具有最佳加工脉冲持续时间的电化学加工方法

文档序号:3167238阅读:150来源:国知局
专利名称:具有最佳加工脉冲持续时间的电化学加工方法
技术领域
本发明涉及一种使用电化学加工装置电化学加工导电工件的方法,该装置包括与在填充有电解质的预定加工间隙上的工件相对的工具电极,该电化学加工装置还包括在该加工间隙上供应加工电压脉冲的装置。
本发明还涉及一种用于通过在该工件和导电电极之间施加电加工脉冲并同时在该工件和该电极之间供应电解质来电化学加工导电工件的配置。
电化学加工是一种工艺,其中导电工件在供应电解质和电流的同时在电极的位置上溶解。为此,该电极位于该工件的附近,并在电解质输入该工件和该电解质之间的同时,强电流流经该电解质通过该工件和该电极,该工件相对于该电极为正性。电流以加工脉冲的形式施加,该脉动具有给定的幅值和持续时间。在加工脉冲之间的间隔中更换电解质。在操作条件下,工件溶解,因此增加该工件和该电极之间的间隙的大小。为对此进行补偿,该电极和该工件以给定送进速率相对运动,因此该电极在该工件表面形成空腔或逐渐形成孔,该空腔或孔的形状与电极的形状相对应。使用此工艺例如在成形坚硬的金属或合金中或为其制成复杂的空腔或孔。工件中的空腔或孔的形状与该电极的的形状相对应的复制精度对于成品的品质至关重要。
一种用于电化学加工的方法已知于专利申请公开号WO 99/51382中。按照已知方法,在加工脉冲之间的间隔中,仔细施加用于在工件上沉积钝化层的钝化脉冲。通过适当选择钝化脉冲的幅值和持续时间,可控制钝化脉冲的空间分布。相对于空腔前表面处的钝化层,最好所得到的钝化层在所得到的空腔的横向表面处具有更大厚度。在这种情况下,相对于横向表面,前表面处的溶解速率将更高,从而导致更好的复制精度。
改善该复制精度的已知方法的缺陷在于以下困难,该困难与选择钝化脉冲特性值以及与相对于该空腔的前和横向表面选择间隙尺寸以便获得非均匀分布的钝化层相关。钝化层的形成受局部电场强度影响。由于电极曲率以及阴极表面上沉积物造成该电场的不均匀,不能产生用于最佳复制精度的操作条件。
本发明的目的在于提供一种具有进一步改进的复制精度的电化学加工方法,其中可最佳控制该工艺。为此,开头段落中限定的此类型的方法的特征在于在该加工间隙上预定最佳持续时间内施加第一数量的加工电压脉冲后在该加工间隙上交替施加第二数量的测量电压脉冲以便测量该加工间隙的实际值。
按照本发明的技术方案并根据电化学加工间隙的基本共识,对于间隙的每一预定值,具有单一的与最佳局部复制精度相对应的最佳脉冲持续时间。应该理解,例如在相邻的具有各自不同的深度的空腔的情况下,如果局部溶解效率显著变化,可实现最大的复制精度。这种最佳操作条件对于该间隙的某一值有效。通过交替使用加工脉冲和测量脉冲,在电化学加工期间可以在线获得该间隙尺寸的准确信息。如果该间隙尺寸测量表示出与偏离预设值的值,可以通过将该间隙返回预定值或选择与用于该测量到的实际间隙值的最佳脉冲持续时间相对应的另一加工脉冲持续时间来改变操作条件。重要的是要提到,如果该间隙值的测量结果正向偏离该预定值,最好通过将该间隙值降低到该预定值来将该系统设置返回到最佳操作条件下。
本发明方法的一实施例的特征在于该加工电压脉冲的最佳持续时间取决于用于该加工间隙预定值的局部系数的最大值。此技术特征基于以下共识,即在相邻空腔的情况下,与局部溶解速率的比值相对应的最大局部系数导致最佳复制精度。进一步理解的是局部阳极溶解速率通过局部电流密度值给出,产生的结果是局部系数(L)通过作为时间和该间隙值的函数的局部电流密度值J(τ,s1)的比值给出L=J(τ,s1)J(τ,s2),.......(1)]]>其中s1是与该第一空腔相对应的间隙值s2是与该第二空腔相对应的间隙值。
因此,为了计算局部系数值,充分使用关于作为该间隙函数的电流密度的时间行为的信息。进一步的细节在下面参考



本发明方法的另一实施例的特征在于测量电压脉冲的持续时间大于加工电压脉冲的持续时间,所选择的测量电压脉冲的持续时间对于该加工间隙上的电流密度脉冲至少是足够的以便达到总体最大值。此技术方案基于以下基本共识,即与电流密度脉冲相对应的时间是时间电压和该间隙的绝对值的函数。对于施加电压的给定值,与电流密度脉冲的总体最大值相对应的时间是该间隙绝对值的直接测量结果。如参考附图详细说明,加工电压脉冲的最佳脉冲持续时间短于于该电流密度脉冲的最大值相对应的时间。因此,测量电压脉冲的脉冲持续时间必须选择成使得电流密度脉冲达到总体最大值。从先前测量中已知实际的间隙尺寸并使用该实际间隙尺寸和相应的最佳加工电压脉冲之间的关系的信息,可选择测量脉冲的持续时间使得间隙上的所得电流密度脉冲达到其总体最大值。该测量电压脉冲的极性最好与该加工电压脉冲的极性相对应。
本发明方法的另一实施例的特征在于加工间隙值在加工间隙实际值偏离加工间隙预定值的情况下得以修正。由于该间隙的预定值选择成以便实现工件更好溶解和表面质量,最好在测量结果表示该间隙的实际值不同于预定值的情况下修正该间隙值的偏差。此间隙修正可采用电化学加工装置中可得到的电极驱动装置实现。
本发明方法的另一实施例的特征在于加工电压脉冲之间的间隔设定在足以更换加工间隙中的电解质的数值上。按照此技术方案,可确保完全恢复该间隙内的操作条件。已经发现在包括5%NaCl的电解质并且30μm间隙值的操作条件、所施加电压50V以及电解质压力为300kPa时,电流密度的幅值在300μs后实现恢复,同时600μs后得以恢复脉冲波形。进一步发现实现电解质更换600μs后,电解质流速等于3m/s。
本发明方法的又一实施例的特征在于加工电压脉冲之间的间隔值取决于一系统参数,该参数包括该加工间隙上的电流密度脉冲的幅值和电流密度脉冲达到该幅值所流逝的时间。已经发现加工脉冲之间的间隔减小首先导致沿该电解质流动溶解速率的不同,随后产生两个分开的区域。在第一区域内在新的电解质内施加每一新的加工脉冲,并在第二区域内将每一新的加工脉冲施加包括气相的加热的电解质中。此现象造成第二区域内的点蚀,损害该工件的表面质量。因此,结果是为了选择该加工脉冲之间的间隔更有效地使用一系统参数,该参数包括该加工间隙上的电流密度脉冲幅值和该电流密度脉冲达到该幅值所流逝的时间。
本发明还涉及一种用于通过在该工件和该导电电极之间施加电加工脉冲电化学加工导电工件并同时在该工件和该电极之间供应电解质的配置。
本发明的这些方面以及其他方面将参考


图1表示作为施加在该间隙上的电压函数的该间隙上的电流密度脉冲的示意图;图2表示等效电路以便表示用于电化学电池的放电电路;图3表示该间隙中的计算电流密度脉冲与测量值的比较图;图4表示该加工脉冲的最佳持续时间和作为该间隙尺寸值函数的电流密度脉冲的总体最大值的位置;图5表示作为该施加电压脉冲周期函数的间隙中的电流密度脉冲的形状;图6表示用于电化学加工导电工件的配置的示意图;图7表示该工艺控制装置的示意功能方框图。
图1中对于固定间隙值和矩形电压脉冲的不同幅值给出特性电流密度脉冲。增加所施加电压绝对值导致该电流密度脉冲的最大值增加,并在更短时间内达到该最大值。如图1所示,电流密度脉冲中的极值,具体指该总体最大值,增大超过所施加电压脉冲的某一值。此总体最大值是由于该间隙中两个对立的现象首先是电解质中的高度加热,其次是电解质中气相的连续增长。进一步理解到电流密度脉冲的总体最大值的绝对值由电压脉冲和该间隙值的绝对值确定。这两个因素的影响对于小间隙尺寸和电压脉冲的高幅值是主要的,例如间隙尺寸在s=20~30μm的范围内,所施加电压大约是90V。
图2表示用于模拟电化学电池放电电路的等效电路。在此模型的框架中,作出以下假设该电解质是二相连续介质;该气相包括由于H电解产生的氢;由于电解质的粘度,该气相在该间隙中增加另外的压力;该电解质的加热是绝热的;该电极电位是恒定的并等于其平稳值。
通过采用基本电化学知识,本领域技术人员可推断该电流的公式,如图2所示 di2dt=1RaCa(i1-i2),......(3)]]>di4dt=1RfCf(i1-i4),......(4)]]>di6dt=1RkCk(i1-i6)..........(5)]]>其中U是所施加的加工电压;Ra,k分别是阳极和阳极反应等效Faraday电阻;Rg是该间隙内电解质层的电阻;Rf是阳极上氧化物层的电阻;Cf是该阳极上的氧化物层的等效电容;Ca,k分别是阳极和阴极的双电层的电容;Rc是该电缆的电阻;Lc是该电缆的电感;φa,k分别是阳极和阴极的电位。
根据此模型,电流密度脉冲制成表格并与实验结果比较(分别是图3的曲线1,2)。由于电流密度脉冲1的列出值与该间隙上所测量电流密度脉冲2良好的相关性,可以使用该模型使得局部系数(L)最佳。从等式中可推断用于局部参数L的斜率参数K,如下给出KL(τ,s)=-d(Jcp(τ,s))ds,.....(6)]]>Jcp(τ,s)=∫0τJ(t,s)dtτ.......(7)]]>τ表示电流密度脉冲的持续时间J(τ,s)表示从该模型中获得的电流密度函数。
斜率参数K可进一步用于例如加工电压脉冲的持续时间的工艺参数的最佳化以便得到最大的局部系数。例如,对于该间隙的给定值的最佳脉冲持续时间必须满足以下条件∂K(τ,s)∂τ=0;........(8)]]>∂2K(τ,s)∂τ2<0......(9)]]>条件(8)和(9)限定s-t座标系中最佳的曲线(由图2中实线1给出),其中每一s-t组合的局部系数值是最大的。使用此曲线对于每个加工间隙的某一值可获得最佳加工脉冲的持续时间。如图4所示,对于给定的间隙尺寸,由曲线1给出的最佳加工脉冲持续时间小于电流密度脉冲足以达到由曲线2给出的总体最大值的脉冲持续时间。此现象进一步使用在用于电化学加工配置的工艺控制装置的实施例中。
图5表示作为所施加的加工电压脉冲周期函数的间隙上的电流密度脉冲的形状。所得到的电流密度脉冲的形状给出关于电解质在施加电压脉冲之后恢复的信息。已经发现加工脉冲之间的间隔减小首先导致沿该电解质流动溶解速率的不同,随后产生两个分开的区域。在第一区域内在新的电解质内施加每一新的加工脉冲,并在第二区域内将每一新的加工脉冲施加包括气相的加热的电解质中。此现象造成第二区域内的点蚀,损害该工件的表面质量。因此,结果是为了选择该加工脉冲之间的间隔更有效地使用一系统参数,该参数包括该加工间隙上的电流密度脉冲的幅值和该电流密度脉冲达到该幅值所流逝的时间。对于30μm的间隙并施加50V电压,其中电解质压力P=300kPa,已经发现在至少300μs之后该系统出现充分的恢复。
图6表示用于通过电极3电化学加工导电工件2的配置1的示意图。配置1包括定位工件2的底部6,用于定位电极3的保持器7和用于使保持器7和底部6相互运动的致动器8。底部6和致动器8安装在具有刚性结构的底盘9上使得电极3和工件2之间的工作距离高精确地设定。该配置还包括以如下方式填充电解质5的储槽10,使得由于电极3和工件2之间工作距离而形成的间隙4由电解质5填充。在当前情况下,电解质包括溶解在水中的NaNO3。作为选择,可以使用其他的电解质,例如NaCl或NaNO3和酸的组合。电解质5通过未在图中示出的装置泵送通过间隙4。通过配置1,工件2可通过来自电力供应单元40的加工电压脉冲通过电极3和工件2之间的间隙4中的电解质5加工。电力供应单元40包括电压脉冲产生器41和可控制开关43。当所施加的加工电压的极性正确时,这导致工件2的材料从其表面除去并溶解在位于该电极和该工件之间小距离的位置处的电解质5中。因此所得到空腔的形状由与之相对的电极的形状确定。该配置还包括工艺控制装置20以便确定该间隙值的实际尺寸,并且一方面当该间隙值出现偏差时将该间隙值设定回到该预定值上,而且另一方面施加最佳加工电压脉冲和测量电压脉冲。由电力供应单元施加在该间隙上的电压脉冲持续时间由工艺控制装置20通过未在图中示出的并操作开关43的计算单元确定和控制。
图7表示工艺控制装置20的示意功能方框图。脉冲电力供应产生器21产生与按照图4设定间隙的预定值相对应的最佳持续时间的加工电压脉冲。对于电流密度值在1000~20000A/cm2范围内并且电压脉冲前沿的持续时间小于1000nc,可获得由微秒持续时间电压脉冲进行电化学加工的技术优势。最好使用现有技术已知的用于作为该间隙值函数的最佳脉冲持续时间的速查列表的值,该值存储在速查标准表中。这些预定值可作为用于给定设定的标定测试的结果获得,或者可使用上述模型计算得出。所施加的电压脉冲的脉冲持续时间由脉冲控制单元26控制。对于加工电压脉冲的周期,脉冲控制单元26按照速查标准表中的数据设定最佳电压脉冲持续时间。脉冲控制单元还操作图中未示出的电力供应产生器的开关。然后,该电压脉冲在施加在间隙22上,导致电流密度脉冲在该间隙上增加,如图1具有总体最大值的曲线示意所示。电流密度脉冲由分路器23检测并供应到计算单元24。由分路器23测量的电流密度脉冲构成进一步使用在工艺控制装置20中的控制信号。为了测量实际间隙尺寸,测量组件27结合在工艺控制装置20中。此组件确定测量样品的频率。对于与测量样品相对应的时间间隔,测量组件27给脉冲控制单元26输入信号以便相对于加工电压脉冲增加电压脉冲的持续时间。电压脉冲的持续时间由计算单元24根据先前间隙测量数据以及电流密度脉冲达到总体最大值的时间的信息来选择。当测量电压脉冲输入间隙22中,相应的电流密度脉冲由计算单元24分析并且确定相应的达到该总体最大值的实际流逝时间。根据这些数据,计算单元24使用速查标准表的数据计算间隙的实际值。
计算装置24根据速查标准表计算该间隙的实际值,该标准表包括间隙值、最佳脉冲持续时间和电流密度脉冲达到总体最大值的流逝时间之间的关系。然后,计算装置24将此值与该间隙的预定值比较,如果检测有偏差,计算间隙修正值。为修正实际间隙值的偏差,修正信号由计算单元24输送到致动器25,确定电极和工件之间的工作距离。在此操作完成之后,脉冲控制单元26设置与加工电压脉冲的最佳值相对应的电压脉冲持续时间并进行工件的电化学加工。按照此实施例,可以使用最佳加工电压脉冲加工工件,改进了最终产品的复制精度。由于可以交替使用加工脉冲和测量脉冲,可以在线检测例如该间隙实际值的操作条件。修正该间隙的实际值与预定值的偏差导致工件的加工最大限度地在最佳模式中进行。此特征使得构造上述类型的自动化的工艺控制,以便进一步使得电化学加工的在线工艺控制最佳化。
权利要求
1.一种使用电化学加工装置(1)电化学加工导电工件(2)的方法,该装置包括与工件(2)相对的工具电极(3),该工件在填充有电解质(5)的预定加工间隙(4)上,该电化学加工装置还包括在加工间隙(4)上供应加工电压脉冲的装置(40),所述方法其特征在于,在该加工间隙上预定最佳持续时间内施加第一数量的加工电压脉冲后在该加工间隙上交替施加第二数量的测量电压脉冲以便测量该加工间隙(4)的实际值。
2.如权利要求1所述的方法,其特征在于,该加工电压脉冲的最佳持续时间取决于由于该加工间隙预定值的局部系数的最大值。
3.如权利要求1或2所述的方法,其特征在于,该测量电压脉冲的持续时间大于该加工电压脉冲的持续时间,该测量电压脉冲的持续时间选择成在该加工间隙上的电流密度脉冲至少足以达到该总体最大值。
4.如权利要求3所述的方法,其特征在于,确定与该电流密度脉冲的总体最大值相对应的流逝时间的数值,并且该加工间隙的实际值取决于所述数值。
5.如权利要求4所述的方法,其特征在于,该加工间隙的数值在该加工间隙的实际数值偏离该加工间隙的预定数值的情况下进行修正。
6.如上述权利要求任一项所述的方法,其特征在于,该加工电压脉冲之间的间隔设定在足以更换该加工间隙中的电解质的数值上。
7.如权利要求6所述的方法,其特征在于,该加工电压脉冲之间的间隔的数值取决于一系统参数,该参数包括在该加工间隙上的电流密度脉冲的幅值和该电流密度脉冲达到该幅值所流逝的时间。
8.一种通过在工件(2)和导电电极(3)之间施加电加工脉冲并同时在工件(2)和电极(3)之间供应电解质(5)来电化学加工导电工件(2)的配置(1),其特征在于,该配置包括一电极(3);用于在空间关系上定位电极(3)和工件(2)以便保持该电极和工件之间的间隙的装置(6,7,8,9);用于将电解质(5)供应到间隙(4)中的装置(10);一可电连接在电极(3)和工件(2)上以便为该工件和电极供应电力的电力供应源(40);用于在测量电压脉冲期间产生控制信号的装置(23);根据控制信号(23)驱动用于在空间关系上定位电极(3)和工件(2)的装置(7,25)以便保持间隙(4)的预定数值的工艺控制装置(20)。
9.如权利要求8所述的配置(1),其特征在于,工艺控制装置(20)包括电力供应控制装置(26,43)和根据控制信号(23)计算间隙(4)的实际数值的计算装置(24)。
10.如权利要求9所述的配置(1),其特征在于,间隙(4)、最佳脉冲持续时间和电流密度脉冲达到该总体最大值所流逝的时间之间的关系对于该计算装置可在速查标准表中得到。
全文摘要
对于电化学加工工件,具有与最大复制精度相对应的加工脉冲的最佳脉冲持续时间。这种最佳脉冲持续时间与间隙的某一值相对应。通过交替使用加工脉冲和测量脉冲,可以在电化学加工过程中获得关于间隙尺寸的准确信息。工艺控制装置(20)用来进行自动电化学加工,同时保持在最佳模式中。为此工艺控制装置(20)包括脉冲控制单元(26)以便建立施加在间隙(4)上的电压脉冲的脉冲持续时间。
文档编号B23H3/02GK1462217SQ02801536
公开日2003年12月17日 申请日期2002年4月23日 优先权日2001年5月8日
发明者A·蔡特塞夫, S·贝兹罗科夫, I·L·阿加福诺夫, A·L·贝洛戈尔斯基, M·斯米尔诺夫, V·直特尼科夫 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1