金属卤化物灯和光源的制作方法

文档序号:2958640阅读:265来源:国知局
专利名称:金属卤化物灯和光源的制作方法
技术领域
本发明涉及一种金属卤化物灯和一种光源。
背景技术
对于用于例如室外照明和高天花板照明的光源的金属卤化物灯来说,近年来出于节省能源的角度出发,非常希望改进照明效率。
为了响应这种需要,已经提出某种类型的陶瓷金属卤化物灯(见例如PCT申请NO.2000-501563的
公开日文译文)。在这种类型的陶瓷金属卤化物灯中,经得起金属泡体壁的高负载(即在高温下经得起使用)的半透明的陶瓷用作电弧管的封壳。这种半透明陶瓷例如由氧化铝制成。电弧管具有细长形状(L/D>5,电弧管的内直径是D,并且电极之间空间的长度(即距离)是L),并且其中封闭碘化铈(CeI3)以及碘化钠(NaI)。
据说这种陶瓷金属卤化物灯能够实现1111m/W-177m/W的极高的照明效率。
对于传统金属卤化物灯来说,电弧管容纳在硬玻璃外管中。这里,石英玻璃套筒放置在外管和电弧管之间,以便围绕电弧管。套筒设置成在电弧管破裂的情况下保护外管使其不由于碎片而损坏(见日本特开平专利申请公报NO.H05-258724)。
显而易见的是,某些传统金属卤化物灯具有没有套筒的结构。但是,在这种传统的金属卤化物灯中,碳氟化合物涂层施加在外管上,以便防止外管损坏。作为选择,这些传统的金属卤化物灯需要使用在装备有前玻璃的光源中,使得在外管损坏的情况下,碎片不飞出,并且因此它们从不用于没有面向地面的前挡板的光源。
为了实现高的照明效率,尝试制造所述参考文件(PCT申请NO.2000-501563公开的日文译文)描述的陶瓷金属卤化物灯。石英玻璃放置在外管和电弧管之间,以便围绕整个电弧管,如传统金属卤化物灯的情况那样。在制备这种灯并且检测其灯性能时,出现未料到的问题由于灯电压升高,某些制备的灯在额定寿命期间内烧坏。
通过分析和检测所述问题的原因,本发明找出如下线索在烧坏的灯中,电弧管的内表面与封装在电弧管内的金属卤化物深度反应。因此,可以认为由于金属卤化物和形成电弧管的封壳的陶瓷之间的反应,灯电压升高有助于显著地增加电弧管内释放的卤化物。
于是,检测金属卤化物和陶瓷之间的深度反应的原因,并找到如下原因。由于陶瓷认为是能够在高温下经得起使用的材料,由此陶瓷用来形成封壳。但是电弧管制成细长形状(例如L/D>5),以便实现高的照明效率,并且因此金属卤化物灯的电弧在照明期间靠近电弧管的内表面形成。因此,形成电弧管封壳的陶瓷温度(此后简化为“电弧管温度”)变得远远高于所希望的数值,并且达到陶瓷与封装的金属卤化物深度反应的温度。
在进行进一步分析以及进行调查之后,本发明的发明人还发现电弧管温度增加不仅取决于电弧管的形状。在照明期间,电弧管的热量通过套筒保持,从而加速了电弧管温度增加。对于传统的金属卤化物灯来说,这不被认为是实际上的问题,并且这种发现超出了本发明发明人的预料。
同样变得清楚的是电弧管温度过度升高不仅在L/D>5时出现,而且还出现在满足关系式L/D≥4时出现。
为了解决这种问题,简单地将外管制成很大,使得在电弧管和套筒之间提供更多的空间。但是,这将牺牲金属卤化物灯的紧凑性。相反,可以采用不具有套筒的结构。在这种情况下,例如碳氟化合物树脂涂层可施加在外管上。但是碳氟化合物树脂涂层的耐热性具有限制,并且因此不能适用于所有的灯。在即使不施加这种碳氟化合物树脂涂层的情况下,外管可能由于电弧管如上所述的损坏而损坏。这认为是限制了金属卤化物灯对于光源的适用性。

发明内容
本发明旨在提供一种金属卤化物灯以及使用金属卤化物灯的光源,它们都具有一种构造以便实现如下的目的(i)在额定寿命期间防止由于灯电压升高而造成金属卤化物灯烧坏,并且同时(ii)实现高照明效率和紧凑性。
为了解决以上问题,本发明的发明人努力开动脑筋,并因此获得如下的技术思想。
本发明的金属卤化物灯包括具有由半透明陶瓷制成并具有其中布置有一对电极的主管部分的电弧管以及其中容纳电弧管的外管。这里4.0≤L/D≤10.0,其中L是电极之间空间的长度,并且D是主管部分的内直径。R/r≥3.4,其中在外管和电弧管的径向上,在其位置与电极之间的空间相对应的区域内,在电弧管的外周边最靠近外管的内周边的截面上,R是外管的内直径,并且r是主管部分的外直径。M≤4.0,其中M(mg/cc)是封装在电弧管内的汞的密度。
注意到说明书中的术语“内直径”指的是在主管部分中,其位置与电极之间的空间相对应的区域上的一个部分的平均内直径。另外,“在外管和电弧管的径向上,其位置与电极之间的空间相对应的区域”指的是通过两个假想平面夹持的区域。每个假想平面位于电极之一的尖端处,并且在电极纵向上垂直于中心轴线。
按照所述的构造,可以防止额定寿命期间由于灯电压升高而造成的灯烧坏,同时获得高的照明效率。另外,即使电弧管损坏,可以消除由于电弧管的碎片造成外管损坏。这继而消除了在外管中提供围绕电弧管的套筒的传统需要,造成金属卤化物灯的尺寸减小。
对于所述的金属卤化物灯来说,R/r可以是7.0或更小所述的构造有助于放电保持,同时获得高的照明效率。
对于所述的金属卤化物灯来说,卤化钠和至少一种卤化铈和卤化镨可封装在电弧管中。
按照所述构造,即使卤化钠(Na)和至少一种卤化铈(Ce)和卤化镨(Pr)可封装在电弧管中以便获得较高的照明效率,电弧管充分保持加热,并且因此封装的金属的蒸汽压力保持在高水平,而没有任何下降趋势。
对于所述的金属卤化物灯,在300K下,外管内的真空度可以不大于1×103Pa。
所述构造防止电弧管的热量经由封装在外管内的气体传递到外管,并释放到金属卤化物灯的外部。因此,可以防止照明效率的减小。
另外,对于所述的金属卤化物灯来说,电弧管的外表面可直接面向外管的内表面。
本发明的光源包括如本发明的权利要求1-7任一项所述的金属卤化物灯以及用于点亮金属卤化物灯的照明电路。
按照所述构造,可以在额定寿命期间防止由于灯电压升高造成的灯烧坏的情况,同时获得高的照明效率。


图1是按照本发明的第一实施例的金属卤化物灯的前视图,其中切去一部分以露出内部配置;图2是用于金属卤化物灯的电弧管的前视截面图;图3是表示为了确定金属卤化物灯的操作有效性而进行的试验的结果;图4表示为了确定金属卤化物灯的操作有效性而进行的另一试验的结果;图5是其外管具有不同形状的金属卤化物灯的前视图;图6是其电弧管具有不同形状的金属卤化物灯的前视图,其中切去一部分以露出内部配置;图7是按照本发明第二实施例的光源的示意图。
具体实施例方式
下面参考附图,将描述实施本发明的最佳模式。
第一实施例图1表示按照本发明第一实施例的金属卤化物灯(陶瓷金属卤化物灯)1。具有150W的额定灯瓦特数的金属卤化物灯1具有160mm-200mm(例如180mm)的总体长度。金属卤化物灯1包括外管3、电弧管4和底座5。外管3是圆柱形的,并且外管3的一端闭合,并且其形状是圆形,另一端通过将柄部管2固定其上而闭合。电弧管4由例如多晶氧化铝的半透明陶瓷制成,并布置在外管3内。底座5是螺旋底座(Edison螺纹底座),并且在柄部管2一侧上的端部处固定在外管3上。注意到电弧管4的纵向上的中心轴线X与外管3的中心轴线上的中心轴线Y重合。
外管3由例如硬玻璃制成。满足关系式3.4≤R/r≤7.0,其中在外管和电弧管的径向上,其位置与电极14之间的空间相对应的区域内,在主管部分的外周边最靠近外管6的内周边的截面上,R是外管3的外直径(mm),并且r是电弧管4的主管部分6内的外直径(mm)。即,在该截面上,主管部分6内的外直径r变得最大。外管3的壁厚t1应该确定成提供强度以便在灯更换和运输过程中经得起出现的外部冲击。另外,壁厚t1应该限制在不造成高制造成本和灯的重量过大增加的程度。考虑到以上情况,希望的是根据情况,将外管3的壁厚t1确定成在例如0.6mm-1.2mm的范围内。在300K下,外管3的内部在1×103Pa或更小(例如1×10-2Pa)的压力下保持真空。在外管3内,一个或多个消气剂(未示出)设置在适当位置上,以便在寿命期间保持高真空状态。
两个柄部线材7和8是各自通过将由不同材料制成的金属丝结合在一起而形成的单个金属线材。每个柄部线材7和8的一部分固定在柄部管2上。各自柄部线材7和8的一端导入外管3的内部,而另一端从外管3导出。柄部线材7的一端经由电源供应线材9电连接到作为电弧管3的两个外部导引线材10和110(下面描述)之一的外部导引线材10上。另一柄部线材8的一端直接电连接到另一外部导引线材11上。柄部线材7的另一端电连接到底座5的壳体12上,而柄部线材8的另一端电连接到底座5的眼孔13上。
如图2所示,电弧管4包括主管部分6和两个圆柱形薄管部分16。在主管部分6内,形成放电空间15,并且一对电极14在大致相同的轴线Z上大致相对放置。每个薄管部分16形成在主管部分6的每端上。
在图2所示的实例中,组成电弧管4的陶瓷封壳的主管部分6和薄管部分16在没有结合部的情况下整体形成单件。但是,主管部分和薄管部分可由不同材料制成,并且通过收缩配合过程相互结合,并且可以使用这种方式形成的封壳。对于用来形成电弧管4的封壳的材料来说,相反可以使用通过将各自部件集成而形成的封壳。这种封壳通过例如将薄管部分19和主管部分18的倒圆端部17结合而形成。对于用来形成电弧管4的封壳的材料来说,除了多晶氧化铝之外,可以使用例如钇铝石榴石(YAG)、氮化铝、氧化钇和氧化锆的其它类型的半透明材料。
主管部分6包括圆筒17和两个倒圆部分18。每个倒圆部分18形成在圆筒17的每个端部上。在主管部分的外周边最靠近外管6的内周边的截面上,在其位置与电极14之间的空间相对应的区域内,圆筒17具有从例如5.0mm-12.8mm的外直径r;从例如3mmn-10mm的内直径D以及从例如1.0mm-1.4mm的壁厚t2。每个这些尺寸在所述范围内根据情况来确定。
在图1和2所示的实例中,外管3的纵向上的中心轴线和电弧管4的中心轴线大致相互重合,并且外管3和电弧管4的主管部分6都是圆柱形。因此,在这种情况下,主管部分6的外周边最靠近外管3的内周边的地方与整个圆筒17相对应。
在一端处与电极14之一电连接的电极导入单元19插入每个薄管部分16。电极导入单元19通过从薄管部分16的另一端(各自远离主管部分6定位)注入薄管部分16的内侧和插入其中的电极导入单元19之间留下的空间的玻璃烧结件20固定。
每个电极14具有钨电极杆21和安装在电极杆21的尖端上的钨电极线圈22。电极杆21具有0.5mm的外直径和16.5mm的长度。电极14之间空间的长度设置成满足关系式L/D≥4。例如,在电弧管4的内直径D设置在3mm-10mm的范围内时,根据情况长度L确定在12mm-40mm的范围内。在这种情况下,电弧管4的泡体壁负载适当设置在例如24W/cm2-34W/cm2的范围内。
电极导入单元19各自包括导电金属陶瓷23;由例如铌制成的外部导引线材10或11;以及钼线圈24。导电金属陶瓷23具有0.92mm的外直径和18.3mm的长度。电极杆21连接到导电金属陶瓷23的一端上,并且另一端导向薄管部分16的外部。外部导引线材10或11的一端电连接到任何柄部线材8或电源供应线材9上。线圈24围绕导电金属陶瓷23的中间部分卷绕。
导电金属陶瓷23通过将金属粉末和陶瓷粉末混合并烧结混合物来形成。这里,金属粉末例如通过钼制成,而陶瓷粉末例如通过氧化铝制成。导电金属陶瓷23的热膨胀系数是7.0×10-6(/℃),这大致等于线材电弧管4的封壳的陶瓷的热膨胀系数。
线圈24设置成大致填充薄管部分16和导电金属陶瓷23之间留下的空间,并且使得封装在电弧管4内的金属卤化物难以渗漏到该空间内。注意到这里所使用的包括外部导引线材10或11、导电金属陶瓷23和线圈24的电极导入单元19只是实例,并且可以使用多种公知的电极导入单元。另外,金属卤化物、汞和稀有气体可封装在电弧管4内。
所封装的金属卤化物包括卤化钠(Na)以及至少一种卤化铈(Ce)和卤化镨(Pr)。
为了获得所需的色温和显色性,可封装公知的金属卤化物来代替所述的金属卤化物,或者可以和所述金属卤化物一起添加。
将被封装的汞可采用元素汞或汞化合物的形式。封装汞以满足关系式M≤4.0,其中M是封装在电弧管4中的汞的密度。密度M(mg/cc)这里限定为通过电弧管4的内部容积划分的汞的质量。显而易见的是,除了不可避免地混入汞之外,该密度M可以是0mg/cc。
作为稀有气体,可以封装例如纯氩气、纯氙气或其混合物。将要封装的稀有气体量根据情况适当设置在10kPa-50kPa的范围内,而不考虑构造材料及其比例。
下面描述为了确定金属卤化物灯1的操作有效性而进行的试验。
1.1R/r和汞密度M根据R/r和封装在电弧管4的汞的密度M,检测灯的操作有效性。
如下所述,制备多个金属卤化物灯1(额定灯瓦特数为150W)。根据R/r设置五个不同的组。特别来说,这些组通过以20mm、22mm、30mm、45mm和50mm改变外管3的内直径R来形成。同时将主管部分6的外直径设置成6.4mm的常数。注意到内直径R是在电弧管4的外周边最靠近外管3的内周边的截面上并在通过假想平面夹持的区域内所获得的测量值。另外,对于每个组来说,通过改变封装汞的密度M设置多个级别。为了更加明确,这些级别通过从0.2cc-1.0cc分级改变电弧管4的内部容积以及从0.5mg-2.0mg分级改变封装汞的量来设置。对于每个级别制备十个灯。
对于每个级别的十个灯中的五个灯来说,检测照明开始阶段(即大致100小时照明时间之后)的色温以及从开始阶段到9000小时照明时间结束的灯电压升高(V)。在灯的中心轴线水平的情况下,使用照明电路(例如具有公知电子镇流器)来点亮每个灯。检测结果表示在图3中。另外,对于剩余五个灯来说,如下检测外管3是否出现损坏。首先,每个灯在稳定状态的照明条件下在额定电流点亮。接着,流过额定电流20倍的过电流,直到电弧管4强力破裂为止。检测是否外管3在此时损坏。结果同样表示在图3中。
对于所有制备的灯来说,外管3的壁厚t1一律设置成0.9mm的常数,主管部分6的壁厚t2设置成1.2mm,并且电极14之间的长度L设置成32mm(L/D=8)。对于封装在电弧管4内的物质来说,封装2.3mg的碘化镨(PrI3)和6.7mg的碘化钠(NaI)。另外,氙气同样在环境温度下在20kPa下封装。
在图3中,“色温(K)”和”灯电压升高(V)”中的数值是每个级别的平均值。对于“出现外管损坏情况”来说,分母表示对于相应级别来说所检测灯的总数,而分子表示在所检测灯的总数中其外管3损坏的灯的数量。“色温变化”中的数值通过从最大值中减去最小值来获得。
从图3中清楚得知,在满足关系式R/r≥3.4时,即从E到T的所有级别的灯,从开始阶段到9000小时照明时间结束的灯电压升高抑止到27V或更小,并且在这些级别中没有观察到由于灯电压升高而出现灯烧坏的情况。另一方面,在满足关系式R/r<3.4时,即从A到E的所有级别的灯,灯电压升高变成35V或更高。观察到这些级别中的某些灯由于灯电压升高而烧坏。
为何获得这种结果的原因在下面描述。在满足关系式R/r≥3.4时,外管3和主管部分6相互远离定位,并且在它们之间提供足够的空间。因此,在所述检测中,减小对于主管部分6的各自作用,因此抑止电弧管4(封壳)的温度过度增加。
因此,金属卤化物和形成电弧管4的封壳的陶瓷之间的反应受到限制,并且电弧管4内自由碘的增加因此减小。实际上,对于满足R/r≥3.4的检测灯进行分析,迹象表示出很难发现电弧管4的内表面和封装的金属卤化物进行反应。
另一方面,在满足关系式R/r<3.4时,外管3和主管部分6相互靠近定位,在它们之间提供受到限制的空间。因此,认为在所述检测中,增加了对于主管部分6的隔热作用,因此加速电弧管4的温度增加。因此,金属卤化物和陶瓷深度反应,并且这造成电弧管4中自由碘增加。对于满足R/r<3.4的检测灯进行分析,迹象表示出观察到电弧管4的内表面和金属卤化物深度反应。因此,已经发现通过满足R/r≥3.4,可以防止由于灯电压升高而出现的灯烧坏的情况。同样从图3中清楚得知,在满足关系式R/r≤7.0时,即从A-P的所有级别的灯,色温落入3850K-4280K的范围内,接近设定数值(4000K)。在色温差别是300K或更小时,该差别不能通过肉眼检测。实际上,所述范围(3850K-4280K)内的色温同样接近设定数值,其差别不能通过视觉观察来识别。但是,在满足关系式R/r>7.0时,即从Q-T的所有级别的灯,色温超过设定数值,并且达到4480K或更高,并且与设定数值的差别可以通过肉眼观察。
为何获得这种结果的原因在下面描述。在满足关系式R/r>7.0时,外管3和主管部分6相互远离定位。在所述检测中,这造成电弧管4的温度过大减小,并且因此减小电弧管4内封装的金属的蒸汽压力。另一方面,在满足关系式R/r≤7.0时,电弧管4充分保持加热并且因此金属蒸汽压力保持在适当程度。总的来说,为了将封装在电弧管4内的蒸汽压力保持在适当程度,电孤管4需要保持加热到某种程度。
因此,最好是满足关系式R/r≤7.0以便获得所需的色温。已经证实这些结果可不仅在色温设置在4000K时获得,而且还在色温通过改变封装的物质的组分及其比例来改变时获得。
从图3中清楚得知,在电弧管4内汞的密度M是4.0mg/cc或更小的任何情况下,即级别A、B、E、F、I、J、M、N、Q和R,观察到在五个灯中外管3没有损坏。另一方面,在汞的密度M大于4.0mg/cc的所有情况下,即级别C、D、G、H、K、L、O、P、S和T,一个或多个外管3损坏。
因此,已经发现不同于传统的金属卤化物灯,通过将汞的密度M限定在4.0mg/cc或更小,可以防止由于电弧管4破碎而造成的外管3的损坏,而不使用套筒等。
为何获得这种结果的原因在下面描述。在稳定状态照明下,灯内的气体压力主要通过汞蒸汽压力来控制。在汞的密度M是4.0mg/cc或更小时,电弧管4内汞蒸汽压力同样减小。因此,在所述检测中,灯内的气体压力减小,并且即使电弧管4破碎,飞行的碎片的动能没有足以损坏外管3的那样大。
另一方面,在汞密度M大于4.0mg/cc时,汞蒸汽压力增加,并且因此灯内的气体压力变高。因此,在电弧管4在以上检测中损坏时,碎片以很大的力飞行,使得在外管3上施加大的冲击。已经证实至少在外管3的壁厚t1是0.6mm或更大并且电弧管4的主管部分6的壁厚t2是1.4mm或更小时,一致性地实现所述结果。
如上所述,在稳定状态照明下,灯内的气体压力主要通过汞的蒸汽压力来控制。因此,在汞密度M是4.0mg/cc或更小时,或者也就是说在封装汞含量减小时,灯内的气体压力减小。那么,灯电压和灯功率相应减小,这继而造成封装金属的蒸汽压力减小。但是,单个灯的灯功率具有不同程度的变化,这自然造成封装金属的蒸汽压力的变化。因此,本发明的发明人设想到色温也相应变化。
但是,令人惊奇的是,在级别E、F、I、J、M和N的灯级别中,在汞密度M是4.0mg/cc或更小时,但是满足关系式3.4≤R/r≤7.0时,单个灯中的色温的变化在50K-270K的范围内,并因此这种变化不显著。考虑到由于电弧管4充分加热并且因此封装的金属的蒸汽压力保持在高程度而没有下降趋势而获得所述结果。在所述情况中色温不显著变化大大有利于其中封装有具有较低蒸汽压力的金属卤化物的灯,例如镨、铈和钠。
注意到所述的操作有效性通过使用满足关系式L/D=8的灯来检测。但是,已经证实如果满足关系式L/D≥4.0,可以实现该操作有效性。
1.2电极14之间的空间长度L接着,根据电极14之间的空间长度L,检测灯的操作有效性。如下所述,制备级别为F的多个金属卤化物灯。根据L/D设置多个组。特别来说,这些组通过从16mm-44mm分级改变长度L来设定,同时将电弧管的内直径设置成4mm的常数。对于每组L/D,制备五个灯。
在灯的中心轴线水平的情况下,使用照明电路来点亮每个灯。接着检测100小时照明时间之后的照明效率(1m/W)和出现灯烧坏的情况。结果表示在图4中。
对于图4中的“出现灯烧坏的情况”来说,分母表示对于相应组来说所检测的灯的总数,而分子表示在100小时照明时间之后在所检测灯的总数中烧坏的灯的数量。
从图4清楚得知,在L/D=4、8、10和11的情况下,其中满足关系式L/D≥4,100小时照明时间之后的照明效率是1151m/W或更高。与现在可得到的常用陶瓷金属卤化物灯(901m/W-951m/W)相比,照明效率改进大约28%或更多,并且效率高和显色性高。
为何获得这种结果的原因在下面描述。与传统灯相比,电弧管4的内表面温度达到更高,并且因此金属卤化物的蒸汽压力增加。但是,在L/D=11的情况下,其中满足关系式L/D>10,虽然获得高的照明效率,五个灯中的一个灯烧坏。这是由于电极14之间的空间长度L太长,并且因此变得难以保持放电。因此,希望的是满足L/D≤10,以便获得高的照明效率,并有助于放电保持。
如上所述,采用按照本发明第一实施例的金属卤化物灯1的构造,可以实现以下优点。首先,由于满足关系式L/D≥4,金属卤化物灯1可获得高的照明效率。其次,即使由于L/D≥4电弧管4的温度升高到相对高,本发明能够防止在寿命期间由于灯电压升高而出现灯烧坏的情况。这是由于金属卤化物灯1还满足关系式3.4≤R/r≤7.0和M≤4.0。另外,本发明可以在照明开始阶段获得色温的所需性能,并且进一步在单独灯中抑止色温中的变化。由于封装在电弧管4内的汞量减小,从金属卤化物灯1释放的紫外线量减小,继而减小对于环境的影响。第三,本发明能够在不使用套筒等情况下防止外管3由于电弧管4破碎而造成的损坏。另外,由于本发明的金属卤化物灯1不需要套筒,可以消除用于套筒以及用于在灯中支承套筒的构件的材料成本,并且这可进一步造成操作成本减小。因此,可以实现低成本制造。另外,由于没有套筒阻碍从电弧管4发射的光线,可以防止灯的总光通量减小以及照明强度分布性能退化。另外,本发明在灯运输过程中没有由于套筒损坏而出现次品的情况。除此之外,由于节省套筒的空间和重量,本发明实现更轻和更小的金属卤化物灯。这造成金属卤化物灯的耐冲击性能得到改进。
希望的是外管3内的真空度在300K下是1×103Pa或更小。因此,减小电弧管4的热量经由封装在外管3内的气体传递到外管3并接着释放到金属卤化物灯1的外部。这继而防止照明效率减小。另一方面,在外管3内的真空度在300K下超过1×103Pa时,电弧管4的热量经由气体传递到外管3并释放到外部,并且因此可以减小照明效率。
注意到所述的第一实施例描述外管3是圆柱形的情况,但是本发明不局限于这种形状。通过具有图5所示的鼓胀部分的泪珠形外管3a,来实现相同的操作有效性。
所述的第一所述描述其中电弧管4具有圆柱形主管部分6的情况,但是本发明不局限于此。通过其主管部分6a例如大致是如图6所示的椭圆形的电弧管4a,可以实现相同的操作有效性。显而易见的是,在具有多种椭圆形主管部分6a的电弧管4a设置在泪珠形外管3a内的情况下,也可以实现相同的操作有效性。
第一实施例将具有150W的额定灯瓦特数的金属卤化物灯作为实例。但是,本发明可适用于具有从20W-400W的特定灯瓦特数的金属卤化物灯。
2.第二实施例图7表示按照本发明第二实施例的光源25。光源25例如用作天花板照明,并且包括主要照明主体30、第一实施例的金属卤化物灯1(具有150W的额定灯瓦特数)以及照明电路31。主要照明主体30包括反射器27、底座单元28和插口29。反射器27具有伞形形状,并且设置在天花板26内。底座单元28具有板状形状并且连接到反射器27的底部平面上。插口29在反射器27内放置在此底部平面上。在主要照明主体30内,金属卤化物灯1连接到插口29上。照明电路31在离开反射器27的一个位置上放置在底座单元28上。
注意到考虑到光源的应用以及使用条件,根据情况确定反射器27的反射表面32的形状等。虽然,在图7所示的实例中,没有设置在反射器27前部的前玻璃,按照应用,可以采用这种前玻璃。
照明电路31使用公知的电子镇流器。这里,采用常用的磁性镇流器来代替电子镇流器是不适当的。如上所述,封装的汞量减小造成灯电压减小,继而造成灯功率减小。在这种磁性镇流器用于照明电路31时,灯功率更容易受到灯电压减小的影响,并且趋于更容易降低。除此之外,灯功率的变化程度随着灯不同而不同。
因此,封装在电弧管(未示出)的金属的蒸汽压力可随着灯而变化,造成色温的变化。另一方面,在使用电子镇流器的情况下,灯电功率在很大范围的电压下保持恒定。因此,电弧管的温度控制成恒定,并且封装金属的蒸汽压力稳定。这进一步防止单独灯中的色温变化。
如上所述,由于使用所述的第一实施例的金属卤化物灯1,按照第二实施例的光源25的构造防止寿命期间由于灯电压升高而出现灯烧坏的情况,同时获得高的照明效率。
另外,这种构造可以在照明的开始阶段获得色温中的所需性能,并且抑止单独光源中色温的变化。因此,在同一空间内一起使用多个光源的情况下,光源能够使得整个空间具有一致的色温。
由于封装在电弧管内的汞量减小,从灯1中释放的紫外线量减小。这可以防止主要照明主体30等由于紫外线造成的退化,并同时减小对于环境的影响。
另外,本发明的光源25使用不需要套筒的金属卤化物灯1。因此,可以消除用于套筒和用于在金属卤化物灯1中支承套筒的构件的材料成本,并这造成操作成本减小。因此,可以实现低成本制造。另外,由于没有套筒阻碍从电弧管4发射的光线,可以防止灯的总光通量减小以及照明强度分布性能退化。
注意到第二实施例将其中光源25用作天花板照明的情况作为实例。但是,本发明不局限于这种应用,并且还可适用于其它类型的内部照明、商店照明和街道照明。另外,按照应用,本发明的光源25可采用多种公知的主要照明主体和照明电路。
工业实用性本发明的金属卤化物灯以及光源适用于需要在寿命期间防止由于灯电压升高而出现的灯烧坏的情况以及同时获得高的照明效率的情况。
权利要求
1.一种金属卤化物灯,包括由半透明陶瓷制成并具有其中布置有一对电极的主管部分的电弧管;以及其中容纳电弧管的外管;其中4.0≤L/D≤10.0,其中L是电极之间空间的长度,并且D是主管部分的内直径;R/r≥3.4,其中在外管和电弧管的径向上,在其位置与电极之间的空间相对应的区域内,在电弧管的外周边最靠近外管的内周边的截面上,R是外管的内直径,并且r是主管部分的外直径;以及M≤4.0,其中M(mg/cc)是封装在电弧管内的汞的密度。
2.如权利要求1所述的金属卤化物灯,其特征在于,R/r≤7.0。
3.如权利要求1所述的金属卤化物灯,其特征在于,卤化钠以及至少一种卤化铈和卤化镨封装在电弧管中。
4.如权利要求2所述的金属卤化物灯,其特征在于,卤化钠以及至少一种卤化铈和卤化镨封装在电弧管中。
5.如权利要求1所述的金属卤化物灯,其特征在于,外管内的真空度在300K下不大于1×103Pa。
6.如权利要求4所述的金属卤化物灯,其特征在于,电弧管布置在密封空间内;以及外管内的真空度在300K下不大于1×103Pa。
7.如权利要求1所述的金属卤化物灯,其特征在于,电弧管的外表面直接面向外管的内表面。
8.一种光源,包括如权利要求1-7任一项所述的金属卤化物灯;以及用于点亮金属卤化物灯的照明电路。
全文摘要
本发明旨在提供一种金属卤化物灯,该灯具有一种构造以实现以下目的在额定寿命期间防止由于灯电压升高而造成金属卤化物灯烧坏,并且同时获得高照明效率。金属卤化物灯(1)包括由半透明陶瓷制成并具有其中布置有一对电极(14)的主管部分(6)的电弧管(4);以及其中容纳电弧管(4)的外管(3);其中,4.0≤L/D≤10.0,其中L(mm)是电极(14)之间空间的长度,并且D(mm)是主管部分(6)的内直径;R/r≥3.4,其中在外管和电弧管的径向上,在其位置与电极(14)之间的空间相对应的区域内,在电弧管(4)的外周边最靠近外管(3)的内周边的截面上,R(mm)是外管(3)的内直径,并且r(mm)是电弧管(4)的主管部分(6)的外直径;以及M≤4.0,其中M(mg/cc)是封装在电弧管(4)内的汞的密度。
文档编号H01J61/12GK1898769SQ20048003841
公开日2007年1月17日 申请日期2004年12月20日 优先权日2003年12月22日
发明者柿坂俊介, 野原浩司, 打保笃志, 金泽有岐也 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1