利要求4所述的切削工具,其中,所述圆角的大小为R1002000nm。6.如权利要求1所述的切削工具,其中,所述切削刃为成形形状的切削刃。全文摘要本发明的目的在于提供一种强度或耐磨损性优异的切削工具。切削工具的切削刃部分使用将含有非金刚石型碳物质的原料组成物,在超高压高温下不添加烧结助剂或催化剂而直接变换烧结为金刚石的、实质上仅由金刚石形成的多晶体,使用高硬度金刚石多晶体,其具有多晶体最大粒径为100nm以下,并且平均粒径为50nm以下的微粒金刚石结晶以及最小粒径为50nm以上,并且最大粒径为10000nm以下的板状或者粒状的粗粒金刚石结晶的混合组织。文档编号C04B35/52GK101583450SQ20088000226公开日2009年11月18日申请日期2008年1月18日优先权日2007年1月19日发明者吉永实树,小畠一志,角谷均申请人:住友电气工业株式会社;联合材料公司;住友电工硬质合金株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1