一种像素驱动电路及其驱动方法、显示装置与流程

文档序号:12475517阅读:194来源:国知局
一种像素驱动电路及其驱动方法、显示装置与流程

本发明涉及显示技术领域,尤其涉及一种像素驱动电路及其驱动方法、显示装置。



背景技术:

近年来,AMOLED(Active Matrix/Organic Light Emitting Diode,有源矩阵/有机发光二极管)显示器由于其反应速度快、对比度高等优点,得到了广泛的应用。相应的,各种用于驱动AMOLED显示器像素显示的像素驱动电路也相继被开发出来。

在传统的像素驱动电路中,一般包括驱动晶体管、存储电容和发光元件,存储电容为驱动晶体管的栅极提供稳压信号,进而控制发光元件处于稳定的发光状态。现有技术中,通常采用直流信号作为稳压信号,因而像素驱动电路中就必须存在额外的用于提供直流信号的信号线。但这样一来,就会使得像素驱动电路中的信号线更加复杂,由于像素驱动电路中本身就存在较多数量的晶体管,信号线越复杂,像素驱动电路占用的版图空间也就越大,显示器中对应的像素的个数就越少,这就不利于AMOLED显示器向高分辨率发展。

另一方面,由于传统像素驱动电路占用的版图空间较大,导致版图空间不足,因此,在实际生产中,像素驱动电路通常采用镜像设计,即两个子像素在接收其他相同类型的信号时,共用一根公共信号线。但是这种结构对工艺精度比较敏感,很容易使生产出的显示器亮度不均匀,出现竖条Mura不良的问题。



技术实现要素:

本发明提供了一种像素驱动电路及其驱动方法、显示装置,可提高显示装置的分辨率,并避免显示装置出现竖条Mura不良的问题。

为达到上述目的,本发明采用如下技术方案:

本发明的第一方面提供了一种像素驱动电路,包括驱动晶体管、存储电容和发光元件,还包括第一控制模块和第二控制模块;

所述第一控制模块的第一控制端与第一脉冲信号端子相连,所述第一控制模块的第二控制端与第二脉冲信号端子相连,所述第一控制模块的第一输入端与供电信号端子以及所述驱动晶体管的源极相连,所述第一控制模块的第二输入端与初始信号端子相连,所述第一模块的第三输入端与数据线相连,所述第一模块的第四输入端与所述驱动晶体管的漏极相连,所述第一控制模块的第一输出端与所述存储电容的第一极板相连,所述第一控制模块的第二输出端与所述存储电容的第二极板以及所述驱动晶体管的栅极相连;

所述第一控制模块用于:在所述第一脉冲信号端子输入的第一脉冲信号的驱动下,控制所述驱动晶体管导通;在所述第二脉冲信号端子输入的第二脉冲信号的驱动下,对所述数据线输入的数据信号以及所述驱动晶体管的阈值电压信号进行采样;

所述第二控制模块的控制端与第三脉冲信号端子相连,所述第二控制模块的第一输入端与所述第一脉冲信号端子或所述第二脉冲信号端子相连,所述第二控制模块的第二输入端与所述驱动晶体管的漏极相连,所述第二控制模块的第一输出端与所述存储电容的第一极板相连,所述第二控制模块的第二输出端与所述发光元件相连;

所述第二控制模块用于:在所述第三脉冲信号端子输入的第三脉冲信号的驱动下,控制所述第一脉冲信号或所述第二脉冲信号传输至所述存储电容的第一极板,稳定所述第一极板的电压,并控制所述发光元件发光。

在本发明所提供的像素驱动电路中,第一脉冲信号端子所输入的第一脉冲信号和第二脉冲信号端子所输入的第二脉冲信号,既可作为第一控制模块的驱动信号,用来控制第一控制模块工作,也可作为第二控制模块的输入信号,用来稳定存储电容的第一极板处的电压。与现有技术中采用直流信号作为稳压信号,来稳定存储电容的第一极板处的电压相比,采用本发明中的像素驱动电路,可直接利用第一控制模块的驱动信号作为稳压信号,无需再额外的接入一根提供直流信号的信号线,这样一来,可节省像素驱动电路所占用的版图面积,从而增多版图空间中的像素的个数,进而提高了显示装置的分辨率。另一方面,由于无需再接入一根提供直流信号的信号线,这样,两个子像素在接收其他相同类型的信号时,可各自对应一根信号线,不需再为了节省版图空间而共用一根公共信号线,即像素驱动电路也就无需再采用镜像设计,从而避免了镜像设计所导致的竖条Mura不良的问题。

本发明的第二方面提供了一种像素驱动电路的驱动方法,所述像素驱动电路的驱动方法应用于如本发明的第一方面所述的像素驱动电路中,所述像素驱动电路的驱动方法包括初始时段、采样时段和发光时段;

所述初始时段,所述第一控制模块在所述第一脉冲信号端子输入的第一脉冲信号的驱动下,控制所述供电信号端子输入的供电信号传输至所述存储电容的第一极板,控制所述初始信号端子输入的初始信号传输至所述存储电容的第二极板,驱动所述驱动晶体管导通;

所述采样时段,所述第一控制模块在所述第二脉冲信号端子输入的第二脉冲信号的驱动下,控制所述数据线输入的数据信号传输至所述存储电容的第一极板,控制所述驱动晶体管的阈值电压信号传输至所述存储电容的第二极板,对所述数据信号以及所述阈值电压信号进行采样;

所述发光时段,所述第二控制模块在所述第三脉冲信号端子输入的第三脉冲信号的驱动下,控制所述第一脉冲信号或所述第二脉冲信号传输至所述存储电容的第一极板,稳定所述第一极板的电压,并控制所述发光元件发光。

本发明所提供的像素驱动电路的驱动方法的有益效果与本发明的第一方面所提供的像素驱动电路的有益效果相同,此处不再赘述。

本发明的第三方面提供了一种显示装置,所述显示装置包括如本发明的第一方面所述的像素驱动电路。

本发明所提供的显示装置的有益效果与本发明的第一方面所提供的像素驱动电路的有益效果相同,此处不再赘述。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1为本发明实施例一所提供的像素驱动电路的结构示意图一;

图2为本发明实施例一所提供的像素驱动电路的结构示意图二;

图3为本发明实施例一所提供的像素驱动电路的结构示意图三;

图4为本发明实施例二所提供的像素驱动电路的驱动方法中初始时段的信号示意图;

图5为本发明实施例二所提供的像素驱动电路的驱动方法中采样时段的信号示意图;

图6为本发明实施例二所提供的像素驱动电路的驱动方法中发光时段的信号示意图;

图7为本发明实施例一所提供的像素驱动电路与现有的像素驱动电路的仿真对比图。

附图标记说明:

1-发光元件; 2-第一控制模块;

3-第二控制模块; 21-初始化单元;

22-采样单元; 31-稳压单元;

32-导通单元; 4-第一脉冲信号端子;

5-第二脉冲信号端子; 6-供电信号端子;

7-初始信号端子; 8-数据线;

9-第三脉冲信号端子; 10-负极信号端子;

T1~T6-第一晶体管~第六晶体管; VSS-负极信号;

DTFT-驱动晶体管; C-存储电容;

RST-第一脉冲信号; GAT-第二脉冲信号;

VDD-供电信号; VINT-初始信号;

DATA-数据信号; EM-第三脉冲信号;

OLED-有机发光二极管。

具体实施方式

为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。

实施例一

如图1所示,本实施例提供了一种像素驱动电路,该像素驱动电路包括驱动晶体管DTFT、存储电容C和发光元件1,此外,该像素驱动电路还包括第一控制模块2和第二控制模块3。

其中,第一控制模块2的第一控制端与第一脉冲信号端子4相连,第一控制模块2的第二控制端与第二脉冲信号端子5相连;第一控制模块2的第一输入端与供电信号端子6以及驱动晶体管DTFT的源极相连,第一控制模块2的第二输入端与初始信号端子7相连,第一模块的第三输入端与数据线8相连,第一模块的第四输入端与驱动晶体管DTFT的漏极相连;第一控制模块2的第一输出端与存储电容C的第一极板相连,第一控制模块2的第二输出端与存储电容C的第二极板以及驱动晶体管DTFT的栅极相连。

在第一脉冲信号端子4输入的第一脉冲信号RST的驱动下,第一控制模块2工作,控制供电信号端子6输入的供电信号VDD传输至存储电容C的第一极板,同时控制初始信号端子7输入的初始信号VINT传输至存储电容C的第二极板,从而为驱动晶体管DTFT的栅极提供了电压,控制驱动晶体管DTFT导通。像素驱动电路在该时段处于初始时段。

在第二脉冲信号端子5输入的第二脉冲信号GAT的驱动下,第一控制模块2工作,控制数据线8提供的数据信号DATA传输至存储电容C的第一极板,控制驱动晶体管DTFT的阈值电压信号传输至存储电容C的第二极板,实现对数据信号DATA和阈值电压信号的采样。像素驱动电路在该时段处于采样时段。

像素驱动电路中的第二控制模块3的控制端与第三脉冲信号端子9相连,第二控制模块3的第一输入端与第一脉冲信号端子4或第二脉冲信号端子5相连,第二控制模块3的第二输入端与驱动晶体管DTFT的漏极相连,第二控制模块3的第一输出端与存储电容C的第一极板相连,第二控制模块3的第二输出端与发光元件1相连。

需要说明的是,图1中仅表示出了第二控制模块3的第一输入端与第一脉冲信号端子4相连,可以理解的是,第二控制模块3的第一输入端还可以与第二脉冲信号端子5相连。

在第三脉冲信号端子9输入的第三脉冲信号EM的驱动下,第二控制模块3工作,控制第一脉冲信号RST或第二脉冲信号GAT传输至存储电容C的第一极板,稳定第一极板的电压,同时控制供电信号VDD经驱动晶体管DTFT传输至发光元件1,控制发光元件1发光。像素驱动电路在该时段处于发光时段。

在本实施例所提供的像素驱动电路中,第一脉冲信号端子4所输入的第一脉冲信号RST和第二脉冲信号端子5所输入的第二脉冲信号GAT,既可作为第一控制模块2的驱动信号,用来控制第一控制模块2工作,也可作为第二控制模块3的输入信号,用来稳定存储电容C的第一极板处的电压。与现有技术中采用直流信号作为稳压信号,来稳定存储电容C的第一极板处的电压相比,采用本发明中的像素驱动电路,可直接利用第一控制模块2的驱动信号作为稳压信号,无需再额外的接入一根提供直流信号的信号线,这样一来,可节省像素驱动电路所占用的版图面积,从而在一定的版图空间中增多像素的个数,进而提高了显示装置的分辨率。

另一方面,由于本实施例所提供的像素驱动电路中无需再接入一根提供直流信号的信号线,这样,两个子像素在接收其他相同类型的信号时,可各自对应一根信号线,不需再为节省版图空间而共用一根公共信号线,即像素驱动电路也就无需再采用镜像设计,从而避免了镜像设计所导致的竖条Mura不良的问题。

此外,由于信号线会占用发光元件1的面积,因此,当像素驱动电路中存在过多的信号线时,会限制发光元件1的开口率,进而降低发光元件1的显示亮度或者缩短发光元件1的使用寿命。采用本实施例所提供的像素驱动电路,减少了一根信号线,因此可提高发光元件1的开口率,若减少的信号线为阳极信号线,则能够更大程度的降低信号线占用的面积,进而更大程度的提高显示亮度或者延长发光元件1的使用寿命。

结合图1与图2,第一控制模块2具体可包括初始化单元21和采样单元22。

其中,初始化单元21的控制端与第一脉冲信号端子4相连,初始化单元21的第一输入端与供电信号端子6以及驱动晶体管DTFT的源极相连,初始化单元21的第二输入端与初始信号端子7相连,初始化单元21的第一输出端与存储电容C的第一极板相连,初始化单元21的第二输出端与存储电容C的第二极板以及驱动晶体管DTFT的栅极相连。

初始时段,第一脉冲信号RST驱动初始化单元21工作,供电信号VDD传输至存储电容C的第一极板,同时,初始信号VINT传输至存储电容C的第二极板,从而为驱动晶体管DTFT的栅极提供电压,控制驱动晶体管DTFT导通。

采样单元22的控制端与第二脉冲信号端子5相连,采样单元22的第一输入端与数据线8相连,采样单元22的第二输入端与驱动晶体管DTFT的漏极相连,采样单元22的第一输出端与存储电容C的第一极板相连,采样单元22的第二输出端与存储电容C的第二极板以及驱动晶体管DTFT的栅极相连。

采样时段,第二脉冲信号GAT驱动采样单元22工作,数据信号DATA传输至存储电容C的第一极板,同时,驱动晶体管DTFT的阈值电压信号传输至存储电容C的第二极板,实现对数据信号DATA和阈值电压信号的采样。

请再次结合图1和图2,第二控制模块3具体可包括稳压单元31和导通单元32。

其中,稳压单元31的控制端与第三脉冲信号端子9相连,稳压单元31的输入端与第一脉冲信号端子4或第二脉冲信号端子5相连,稳压单元31的输出端与存储电容C的第一极板相连。导通单元32的控制端与第三脉冲信号端子9相连,导通单元32的输入端与驱动晶体管DTFT的漏极相连,导通单元32的输出端与发光元件1相连。

需要说明的是,图2中仅表示出了稳压单元31的输入端与第一脉冲信号端子4相连,可以理解的是,稳压单元31的输入端还可与第二脉冲信号端子5相连。

发光时段,第三脉冲信号EM驱动稳压单元31工作,第一脉冲信号RST或第二脉冲信号GAT传输至存储电容C的第一极板,稳定第一极板处的电压。同时,第三脉冲信号EM驱动导通单元32工作,供电信号VDD经驱动晶体管DTFT和导通单元32传输至发光元件1,控制发光元件1发光。

需要说明的是,稳压单元31和导通单元32的控制端均与第三脉冲信号端子9相连,因此,稳压单元31和导通单元32同时受到第三脉冲信号EM的控制,即稳压单元31和导通单元32在同一时刻处于相同的工作状态。当导通单元32工作,控制发光元件1发光时,稳压单元31也处于工作状态,利用第一脉冲信号RST或第二脉冲信号GAT稳定存储电容C的第一极板的电压,进而保证发光元件1处于稳定的发光状态。

下面结合具体的电路结构,对本实施例所提供的像素驱动电路以及工作原理进行介绍,其中,以稳压单元31的输入端与第一脉冲信号端子4相连为例进行说明。

结合图2和图3,初始化单元21可包括第一晶体管T1和第二晶体管T2。其中,第一晶体管T1的栅极与第一脉冲信号端子4相连,第一晶体管T1的源极与供电信号端子6以及驱动晶体管DTFT的源极相连,第一晶体管T1的漏极与存储电容C的第一极板相连。第二晶体管T2的栅极与第一脉冲信号端子4相连,第二晶体管T2的漏极与初始信号端子7相连,第二晶体管T2的源极与存储电容C的第二极板以及驱动晶体管DTFT的栅极相连。

初始时段,第一脉冲信号RST处于低电平状态,驱动第一晶体管T1导通,供电信号VDD经第一晶体管T1传输至存储电容C的第一极板,同时,第一脉冲信号RST还驱动第二晶体管T2导通,初始信号VINT经第二晶体管T2传输至存储电容C的第二极板,为驱动晶体管DTFT的栅极提供电压,由于初始信号VINT通常为-2V~-3V,因而可控制驱动晶体管DTFT导通。此时,第二脉冲信号GAT和第三脉冲信号EM处于高电平状态,第三晶体管T3~第六晶体管T6均关断。

请再次结合图2和图3,采样单元22可包括第三晶体管T3和第四晶体管T4。第三晶体管T3的栅极与第二脉冲信号端子5相连,第三晶体管T3的源极与数据线8相连,第三晶体管T3的漏极与存储电容C的第一极板相连。第四晶体管T4的栅极与第二脉冲信号端子5相连,第四晶体管T4的源极与驱动晶体管DTFT的漏极相连,第四晶体管T4的漏极与存储电容C的第二极板以及驱动晶体管DTFT的栅极相连。

采样时段,第二脉冲信号GAT处于低电平状态,驱动第三晶体管T3导通,数据信号DATA经第三晶体管T3传输至存储电容C的第一极板,实现对数据信号DATA的采样。同时,第二脉冲信号GAT还驱动第四晶体管T4导通,供电信号VDD和驱动晶体管DTFT的阈值电压信号经第四晶体管T4传输至存储电容C的第二极板,实现对驱动晶体管DTFT的阈值电压信号的采样。此时,第一脉冲信号RST和第三脉冲信号EM处于高电平状态,第一晶体管T1、第二晶体管T2、第五晶体管T5和第六晶体管T6均关断。

请再次结合图2和图3,稳压单元可31包括第五晶体管T5,第五晶体管T5的栅极与第三脉冲信号端子9相连,第五晶体管T5的源极与第一脉冲信号端子4相连,第五晶体管T5的漏极与存储电容C的第一极板相连。导通单元32可包括第六晶体管T6,第六晶体管T6的栅极与第三脉冲信号端子9相连,第六晶体管T6的源极与驱动晶体管DTFT的漏极相连,第六晶体管T6的漏极与有机发光二极管OLED的正极相连。

发光时段,第三脉冲信号EM处于低电平状态,驱动第五晶体管T5导通,第一脉冲信号RST经第五晶体管T5传输至存储电容C的第一极板,用以稳定第一极板的电压。同时,第三脉冲信号EM还驱动第六晶体管T6导通,从而使得供电信号端子6与有机发光二极管OLED之间的通路导通,供电信号VDD经驱动晶体管DTFT以及第六晶体管T6传输至有机发光二极管OLED的正极,控制有机发光二极管OLED发光。此时,第一脉冲信号RST和第二脉冲信号GAT处于高电平状态,第一晶体管T1~第四晶体管T4均关断。

综上,在发光时段,第一脉冲信号RST和第二脉冲信号GAT处于高电平状态,控制第一晶体管T1~第四晶体管T4关断,只有第三脉冲信号EM处于低电平状态,控制第五晶体管T5和第六晶体管T6导通,由于第五晶体管T5的源极与第一脉冲信号端子4相连,因此,高电平的第一脉冲信号RST可传输至存储电容C的第一极板,作为稳压信号来稳定第一极板的电压。

可见,在本实施例提供的像素驱动电路中,第一脉冲信号RST在不同时段所起的作用不同,在初始时段和采样时段,第一脉冲信号RST作为晶体管的导通信号,在发光时段,第一脉冲信号RST作为存储电容C的第一极板处的稳压信号。可见,采用本实施例提供的像素驱动电路,可省略现有技术中用来提供直流信号的信号线,且最终仍能达到稳定存储电容C的第一极板处的电压,以及驱动发光元件1发光的效果。

可以理解的是,当第五晶体管T5的源极与第二脉冲信号端子5相连时,在初始时段和采样时段,第二脉冲信号GAT无法传输至存储电容C的第一极板处,而在发光时段,为保证第一晶体管T1~第四晶体管T4关断,第二脉冲信号GAT处于高电平,由于第五晶体管导通,因而高电平的第二脉冲信号GAT能够传输至存储电容C的第一极板处,稳定第一极板的电压。可见,第五晶体管T5的源极无论与第一脉冲信号端子4相连,还是与第二脉冲信号端子5相连,都能够到达稳定存储电容C的第一极板处的电压的效果。

需要说明的是,如上所述的像素驱动电路中的晶体管的沟道类型均相同。优选的,以图3所示的电路结构为例,驱动晶体管DTFT、第一晶体管T1~第六晶体管T6均为P型晶体管,且第一脉冲信号RST、第二脉冲信号GAT和第三脉冲信号EM处于低电平状态时,驱动各自对应的晶体管导通。

可选的,以图3所示的电路结构为例,像素驱动电路中的发光元件1具体可为有机发光二极管OLED,有机发光二极管OLED的正极与第六晶体管T6的漏极相连,有机发光二极管OLED的负极与负极信号端子10相连,负极信号端子10提供的负极信号VSS通常为-2V~-3V。

实施例二

本实施例提供了一种像素驱动电路的驱动方法,该像素驱动电路的驱动方法应用于如实施例一所述的像素驱动电路中。

请再次参见图1,像素驱动电路包括驱动晶体管DTFT、存储电容C、发光元件1、第一控制模块2和第二控制模块3,像素驱动电路的驱动方法具体包括初始时段、采样时段和发光时段。

其中,初始时段,第一脉冲信号端子4输入的第一脉冲信号RST控制第一控制模块2工作,控制供电信号端子6输入的供电信号VDD传输至存储电容C的第一极板,控制初始信号端子7输入的初始信号VINT传输至存储电容C的第二极板,驱动驱动晶体管DTFT导通。

采样时段,第二脉冲信号端子5输入的第二脉冲信号GAT控制第一控制模块2工作,控制数据线8输入的数据信号DATA传输至存储电容C的第一极板,控制驱动晶体管DTFT的阈值电压信号传输至存储电容C的第二极板,对数据信号DATA以及阈值电压信号进行采样。

发光时段,第三脉冲信号端子9输入的第三脉冲信号EM控制第二控制模块3工作,控制第一脉冲信号RST或第二脉冲信号GAT传输至存储电容C的第一极板,稳定第一极板的电压,并控制发光元件1发光。

利用本实施例所提供的像素驱动电路的驱动方法,第一脉冲信号端子4所输入的第一脉冲信号RST和第二脉冲信号端子5所输入的第二脉冲信号GAT,既可作为第一控制模块2的驱动信号,用来控制第一控制模块2工作,也可作为第二控制模块3的输入信号,用来稳定存储电容C的第一极板处的电压。且采用本实施例所提供的像素驱动电路的驱动方法,最终同样能够达到稳定存储电容C的第一极板处的电压以及驱动发光元件1发光的效果。因此,采用该驱动方法,无需额外的利用直流信号作为稳压信号,即可以省略用来提供直流信号的信号线,这样一来,节省了像素驱动电路所占用的版图面积,从而增多了版图空间中对应的像素的个数,进而提高了显示装置的分辨率。

另一方面,采用本实施例所提供的像素驱动电路的驱动方法,由于无需利用直流信号也同样能够达到稳定存储电容C的第一极板处的电压效果,因而对应的像素驱动电路也就无需再接入用来提供直流信号的信号线,这样,两个子像素在接收其他相同类型的信号时,可各自对应一根信号线,不需再共用一根公共信号线,即像素驱动电路也就不用再采用镜像设计,从而避免了镜像设计所导致的竖条Mura不良的问题。

具体的,请结合图1和图2,当第一控制模块2包括初始化单元21和采样单元22,且第二控制模块3包括稳压单元31和导通单元32时,像素驱动电路的驱动方法具体包括:

初始时段,第一脉冲信号RST驱动初始化单元21工作,供电信号VDD传输至存储电容C的第一极板,同时,初始信号VINT传输至存储电容C的第二极板,从而为驱动晶体管DTFT的栅极提供电压,控制驱动晶体管DTFT导通。

采样时段,第二脉冲信号GAT驱动采样单元22工作,数据信号DATA传输至存储电容C的第一极板,控制驱动晶体管DTFT的阈值电压信号传输至存储电容C的第二极板,实现对数据信号DATA和阈值电压信号的采样。

发光时段,第三脉冲信号EM驱动稳压单元31和导通单元32工作,第一脉冲信号RST或第二脉冲信号GAT传输至存储电容C的第一极板,稳定第一极板的电压;供电信号VDD经驱动晶体管DTFT和导通单元32传输至发光元件1,驱动发光元件1发光。

为了更清楚的叙述像素驱动电路的驱动方法,下面结合图3所示的像素驱动电路的电路图以及图4~图6的时序图对驱动方法进行详细说明。

请再次参见图2和图3,初始化单元21具体可包括第一晶体管T1和第二晶体管T2、采样单元22具体可包括第三晶体管T3和第四晶体管T4、稳压单元31具体可包括第五晶体管T5、导通单元32具体可包括第六晶体管T6。

结合图4所示的初始时段的信号时序图,在初始时段,第一脉冲信号RST由高电平变为低电平,第二脉冲信号GAT处于高电平,第三脉冲信号EM由低电平变为高电平。第一晶体管T1和第二晶体管T2在低电平的第一脉冲信号RST的驱动下导通,第三晶体管T3~第六晶体管T6在高电平的第二脉冲信号GAT和高电平的第三脉冲信号EM的作用下均关断。此时,供电信号VDD经第一晶体管T1传输至存储电容C的第一极板,初始信号VINT经第二晶体管T2传输至存储电容C的第二极板,为驱动晶体管DTFT的栅极提供电压,驱动驱动晶体管DTFT导通。

初始时段下,VN1=VDD,VN2=VINT,驱动晶体管DTFT为导通状态,有机发光二极管OLED不发光。其中,VN1为存储电容C第一极板处的电压,VN2为存储电容C第二极板处的电压,VDD为供电信号对应的供电电压,VINT为初始信号对应的初始电压。

需要说明的是,初始时段时,第一脉冲信号RST由高电平变为低电平,此时,存储电容C的第二极板存储初始信号VINT。在该时段,即使第一脉冲信号RST再次发生跳变,由于第五晶体管T5关断,第一脉冲信号RST不会由第五晶体管T5传输至存储电容C的第一极板处,进而不会影响存储电容C的第二极板处的电压。

结合图5所示的采样时段的信号时序图,在采样时段,第二脉冲信号GAT由高电平变为低电平,第一脉冲信号RST和第三脉冲信号EM处于高电平。第三晶体管T3和第四晶体管T4在低电平的第二脉冲信号GAT的驱动下导通,第一晶体管T1和第二晶体管T2在高电平的第一脉冲信号RST的作用下关断,第五晶体管T5和第六晶体管T6在高电平的第三脉冲信号EM的作用下关断。此时,数据信号DATA经第三晶体管T3传输至存储电容C的第一极板,实现对数据信号DATA的采样,供电信号VDD和驱动晶体管DTFT的阈值电压信号经第四晶体管T4传输至存储电容C的第二极板,实现对驱动晶体管DTFT的阈值电压信号的采样。

采样时段下,VN1=VDATA,VN2=VDD+Vth,驱动晶体管DTFT保持导通状态,有机发光二极管OLED不发光。其中,VDATA为数据信号对应的数据电压,Vth为驱动晶体管DTFT的阈值电压。

结合图6所示的发光时段的信号时序图,在发光时段,第三脉冲信号EM由高电平变为低电平,第一脉冲信号RST和第二脉冲信号GAT处于高电平状态。此时,第五晶体管T5和第六晶体管T6在低电平的第三脉冲信号EM的驱动下导通,第一晶体管T1~第四晶体管T4在高电平的第一脉冲信号RST和第二脉冲信号GAT的作用下均关断。此时,第一脉冲信号RST传输至存储电容C的第一极板,稳定第一极板的电压,供电信号VDD经驱动晶体管DTFT和第六晶体管T6传输至有机发光二极管OLED的正极,控制有机发光二极管OLED发光。

需要说明的是,发光时段下,存储电容C的第二极板处于浮接状态,即没有通路使电荷流出,这时,第一极板处电压的跳变会存储至第二极板。

可以理解的是,当第五晶体管T5的源极与第二脉冲信号端子5相连时,在初始时段和采样时段,第二脉冲信号GAT虽有电压跳变,但无法传输至存储电容C的第一极板处,在发光阶段,第二脉冲信号GAT处于高电平,高电平的第二脉冲信号GAT能够通过第五晶体管传输至存储电容C的第一极板处,稳定第一极板的电压。因此,第二脉冲信号GAT与第一脉冲信号RST具有相同的特性,都能够代替直流信号,达到稳定第一极板电压的效果。

当第五晶体管T5的源极与第一脉冲信号端子4相连时,第五晶体管T5的源极接收第一脉冲信号RST,发光阶段VN1=VRST,VN2=VDD+Vth-(VDATA-VRST)。其中,VRST为第一脉冲信号RST对应的电压,VDATA-VRST为存储电容C的第一极板处的跳变电压。

有机发光二极管OLED的电流方程如公式(1)所示:

其中,μ为驱动晶体管DTFT的载流子迁移率,COX为驱动晶体管DTFT中绝缘层的电容率,W为驱动晶体管DTFT中沟道的宽度,L为驱动晶体管DTFT中沟道的长度。

当第五晶体管T5的源极与第二脉冲信号端子5相连时,VN1=VRST,VN2=VDD+Vth-(VDATA-VGAT)。其中,VGAT为第二脉冲信号GAT对应的电压。

有机发光二极管OLED的电流方程如公式(2)所示:

在发光时段,第一脉冲信号RST或第二脉冲信号GAT保持高电平,存储电容C的第一极板处的电压就会处于稳定状态,进而使有机发光二极管OLED处于稳定的发光状态。

综上,在发光时段,第一脉冲信号RST和第二脉冲信号GAT处于高电平状态,控制第一晶体管T1~第四晶体管T4关断,只有第三脉冲信号EM处于低电平状态,控制第五晶体管T5和第六晶体管T6导通,由于第五晶体管T5的源极与第一脉冲信号端子4或第二脉冲信号端子5相连,因此,高电平的第一脉冲信号RST或高电平的第二脉冲信号GAT可传输至存储电容C的第一极板,作为稳压信号来稳定第一极板的电压。

进一步的,图7为本发明中第五晶体管T5的源极接收第一脉冲信号RST与现有技术中第五晶体管T5的源极接收直流信号Ref的仿真对比图,其中,实线对应本发明的仿真曲线,虚线对应现有技术的仿真曲线。基于图7可知,当利用第一脉冲信号RST代替直流信号时,像素驱动电路正常运行,即可以实现对数据信号DATA和驱动晶体管DTFT的阈值电压信号的正常采样,且当有机发光二极管OLED发光时,有机发光二极管OLED的电流与现有技术中有机发光二极管所对应的电流也趋于相同。本发明中第五晶体管T5的源极接收第二脉冲信号GAT时同理。

实施例三

本实施例提供了一种显示装置,该显示装置包括如实施例一所述的像素驱动电路。

由于实施例一提供的像素驱动电路减少了用于提供直流信号的信号线,因此,像素驱动电路占用的版图面积减小,版图空间中对应的像素个数相应增多。因此,与现有技术相比,本实施例提供的显示装置能够达到较高的分辨率,且能够避免竖条Mura不良的问题,提高所显示的画面的亮度均匀度。

以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1