具有音频信号补偿的有源噪声控制系统的制作方法

文档序号:2822353阅读:319来源:国知局
专利名称:具有音频信号补偿的有源噪声控制系统的制作方法
技术领域
本发明涉及有源噪声控制,更具体地,涉及与音频系统一起使用的有源噪声控制。
背景技术
有源噪声控制可以用来产生与目标声音相消干扰的声波。可以通过扬声器产生相 消干扰声波,以与目标声音结合。在期望得到诸如音乐的音频声波的情形下期望进行有源 噪声控制。音频/视觉系统可包括各种扬声器,以产生音频。这些扬声器可同时用来产生 相消干扰声波。 有源噪声控制系统主要包括麦克风,以检测相消干扰的目标区域周围的声音。所 检测到的声音提供误差信号,在误差信号中调整相消干扰声波。然而,如果也通过普通扬声 器产生音频,那么麦克风可以检测到音频声波,其可以被包含在误差信号中。因而,有源噪 声控制可以跟踪不希望被干扰的声音,诸如此音频。这会导致不正确地产生的相消干扰。此 外,有源噪声控制系统会产生相消干扰此音频的声波。因此,在有源噪声控制系统中,需要 从误差信号中去除音频分量。

发明内容
—种有源噪声控制(ANC)系统可以产生抗噪声信号,以驱动扬声器产生声波,此 声波相消干扰在目标空间中存在的非期望声音(undesired sound) 。 ANC系统可以基于代 表非期望声音的输入信号产生抗噪声信号。也可以驱动扬声器来产生代表期望的音频信号 的声波。麦克风可以接收目标空间中存在的声波,并产生代表信号。此代表信号可以与音 频补偿信号相结合,以去除代表基于所期望的音频信号的声波的分量,从而产生误差信号。 可通过利用已估计的路径滤波器(path filter)对音频信号滤波来产生音频补偿信号。可 以通过ANC系统接收误差信号,以调整抗噪声信号。 ANC系统可以被配置以接收指示具有第一采样率的非期望声音的输入信号,并将 第一采样率转换为第二采样率。也可以配置ANC系统以接收具有第三采样率的音频信号, 并将第三采样率转换为第二采样率。还可以配置ANC系统接收具有第一采样率的误差信 号,并将第一采样率转换为第二采样率。ANC系统可以基于输入信号、音频信号以及第二采 样率的误差信号,以第二采样率产生抗噪声信号。可以将抗噪声信号的采样率从第二采样 率转换为第一采样率。 在查阅了随后的附图和详细描述之后,本领域技术人员将明白本发明的其它系 统、方法、特征以及优势。我们意在使所有这些其它的系统、方法、特征以及优势都包含在此 描述中,包含在本发明的范围中,并由随后的权利要求予以保护。


可以参考如下附图和描述更好地理解本系统。不需要放大、强调附图中的组件,重 点在于阐释本发明的原理。并且,这些附图中类似的参考数字在所有不同的视图中都指示对应的部分。 图1示出了范例有源噪声去除(ANC)系统的概略图; 图2示出了实施ANC系统的范例配置的框图; 图3示出了实施ANC系统的范例车辆的俯视图; 图4示出了实施ANC系统的系统的范例; 图5示出了具有音频补偿的ANC系统的操作例; 图6示出了无限冲激响应(IIR)滤波器的频率-增益关系图的例子; 图7示出了 IIR滤波器的脉冲响应的例子; 图8示出了产生有限冲激响应(FIR)滤波器的操作例; 图9示出了产生多个已估计路径滤波器的操作例; 图10示出了 ANC系统的多声道实施的例子。
具体实施例方式
本公开提供了一种系统,其被配置为利用音频补偿产生相消干扰声波。这主要通 过首先确定非期望声音的存在,并生成相消干扰声波来实现。可以将相消干扰信号作为扬 声器输出的一个部分与音频信号一起包含在其中。麦克风可以从利用扬声器输出驱动的扩 音器接收非期望的声音和声波。麦克风可以基于所接收到的声波产生输入信号。可在产生 误差信号之前从输入信号中去除与音频信号相关的分量。可以使用误差信号更准确地产生 相消干扰信号,此相消干扰信号产生相消干扰声波。 在图1中,示意性示出了有源噪声控制(ANC)系统100的例子。可以以各种设置, 诸如在车辆内部实现ANC系统IOO,以减少或消除在目标空间102中可以听到的特殊声音频 率或频率范围。将图1的范例ANC系统100配置为在一个或多个期望频率或频率范围上产 生信号,此信号是作为与非期望声音104相消干扰的声波而生成的,非期望声音104在图1 中用源自声源106的虚线箭头表示。在一个例子中,可以将ANC系统IOO配置为相消干扰 在约20-500Hz频率范围内的非期望声音。ANC系统IOO可以接收声音信号107,此信号指 示在目标空间102中可听到的从声源106所发出的声音。 可以在目标空间102中放置诸如麦克风108的传感器。ANC系统100可以产生抗 噪声信号IIO,在一个例子中,其可以代表与目标空间102中存在的非期望声音104的相位 相差约180度、幅度大致相等的声波。抗噪声信号的180度相移可导致在抗噪声声波和非 期望声音104声波的相消结合的区域中与非期望的声音实现期望的相消干扰。
在图1中,示出了抗噪声信号IIO在求和操作112处与由音频系统116产生的音 频信号114相加。提供结合的抗噪声信号IIO和音频信号114,以驱动扬声器118产生扬声 器输出120。扬声器输出120在目标空间102中是可听到的声波,其被向麦克风108投射。 作为扬声器输出120而产生的声波的抗噪声信号IIO分量可以在目标空间102内与非期望 声音104相消干扰。 麦克风108可以基于对扬声器输出120和非期望噪声104,以及由麦克风108接收 的范围内的其它可听信号的结合的检测而产生麦克风输入信号122。为了调整抗噪声信号 IIO,可以使用麦克风输入信号122作为误差信号。麦克风输入信号122可包括代表由麦克 风108接收的任何可听的信号的分量,其是从抗噪声110和非期望噪声104的结合保留的
5分量。麦克风输入信号122还可以包含这样的分量,此分量代表由代表音频信号114的声 波的输出所引起的扬声器输出120的任何可听部分。可以从麦克风输入信号108中去除代 表音频信号114的分量,从而可允许基于误差信号124产生抗噪声信号110。 ANC系统100 可以在求和操作126处从麦克风输入信号122中去除代表音频信号114的分量,在一个实 施例中,这可通过反转音频信号114并将其加至麦克风输入信号122来进行。结果得到误 差信号124,将其作为输入提供给ANC系统100的抗噪声发生器125。抗噪声发生器125可 基于误差信号124和声音信号107产生抗噪声信号110。 ANC系统100可基于误差信号124和声音信号107对抗噪声信号110进行动态调 整,以更准确地产生抗噪声信号IIO,从而相消干扰在目标空间102内的非期望声音104。对 代表音频信号114的分量的去除可使误差信号124能更准确地反映抗噪声信号110和非期 望声音104之间的任何差异。允许代表音频信号114的分量包括在抗噪声发生器125的误 差信号输入中可使得抗噪声发生器125产生包含与音频信号114进行相消结合的信号分量 的抗噪声信号110。因而,ANC系统100可以消除或减少与音频系统116关联的声音,这种 声音是不期望的。而且,由于包含了音频信号114,会不期望地改变抗噪声信号IIO,从而使 得任何生成的抗噪声都不能准确跟踪非期望噪声104。因此,去除代表音频信号114的分量 以生成误差信号124,可以增强由扬声器118从音频信号114产生的音频声音的保真度,并 能够更有效地减少或消除非期望声音104。 在图2中,通过框图形式表示范例ANC系统200和范例物理环境。ANC系统200 可以以与结合图1所描述的ANC系统100类似的方式工作。在一个例子中,非期望的声音 x(n)从非期望声音x(n)的源头经过物理路径204到达麦克风206。可以用z域传递函数 P(z)表示物理路径204。在图2中,非期望声音x(n)表示非期望声音的物理表示和利用模 拟-数字(A/D)转换器产生的数字表示。也可以使用非期望声音x(n)作为自适应滤波器 208的输入,此自适应滤波器可包含在抗噪声发生器209中。可用z域传递函数W(z)表示 自适应滤波器208。此自适应滤波器208可以是数字滤波器,其被配置为可动态调整,从而 对输入进行滤波,以产生期望的抗噪声信号210作为输出。 与图1描述的类似,抗噪声信号210和由音频系统214产生的音频信号212可以结 合,以驱动扬声器216。抗噪声信号210和音频信号212的结合可产生声波,从扬声器216 输出。在图2中用求和操作表示扬声器216,具有扬声器输出218。扬声器输出218可以是 经过物理路径220的声波,此物理路径220包括从扬声器216到麦克风206的路径。在图 2中可用z域传递函数S(z)表示物理路径220。可由麦克风206接收扬声器输出218和非 期望噪声x(n),并且,可由麦克风206产生麦克风输入信号222。在其它例子中,可出现任 意数量的扬声器和麦克风。 与图1所讨论的类似,可通过对麦克风输入信号222的处理,从麦克风输入信号 222中去除代表音频信号212的分量。在图2中,可以处理音频信号212,以反映音频信号 212的声波经过了物理路径220。可以通过将物理路径220估计为估计的路径滤波器224 来进行此处理,这为经过物理路径220的音频信号声波提供了估计效果。估计的路径滤波 器224被配置为,模拟音频信号212的声波通过物理路径220的效果,并生成输出信号234。
在图2中,可将所述估计的路径滤波器224表示为z域传递函数g(Z)。
可以处理麦克风输入信号222,使得如求和操作226所指示,去除表示音频信号234的分量。这可以通过在求和操作226处反转已滤波的音频信号,并将反转的信号加至麦克风输入信号222来实现。可选地,可以减去已滤波的音频信号,或者采用任何其它机制或方法来去除。求和操作226的输出是误差信号228,其表示在通过扬声器216发出的抗噪声信号210和非期望噪声x(n)之间进行了任何相消干扰之后剩余的可听到的信号。可认为ANC系统200中包含从输入信号222中去除代表音频信号234的分量的求和操作226。
误差信号228被发送给学习算术单元(LAU) 230,此算术单元230被包含在抗噪声发生器中。LAU 230可实现各种学习算法,诸如最小均方(LMS)、递归最小均方(RLMS)、规一化最小均方(NLMS),或者任何其它合适的学习算法。LAU 230也接收经过滤波器224滤波的非期望噪声x(n)作为输入。LAU输出232可以是发送给自适应滤波器208的更新信号。因此,自适应滤波器208被配置为接收非期望噪声x(n)和LAU输出232。 LAU输出232被发送给自适应滤波器208,从而通过提供抗噪声信号210更准确地消去非期望噪声x(n)。
在图3中,可在范例车辆302中实现范例ANC系统300。在一个例子中,ANC系统300可被配置为减少或消除与车辆302相关的非期望的声音。在一个例子中,非期望的声音可以是与发动机304相关的发动机噪声303 (在图3中用虚线箭头表示)。然而,可以减少或消除各种非期望的声音,诸如,道路噪声或者与车辆302相关的任何其它非期望的声音。可以通过至少一个传感器306检测发动机噪声303。在一个例子中,传感器306是加速计,其基于发动机304的当前工作情况产生发动机噪声信号308,指示发动机噪声303水平。可以实现其它方式的声音检测,诸如麦克风或者适于检测与车辆302相关的可听声音的任何其它传感器。信号308可被发送给ANC系统300。 车辆302可以包含各种音频/视频分量。在图3中,示出车辆302包括音频系统310,此音频系统包括各种提供音频/视频信息的装置,诸如AM/FM收音机、CD/DVD播放器、移动电话、导航系统、MP3播放器,或者个人音乐播放器接口。可以在仪表板311中嵌入音频系统310。可以将音频系统310配置为用于单声道、立体声、5声道以及7声道工作,或者任何其它音频输出配置。音频系统310也可以包括其它组件,比如放大器(未示出),可以在车辆302内部、诸如行李箱313的各种位置放置放大器。 在一个例子中,车辆302可包括多个扬声器,诸如左后扬声器326和右后扬声器328,其位于后窗台板320上或其内部。车辆302还可包括左侧扬声器322和右侧扬声器324,分别安装在车门326和328内部。车辆还可包括左前扬声器330和右前扬声器332,分别安装在车门334、336内部。车辆还包括位于仪表板311内部的中央扬声器338。在其它例子中,车辆302中的音频系统310也可以具有其它配置。 在一个例子中,可使用中央扬声器338发送抗噪声,以减小在目标空间342中听到的发动机噪声。在一个例子中,目标空间342可以是驾驶员耳旁的区域,其接近驾驶员座椅347的驾驶员座椅头枕346。在图3中,可以在头枕346内部或邻近处安放诸如麦克风344的传感器。可以以与图1和2类似的方式将麦克风344连接到ANC系统300。在图3中,ANC系统300和音频系统310连接到中央扬声器338,从而可以结合音频系统310和ANC系统300产生的信号,以驱动中央扬声器338并生成扬声器输出350 (用虚线箭头表示)。可将此扬声器输出350生成为声波,从而使得抗噪声与目标空间342中的发动机噪声303相消干扰。可以选择车辆302中的一个或多个其它扬声器,来产生包括抗噪声的声波。此外,可在一个或多个期望目标空间中的车辆的各处安放麦克风344。
在图4中,示出了以单声道实现的具有音频补偿的ANC系统400的例子。在一个例子中,ANC系统400可用于车辆中,诸如图3的车辆302。与图1和2中的描述类似,ANC系统400可被配置为产生抗噪声,以消除或减少目标空间402中的非期望噪声。可响应于传感器404对非期望噪声的检测来产生抗噪声。ANC系统400可产生通过扬声器406进行发送的抗噪声。扬声器406还可以发送由音频系统408产生的音频信号。可在目标空间402中安放麦克风410,以从扬声器406接收输出。麦克风410的输入信号可补偿某信号的存在,该信号代表由音频系统408产生的音频信号。在去除此信号分量后,可使用剩余的信号作为ANC系统400的输入。 在图4中,传感器404可产生输出412,由A/D转换器414接收。A/D转换器414以预定的采样率对传感器输出412进行数字化。可以向采样率转换(SRC)滤波器418提供A/D转换器414的数字化的非期望声音信号416。 SRC滤波器418可以对数字化的非期望声音信号416进行滤波,以调整非期望声音信号416的采样率。SRC滤波器418可以输出已滤波的非期望声音信号420,其被作为输入提供给ANC系统400。也可以向非期望声音估计路径滤波器422提供非期望声音信号420。估计路径滤波器422可以模拟非期望的声音从扬声器406到达目标空间402的效果。滤波器422被表示为z域传递函数^us(Z)。
如之前所讨论,麦克风410可检测声波,并生成输入信号424,此输入信号424包括音频信号以及在非期望噪声和扬声器406的声波输出进行相消干扰之后剩余的任何信号。可以通过具有输出信号428的A/D转换器426以预定采样率对麦克风输入信号424数字化。此数字化的麦克风输入信号428可被提供给SRC滤波器430, SRC滤波器430对输出428滤波以改变采样率。因此,SRC滤波器430的输出信号432可以是已滤波的麦克风输入信号428。进一步对信号432进行如下处理。 在图4中,音频系统408产生音频信号444。音频系统408可包括数字信号处理器(DSP)436。音频系统408还可以包括处理器438和存储器440。音频系统408可以处理音频数据,以提供音频信号444。音频信号444可以有预定的采样率。可向SRC滤波器446提供音频信号444, SRC滤波器446对音频信号444滤波,以产生输出信号448,输出信号448是音频信号444的已调整采样率版本。可通过估计的音频路径滤波器450对输出信号448滤波,其中,用z域传递函数^A(z)表示估计的音频路径滤波器450。滤波器450可模拟音频信号444从音频系统408发送通过扬声器406到麦克风410的效果。音频补偿信号452代表对音频信号444经过物理路径到达麦克风410之后的音频信号444的状态的估计。音频补偿信号452可以在加法器454处与麦克风输入信号432结合,以从麦克风输入信号432中去除代表音频信号分量444的分量。 误差信号456可表示的信号是在目标空间402缺少基于音频信号的声波时在抗噪声和非期望声音之间进行相消干扰的结果。ANC系统400可包括抗噪声发生器457,此抗噪声发生器457包括自适应滤波器458和LAU 460,此抗噪声发生器457被实现为以图2中描述的方式产生抗噪声信号462。可以以预定的采样率产生抗噪声信号462。向SRC滤波器464提供信号462, SRC滤波器464对信号462滤波,以调整采样率,并提供其作为输出信号466。可向SRC滤波器468提供音频信号444, SRC滤波器468可调整音频信号444的采样率。SRC滤波器468的输出信号470代表不同采样率的音频信号444。可向延时滤波器472提供音频信号470。延时滤波器472可以对音频信号470延时,从而使ANC系统400产生抗噪声,以使得音频信号452与麦克风410所接收的扬声器406的输出同步。延时滤波器472的输出信号474可在加法器476处与抗噪声信号466相加。结合的信号478可被提供给数字-模拟(D/A)转换器480。向扬声器406提供D/A转换器480的输出信号482,其中,扬声器406可包含放大器(未示出),以用于产生声波,此声波被扩散到目标空间402。
在一个例子中,ANC系统400可以是存储器中存储的指令,由处理器执行。例如,ANC系统400可以是存储在音频系统408的存储器440中的指令,并由处理器438执行。在另一个例子中,ANC系统400可以是存储在计算机装置484的存储器488中的指令,可由计算机装置484的处理器486执行。在其它例子中,ANC系统400的各种特征可以全部或者部分地作为指令存储在不同的存储器中,并可由不同的处理器执行。存储器440和488都可以是计算机可读存储介质或存储器,诸如快速缓冲区、缓冲存储器、RAM、可移动介质、硬盘驱动器或者其它计算机可读存储介质。计算机可读存储介质包括各种类型的易失或非易失的存储介质。可以通过处理器438、486实现各种处理技术,诸如多处理、多任务、并行处理等。 在图5中,流程图阐释了在诸如图4所示的系统中利用有源噪声控制进行的信号处理的范例操作。步骤502的操作可包括确定是否检测到非期望的声音。在图5所示的例子中,可通过传感器404进行步骤502,可将传感器404配置为检测包含非期望声音的频率或频率范围。如果没有检测到非期望噪声,则直到检测到再进行步骤502。如果检测到非期望噪声,则可进行步骤504,检测可听的声音并产生输入信号。在一个例子中,可由诸如麦克风410的传感器进行步骤504,其中,将麦克风410配置为接收包含扬声器406的输出的可听声音,以及产生麦克风输入信号,诸如所述麦克风输入信号。 操作还可包括步骤506,确定是否当前正生成音频信号。如果当前正生成音频信号,则在步骤508从麦克风输入信号中去除基于音频的信号分量。在一个例子中,可以利用诸如图4所示的配置实现步骤508,其中,在加法器454处音频补偿信号452与麦克风输入信号432结合,产生误差信号456。 —旦去除了基于音频的信号,则可进行步骤510,基于已修改的麦克风输入信号产生抗噪声信号。在一个例子中,可利用ANC系统400实现步骤510,其中,在接收误差信号456之后产生抗噪声信号462。基于麦克风输入信号432和音频补偿信号452的结合得到误差信号456。 生成抗噪声信号之后,操作可包括步骤512,基于抗噪声信号产生声波,并将声波导向目标空间。在一个例子中,通过经由扬声器产生抗噪声声波来进行步骤512,例如,扬声器为图4中的扬声器406。扬声器406可被配置为基于抗噪声信号466和音频信号474生成声波。声波向目标空间402传播,从而与目标空间402中存在的非期望声音相消干扰。
如果步骤506确定没有生成音频,则可进行步骤514,基于输入信号生成抗噪声信号。在生成此抗噪声信号之后,进行步骤512,基于抗噪声信号产生声波。
如图4中描述,可以对各种信号进行采样率调整。选择采样率以确保合适的信号处理。例如,可以分别通过A/D转换器414和426将非期望噪声信号412和麦克风输入信号424数字化为192kHz的采样率。在一个例子中,A/D转换器414和426可以是相同的A/D转换器。 类似地,音频信号444可以是初始的48kHz采样率。SRC滤波器468可以将音频信号444的采样率增加至192kHz 。可以从ANC系统400产生4kHz的抗噪声信号462。 SRC滤波器464可将信号462的采样率增加至192kHz 。此采样率转换使得音频信号474和抗噪声信号466在加法器476处结合时具有相同的采样率。 也可以减小各种信号的采样率。例如,可以通过SRC滤波器418将数字化的非期望噪声信号416的采样率从192kHz减小到4kHz。于是,当ANC系统400接收时,信号420和424的采样率都是4kHz 。可以通过SRC滤波器446将音频信号444从48kHz范例采样率降低到4kHz。通过SRC滤波器430将数字化的麦克风输入信号428的采样率从192kHz降低到4kHz 。这使得音频补偿信号452和麦克风输入信号432在加法器454处具有相同的采样率。 在一个例子中,在预定的时间参数内由SRC 464将抗噪声采样率从4kHz增加到192kHz,确保及时生成抗噪声以到达目标空间402,从而消除非期望噪声,这也是生成抗噪声的目的。因此,SRC滤波器464可要求考虑各种设计思路。例如,可以预期非期望噪声在20-500Hz频率范围内。因此,可以在类似范围生成抗噪声。可以利用所设想的这类思路设计SRC滤波器464。 可以考虑各种滤波器类型,其中,实现SRC滤波器464。在一个例子中,SRC滤波器464可以是有限冲激响应(FIR)滤波器。FIR滤波器可基于诸如椭圆滤波器的无限冲激响应(IIR)滤波器。图6示出了作为SRC滤波器464的基础选择出的椭圆滤波器的频率_增益关系的波形图600的例子。在一个例子中,可如下定义椭圆滤波器的增益G,'(辺)=, 2 其中,e是脉动系数,Rn是第n阶椭圆有理函数,l是选择性因子,"是角频率,而"。是截止频率。 在一个例子中,可使用此等式设计SRC滤波器464。图6的波形600基于21阶椭圆滤波器。选择奇数阶次以确保SRC滤波器464的幅度响应在奈奎斯特采样率下比140dB下降更多。在图6中,指示出了通带602、过渡带604,以及阻带606。由于其控制通带波纹608和阻带波纹610的能力,也可以选择椭圆滤波器。在一个例子中,通带波纹608约为0. OldB,阻带衰减约为100dB。在图6所示的例子中,阻带的第一个深度抑制(de印皿ll)约为0. 083Hz,其导致通带截止约为0. 0816。 —旦选择了滤波器,则可产生频率响应,诸如图7中的频率响应。波形700示出了通过对1024个样本的脉冲数据集进行滤波生成的由图6表明其特征的滤波器的数字脉冲响应,其中,所述1024个样本的脉冲数据集,除了在从零开始的索引512处设置为l之外,其它位置都是零。在生成了选择的样本数之后,可以选择诸如Blackman Harris窗口之类的窗口 702。窗口 702的大小定义了所选择样本的数目。在一个例子中,选择1024个样本在窗口 702之内。可以采集这些样本并将其结合为FIR滤波器的系数。然后可以将此FIR滤波器用作为SRC滤波器464。在一个例子中,由SRC滤波器464实现的采样率提高可以是多级的。例如,在将抗噪声采样率从4kHz增加到192kHz的例子中,采样率提高了 48倍。可以通过六倍和八倍这两次较小的提高来进行此提高,从而得到经过提高的192kHz的采样率。 图8示出了设计可用作为SRC滤波器464的滤波器的范例操作的流程图。可进行 步骤802,以选择IIR滤波器类型。可以选择各种滤波器,诸如椭圆滤波器、巴特沃斯滤波 器、Chebychev滤波器,或者任何其它合适的IIR滤波器。选择了 IIR滤波器之后,可进行 步骤804,确定所选择的IIR滤波器的参数。可通过对滤波器设计方程和所期望的结果进行 比较,诸如,对椭圆滤波器的增益方程和滤波操作过程中的相关频率进行比较来进行步骤 804。 选择了参数之后,可进行步骤806,确定通带和阻带之间的差异是否在操作约束条 件之内。如果此差异在操作约束条件之外,可在步骤802重新选择滤波器类型。如果此差 异可接受,可进行步骤808,确定过渡带是否在操作约束条件之内。诸如在SRC滤波器464 的设计中,期望得到相对陡峭的过渡带。如果过渡带在操作约束条件之外,可在步骤802重 新选择IIR滤波器的类型。 如果过渡带可接受,则可进行步骤810,生成所选择的IIR滤波器的脉冲响应。脉 冲响应的生成可产生诸如图7所示的波形。生成脉冲响应之后,可进行步骤812,选择采样 的窗口大小,诸如图7的窗口 702。选择了窗口之后,操作可包括步骤814,在所选择的窗口 内采集样本,例如,诸如图7中的相关描述。在采集了样本之后,操作可包括步骤816,选择 具有所采集样本的系数的FIR滤波器。选择了 FIR滤波器之后,操作可包括步骤818,确定 FIR滤波器是否能如期工作。如果此滤波器不能恰当地工作,可在步骤802重新选择IIR滤 波器。 如图4所述,当非期望的声音和音频信号由于不同元件的处理和/或来自不同的 源头而经过不同的路径时,所估计的路径滤波器422和450可以是不同的传递函数。例如, 图3中,由音频系统310生成音频信号,当被生成为从中央扬声器338到麦克风344的声波 时,此音频信号经过电子元件以及车辆内部。为了确定估计的路径滤波器传递函数,可以实 施训练方法。图9描述了确定估计的路径滤波器的范例操作的流程图。此操作可包括步骤 902,确定物理路径的数目N。路径的数目N可确定ANC系统内使用的估计路径滤波器的数 目。例如,图4的单声道配置可以实现两个估计的路径滤波器422和450。在多声道配置 中,可以使用其它数量的估计的路径滤波器,诸如图10所示的多声道配置。
—旦在步骤902确定了物理路径的数目N,则可进行步骤904,选择第一条物理路 径。此方法可包括步骤906,通过所选择的物理路径发送测试信号。在一个例子中,可通过 为ANC配置的系统发送高斯噪声或"白"噪声。也可以使用其它合适的测试信号。例如,在 图4中,可以发送测试信号,使其经过ANC系统400的路径,并通过扬声器406生成声波,由 麦克风410检测。因此,测试信号经过电子元件,以及扬声器406和麦克风410之间的物理 空间。 可进行步骤908,记录经过所选择的物理路径的输出。此输出将用于方法的步骤 910中,以将已记录的输出与所发送的测试信号进行比较。返回图4所示配置的例子,将响 应于白噪声生成的误差信号456与白噪声输入信号进行比较。 一旦进行了步骤910的比 较,方法900可包括步骤912,基于已记录的输出信号和测试信号之间的比较来确定所选择 的路径的传递函数。例如,可以将白噪声输入信号与信号432进行比较,以确定传递函数,此传递函数提供了非期望噪声和已处理的麦克风输入信号432之间的关系。这允许将滤波 器422配置为模拟非期望噪声经过物理路径的效果,从而使ANC系统生成的抗噪声更加类 似目标空间402中的收听者所经历的非期望声音的相移版本。 可进行步骤914,确定是否选择了 N个路径。 一旦选择了所有N个物理路径,并确 定了传递函数,则操作结束。然而,如果没有选择N个物理路径,则进行步骤916,选择下一 个物理路径。在选择了下一个物理路径之后,可进行步骤906,允许通过下一个选择的物理 路径发送测试信号。例如,在图4中,下一个物理路径可以是音频信号444经过元件、经历 采样率转换,以及通过扬声器和麦克风410之间的距离所通过的物理路径。可以确定所有 N个物理路径的传递函数。 图IO示出了为多声道系统配置的ANC系统IOOO的框图。此多声道系统考虑使用 多个麦克风和扬声器向单个或多个目标空间提供抗噪声。随着麦克风和扬声器数量增加, 物理路径和对应的估计路径滤波器的数量以指数方式增加。例如,图IO示出了被配置为与 两个麦克风1002和1004、两个扬声器1006和1008(用求和操作阐释)以及两个参考传感 器1010和1012 —起使用的ANC系统1000的例子。可将参考传感器1010和1012配置为 各自检测非期望声音,此非期望声音可以是两个不同的声音,也可以是相同的声音。参考传 感器1010和1012分别可生成信号1014和1016,指示所检测到的非期望声音。可将各个信 号1014和1016发送到ANC系统1000的抗噪声发生器1013,而用作为ANC系统1000的输 入,以产生抗噪声。 可将音频系统1011配置为生成第一声道信号1020和第二声道信号1022。在其 它例子中,可由音频系统IOII生成任何其它数目的分离且独立的声道,诸如五个、六个,或 者七个声道。可向扬声器1006提供第一声道信号1020,向扬声器1008提供第二声道信号 1022。抗噪声发生器1013可生成信号1024和1026。将信号1024和第一声道信号1020结 合,从而作为扬声器1006的扬声器输出1028发送两个信号1020和1024。类似地,可以结 合信号1022和1026,从而从扬声器1008发送两个信号1022和1026作为扬声器输出1030。 在其它例子中,仅向扬声器1006和1008中的一个或两个发送一个抗噪声信号。
麦克风1002和1004可接收声波,该声波包括作为扬声器输出1028和1030的声波 输出。麦克风1002和1004分别生成麦克风输入信号1032和1034。麦克风输入信号1032 和1034各自指示由各个麦克风1002和1004接收的声音,其可包括非期望声音和音频信 号。如所述,可从麦克风输入信号中去除代表音频信号的分量。在图10中,麦克风1002和 1004各自可接收扬声器输出1028和1030,以及任何目标的非期望声音。因此,可以从各个 麦克风输入信号1032和1034中去除代表与各个扬声器输出1028和1030相关的音频信号 的分量。 在图10中,通过两个估计的路径滤波器对各音频信号1020和1022滤波。可通过 估计的路径滤波器1036对音频信号1020滤波,此路径滤波器1036表示从音频系统1011 到麦克风1002的音频信号1020的估计的物理路径(包括元件、物理空间,以及信号处理)。 可通过估计的路径滤波器1038对音频信号1022滤波,此路径滤波器1038表示从音频系统 1011到麦克风1002的音频信号1022的估计的物理路径。可在求和操作1044对已滤波信 号求和,以形成结合的音频信号1046。在操作1048中使用信号1046消除麦克风输入信号 1032中存在的类似信号分量。所得到的信号是误差信号1050,可将误差信号1050提供给
12ANC系统1000,以生成与传感器1010检测到的非期望声音相关联的抗噪声1024。
类似地,分别由估计的路径滤波器1040和1042对音频信号1020和1022滤波。估 计的路径滤波器1040可表示音频信号1020从音频系统1011到误差麦克风1004所经过的 物理路径。估计的路径滤波器1042可表示音频信号1022从音频系统1011到误差麦克风 1004所经过的物理路径。可在求和操作1052中将音频信号1020和1022加在一起,以形成 结合的音频信号1054。可在操作1056中使用音频信号1054去除麦克风输入信号1034中 存在的类似信号分量,得到误差信号1058。可将误差信号1058提供给ANC系统1000,以生 成与传感器1004检测到的非期望声音相关联的抗噪声信号1026。 可以以诸如图9中描述的方式确定所述估计的路径滤波器1036、 1038、 1040以及 1042。随着参考传感器和麦克风数量增加,可以实现其它估计的路径滤波器,从而从麦克风 输入信号中消除音频信号,以生成误差信号,使得ANC系统基于误差信号生成声音消除信 号,相消干扰一个或多个非期望声音。 虽然已经描述了本发明的各种实施例,然而,本领域普通技术人员知道,在本发明 范围内可以有更多的实施例和实现方式。这样,本发明仅由所附权利要求及其等同进行限 制。
权利要求
一种消声系统,包括处理器;以及可由所述处理器执行的有源噪声控制系统,该有源噪声控制系统被配置成接收代表目标空间中存在的声音的输入信号,从该输入信号中去除第一信号分量,以生成误差信号,以及基于所述误差信号生成抗噪声信号,其中,所述抗噪声信号被配置成驱动扬声器产生可听的声音,从而相消干扰在所述目标空间中存在的非期望声音。
2. 根据权利要求1所述的系统,其中,所述第一信号分量代表由音频系统生成的音频 信号。
3. 根据权利要求1所述的系统,其中,所述有源噪声控制系统进一步被配置成将音频 补偿信号与所述第一输入信号结合,从而去除所述第一信号分量。
4. 根据权利要求3所述的系统,其中,所述音频补偿信号基于所述音频信号。
5. 根据权利要求3所述的系统,其中,所述有源噪声控制系统被配置成,利用估计的音 频路径滤波器对所述音频信号滤波,以产生所述音频补偿信号。
6. 根据权利要求3所述的系统,其中,所述有源噪声控制系统进一步被配置成,将所述 音频信号从第一采样率转换为第二采样率。
7. 根据权利要求6所述的系统,其中,所述有源噪声控制系统进一步被配置成将所述输入信号从第三采样率转换为第四采样率。
8. 根据权利要求7所述的系统,其中,所述第四采样率是所述第二采样率。
9. 根据权利要求8所述的系统,其中,所述第二采样率约为4kHz。
10. 根据权利要求6所述的系统,其中,所述第一采样率约为48kHz。
11. 根据权利要求7所述的系统,其中,所述第三采样率约为192kHz。
12. 根据权利要求1所述的系统,其中,所述抗噪声信号被从第一采样率转换为高于该 第一采样率的第二采样率。
13. —种减小在空间中存在的非期望声音的音量的方法,包括 生成代表在所述空间中存在的所述非期望声音的输入信号; 去除所述输入信号中代表音频信号的部分;以及基于去除了所述部分的输入信号生成抗噪声信号,以驱动扬声器产生可听信号,从而 相消干扰所述非期望声音。
14. 根据权利要求13所述的方法,其中,从所述输入信号去除所述部分包括 生成音频补偿信号;以及 将所述音频补偿信号与所述输入信号结合。
15. 根据权利要求13所述的方法,其中,生成音频补偿信号进一步包括利用估计的音 频路径滤波器对所述音频信号滤波。
16. 根据权利要求13所述的方法,进一步包括将所述抗噪声信号从第一采样率转换为 第二采样率,其中,所述第二采样率高于所述第一采样率。
17. 根据权利要求14所述的方法,进一步包括将所述音频补偿信号从第一采样率转换 为第二采样率,其中,所述第一采样率高于所述第二采样率。
18. 根据权利要求13所述的方法,进一步包括将所述输入信号从第一采样率转换为第 二采样率,其中,所述第一采样率高于所述第二采样率。
19. 在存储设备中存储的多个指令,当由处理器执行该指令时,使得所述处理器 以第一预定采样率对第一输入信号采样,其中,所述第一输入信号代表目标空间中的声音;以所述第一预定采样率对音频信号采样,以生成第一音频信号; 以192kHz对所述音频信号采样,以生成第二音频信号; 将所述第一音频信号与所述输入信号结合,以生成误差信号; 将所述误差信号的采样率从192kHz转换为所述第一预定采样率; 基于所述误差信号生成抗噪声信号;以及将第二音频信号和所述抗噪声信号结合,以生成音频输出信号。
20. 根据权利要求19所述的多个指令,当所述处理器执行所述指令时,进一步使得所 述处理器利用估计的音频路径滤波器对所述第一音频信号滤波。
21. 根据权利要求19所述的多个指令,当所述处理器执行所述指令时,进一步使得所 述处理器以所述第一预定采样率对所述抗噪声采样。
22. 根据权利要求21所述的多个指令,当所述处理器执行所述指令时,进一步使得所 述处理器将所述抗噪声信号的采样率从所述第一预定采样率转换为192kHz,其中,所述第 一预定采样率低于192kHz 。
23. 根据权利要求19所述的多个指令,当所述处理器执行所述指令时,进一步使得所 述处理器以192kHz对所述第一输入信号采样;以及将所述输入信号的采样率从192kHz转换为所述第一预定采样率。
24. —种生成有源噪声控制系统的多个估计路径滤波器的方法,包括 选择在所述有源噪声控制系统中存在的第一物理路径; 选择在所述有源噪声控制系统中存在的第二物理路径; 通过所述第一物理路径输入第一信号,以生成第一输出信号; 通过所述第二物理路径输入所述第一信号,以生成第二输出信号;将所述第一信号与所述第一输出信号相比较,以生成基于所述第一物理路径的第一传 递函数;将所述第一信号与所述第二输出信号相比较,以生成基于所述第二物理路径的第二传 递函数;基于所述第一传递函数生成第一估计路径滤波器,并且基于所述第二传递函数生成第 二估计路径滤波器。
25. 根据权利要求24所述的方法,其中,所述第一物理路径包括在所述有源噪声控制 系统内音频信号所经过的路径。
26. 根据权利要求25所述的方法,其中,所述第一物理路径进一步包括代表音频信号 的可听信号所经过的路径。
27. 根据权利要求24所述的方法,其中,所述第二物理路径包括在所述有源噪声控制 系统内抗噪声信号所经过的路径。
28. 根据权利要求27所述的方法,其中,所述第二物理路径包括代表所述抗噪声信号 的可听信号所经过的路径。
全文摘要
本发明公开了一种有源噪声控制系统,其生成抗噪声信号,以驱动扬声器产生声波,从而相消干扰目标空间中的非期望声音。扬声器还被驱动来产生代表期望的音频信号的声波。在目标空间中检测到声波,并生成代表信号。将代表信号与音频补偿信号相结合,从而基于期望的音频信号去除代表声波的信号分量,并生成误差信号。有源噪声控制基于误差信号调整抗噪声信号。有源噪声控制系统转换代表非期望声音、期望的音频信号以及误差信号的输入信号的采样率。有源噪声控制系统转换抗噪声信号的采样率。
文档编号G10K11/178GK101740023SQ20091022644
公开日2010年6月16日 申请日期2009年11月20日 优先权日2008年11月20日
发明者杜安·沃茨, 瓦桑特·施里达 申请人:哈曼国际工业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1