用于生产铝活塞的方法

文档序号:3308179阅读:179来源:国知局
用于生产铝活塞的方法
【专利摘要】本发明涉及用于生产内燃机用铝活塞(1)的方法,所述铝活塞至少在碗边缘(4)的区域和/或碗底部(3)的区域经过焊接处理以将至少一种额外元素引入铝活塞(1)的底部材料以及产生金属间相(6)。本发明重要的是,通过焊接方法将至少一种下列额外元素以特定浓度引入,即1-7wt.%Ni、1-15wt.%Cu和0.5-5wt.%Fe。因而能够生产尤其精细和有利形成的金属间相(6),金属间相有助于增加铝活塞(1)的耐热机械性。
【专利说明】用于生产铝活塞的方法

【技术领域】
[0001]本发明涉及用于生产内燃机用铝活塞的方法,根据权利要求1前序部分,所述铝活塞至少在碗边缘和/或碗底部的区域经过焊接处理。本发明还涉及使用这种方法所生产的铝活塞。

【背景技术】
[0002]铝活塞在碗状区域的再熔化是显著增加铝活塞的强度、因此还增加服务寿命时间的一种可行方式。但是,这种再熔化处理受限,因为尤其在活塞受到高热应力的情形下已经显示的是,在聚焦光束区域中会产生肉眼可见程度的表面破坏。微镜检测揭示了,破坏是由于热机械疲劳,破裂主要发生在初晶硅和铝矩阵之间的相界。破坏归因于两个原因。第一个原因是初晶硅/铝矩阵相界代表了材料的强度方面的弱点,其因两个相的不同热膨胀系数而恶化。第二个原因是,高温引起硅骨架的变形和退化,从而导致合金的强度局部降低,最终由于温度变化使得更容易发生破裂。为了获得尽可能高的耐热机械破裂,因此期望的是防止该影响,或者至少减轻该影响。
[0003]EPl 386 687B1公开了一般类型的用于生产铝活塞的方法,其中使用电弧焊接方法执行焊接处理,在焊接处理之后将活塞以ΙΟΟ-ΙΟΟΟΚ/s速度冷却。发现的是,增加冷却速度可引起熔化物中的结晶颗粒的细度增加。总之,利用公知方法可实现提高耐热疲劳性。
[0004]DElO 2005 034 905A1公开了用于生产内燃机用活塞的额外方法,其中燃烧室碗的至少一个区域包括至少一个碗底部,对所述至少一个区域焊接处理,以再熔化焊接处理区域的材料,这意味着焊接处理区域中积累的材料能够控制在具有特定深度的层中。
[0005]用于生产活塞的其他方法公知于DE199 02 864A1和DE691 02 313T2。
[0006]DE600 22 845T2还公开了用于加强内燃机的铝活塞的方法,所述方法包括通过熔化将包含铜和镍的合金施加在燃烧室碗的边缘或者周边的至少一个段上。
[0007]公知的是,通过添加铜、镍、铁、镁和其他元素以及结果形成的金属间相来增加AlSi活塞合金的强度。这些合金元素的比例越高也可引起更高强度。在热机械应力下,强度的增加代表最小化循环塑性应变,这意味着在热机械应力下这种材料以更高弹性和更少塑性的方式变形,这有益于服务寿命。但是,合金元素的增加受到限制,因为尤其随着合金元素量N1、Cu和Fe的增加,形成的金属间相趋于变大或者具有粗针或者裂片的形式。这些具有有害效应,因为获得了脆性材料行为,因而极大地降低了耐久性。这消除了上述优势,或者取决于合金成分甚至会使上述情况更严重。但是,为了合金的适当耐久性,在结构中绝对需要以尽可能细微分散的方式生成金属间相。该问题的公知方案是增加凝固速度,因为在更高凝固速度下,金属间相生长时间更少,从而发展成更精细的结构。但是,在用于活塞生产的重力压铸处理中,凝固速度仅能够在限度内增加,该限度通常设定得低,使得技术上可行的凝固速度不适于生产具有更高比例铜、镍或者铁的充分精细的结构,而不允许发展粗化的金属间相。为了避免该问题,因此,尤其在铝活塞的情形下通过局部焊接方法来生产期望合金。此处的优势在于,由于铝活塞充当散热片,相对小熔池的热量能够非常快的消散,这导致形成了显著更精细的金属间相。但是,实践中已经显示的是,虽然总体上获得了金属间相的增加细度,但是这结合了两个反效应。首先是,生成了大型的硬金属间相的绝缘发生,由于它们的尺寸,这不得不被视为是非常不利的。其次,非常大的碎片状金属间相形成的数量增加了,因此这些是非常不期望的。除了其他方面,导致形成材料的微结构的因素还取决于添加剂、在熔池中其浓度和分配、底部材料、能量输入水平、所使用的焊接方法等。


【发明内容】

[0008]因而本发明关注克服现有技术的公知缺点的问题,尤其是极大地降低或者完全消除大型粗针状或者碎片状金属间相,因而在处理区域获得更高耐热疲劳性。
[0009]该问题根据本发明通过独立权利要求的主题解决。有利实施例是从属权利要求的主题。
[0010]本发明是基于总体构思:生产内燃机用公知铝活塞,所述活塞至少在碗边缘和/或碗底部的区域经过焊接处理以将至少一种额外元素引入铝活塞的底部材料以及生成金属间相,特别选择额外元素或者添加剂材料,优选地,为了引入额外元素,使用每单元长度电弧能量与焊缝熔深面积具有预定比E/A的焊接处理。根据本发明,使用焊接处理将至少一种下列额外元素以特定浓度引入,即l-7wt.% N1、l_15wt.% Cu和/或l_5wt.% Fe。此夕卜,在根据本发明的方法中,能够使用一个以下焊接处理:电弧焊接,诸如钨极惰性气体保护焊(TIG),其E/A = 7-17J/mm3 ;或者等离子焊接(WP),其E/A = 6_16J/mm3 ;激光束焊接,其E/A = 80-90J/mm3 ;或者电子束焊接,其E/A = 5_15J/mm3。不考虑提到的焊接方法的效率损失,例如由于热辐射、反射等引起的。尤其,由于上述提到的具有对应电弧能量/焊缝熔深面积比E/A的焊接方法以及上述提到的额外元素和对应浓度的组合,能够产生微结构,其中相应的金属间相理想地具有的最大纵向延伸L〈50微米,因此是非常精细的结构。
[0011]可替换地,为了引入额外元素或者添加剂材料,能够使用每单元长度具有限定的电弧能量E(J/mm)的焊接方法,在该情况下,元素应该优选被预加热。根据本发明,使用焊接处理将至少一种下列额外元素以特定浓度引入,即l_7wt.% NiU-15wt.% Cu和/或0.5-5wt.% Fe。在进一步优选实施例中,添加剂金属能够包含0.5-lwt.% Fe。
[0012]此外,在根据本发明的方法中,能够使用一个以下焊接处理:电弧焊接方法,诸如钨极惰性气体保护焊(TIG),其E = 150-450J/mm ;或者等离子焊接(WP),其E = 250-700J/mm ;激光束焊接,其E = 100-400J/mm ;或者电子束焊接,其E = 500-900J/mm,元素优选被预加热至100-300°C之间的温度。尤其,通过上述提到的每单元长度具有给定电弧能量的焊接方法与经预加热的给定额外元素及关联浓度的组合,能够设定出微结构,其中相应的金属间相理想地具有的最大纵向延伸L〈50微米,因此是非常精细的结构。
[0013]总之,防止现有技术的公知负效应与多个处理参数关联,这些参数彼此以不同程度相互作用。更加惊讶的是,尽管有上述复杂关系,但是能够确定处理窗口,这允许产生具有精细分布的金属间相的结构,还不包括粗针状、碎片状或者大面积的金属间相。由于不存在这种粗化的金属间相,当提高固有强度时,也不会特别不利地影响耐久性。在高温下,力口载精细分布的内金属相助于支撑模具中发展的初晶硅粒子,因此可稳定硅骨架。
[0014]在有利的延伸方案中,根据本发明使用焊接处理添加的额外元素的浓度是:2-7wt.% Ni>3-15wt.% Cu>l-5wt.%或.5_5wt.% Fe。这进一步限制了先前段落描述的各额外元素的浓度,意味着能够实现强度的进一步增加。当然完全明显的是,上述提到的元素镍、铜和铁可以不仅组合添加,而且可以以相应的浓度单独添加。
[0015]在根据本发明的方法的有利延伸方案中,底部材料用于铝活塞,具有以下成分:A160-90wt.% > Si8-20wt.% > Cu2-6wt.% > Ni l-4wt.% 以及 Mg0.2-2wt.% ? 特别优选地,将元素限制为如下:A175-85wt.Sil0-13wt.Cu3.5-5wt.Nil.5-2.5wt.% 以及Mg0.5-1.5wt.%。此外,底部材料当然能够包含其他小比例的铁、锰、钛、锆、钙、锶、钠、磷和钒,它们尤其呈微量元素的形式,而且可以以选择性地方式添加。尤其,这种铝合金尤其对内燃机(尤其柴油机)操作中发生的高热力和机械力有耐力。
[0016]本发明的其他关键特征及优势见于从属权利要求、附图和基于附图的相关说明。
[0017]毫无疑问,上述提到的特征及以下将解释的这些特征能够不仅以对应特定组合应用,而且可以其他组合应用,或者单独应用,这并不超出本发明的范围。

【专利附图】

【附图说明】
[0018]本发明优选示范实施例示出于附图,在以下说明中更详细地解释。
[0019]图1示出了使用根据本发明的方法将额外元素引入活塞的碗边缘。

【具体实施方式】
[0020]根据图1,通过根据本发明的方法生产的铝活塞I具有面向燃烧室(未详细示出)的碗2,碗2具有碗底部3和碗边缘4。绕着周边,环形凹槽5以公知方式设置用于接收活塞圈(未不出)。
[0021]现在为了使铝活塞I更加有耐力,尤其在处于高热力和机械应力的区域,即在碗底部3和/或碗边缘4的区域,通过根据本发明的方法将至少一种额外元素引入铝活塞I的底部材料,从而生产金属间相6。利用根据本发明的焊接方法,将至少一种下列额外元素以特定浓度引入碗边缘4和/或碗底部3,即l-7wt.% N1、l-15wt.% Cu和l-5wt.% Fe。Ni浓度优选限制为2-7wt.%, Cu浓度为3-15wt.%。而且,使用具有特定电弧能量/焊缝熔深面积比E/A(J/mm3)的以下焊接方法之一作为焊接方法:电弧焊接,诸如钨极惰性气体保护焊(TIG),其E/A = 7-17J/mm3 ;或者等离子焊接(WP),其E/A = 6_16J/mm3 ;激光束焊接,其 E/A = 80-90J/mm3 ;或者电子束焊接,其 E/A = 5_15J/mm3。
[0022]在另一实施例中,使用根据本发明的焊接方法将至少一种下列额外元素以特定浓度引入碗边缘4和/或碗底部3,即l-7wt.% N1、l-15wt.% Cu和0.5-5wt.% Fe。Ni浓度优选限制为2-7wt.%,Cu浓度为3-15wt.%。而且,使用具有特定电弧能量/焊缝熔深面积比E/A(J/mm3)的以下焊接方法之一作为焊接方法:电弧焊接,诸如钨极惰性气体保护焊(TIG),其 E/A = 150-450J/mm3 ;或者等离子焊接(WP),其 E/A = 250-700J/mm3 ;激光束焊接,其 E/A = 100-400J/mm3 ;或者电子束焊接,其 E/A = 500-900J/mm3。
[0023]应该增加的是,额外元素能够不仅以特定组合引入碗底部3或者碗边缘4,而且可以各自的相应浓度单独引入。
[0024]使用根据本发明的焊接方法,考虑显示的额外元素的浓度以及考虑焊接方法的类型,能够生产金属间相6,其理想地最大纵向延伸L〈50微米,这意味着金属间相总体上是非常精细的结构,从而能够防止尤其粗针状或者碎片相。由于不存在粗化结构特性,诸如粗针状相,具有增加的固有强度的情况下,不会负面地影响耐久性,因此在高温下,精细分布的金属间相6助于支撑模具中发展的初晶硅粒子,因此还可稳定硅骨架。
[0025]用于铝活塞I的底部材料能够具有如下成分:60_90wt.% Al、8_20wt.% S1、2-6wt.% Cu、l-4wt.% Ni 和 0.2-2wt.% Mg。优选的是,将成分 Al 限制为 75-85wt.%,Si 成分为 10-13wt.%,成分 Cu 为 3.5-5wt.%,成分 Ni 为 1.5-2.5wt.%,成分 Mg 为
0.5-1.5wt.%。当然,铝活塞I的底部材料能够补充有其他元素,例如呈微量元素的形式,或者还以目标方式添加,诸如Fe、Mn、T1、Zr、Ca、Sr、Na、P和/或V,每个元素的浓度都〈lwt.%。在焊接处理期间,额外元素N1、Cu和/或Fe能够例如以粉末或者金属丝的形式直接添加至熔池,其中,额外元素当然能够在焊接处理本身之前使用热喷涂、冷气喷涂、箔、粘附、电流或者化学沉积施加至铝活塞I的底部材料。
[0026]利用根据本发明的焊接方法和该方法中所使用的焊接参数或者额外元素,能够生成尤其精细的金属间相6,同时能够防止尤其粗针状或者碎片状相,这允许以这种方式生产的铝活塞I的耐久性显著增加。
【权利要求】
1.一种用于生产铝活塞(I)的方法,所述铝活塞(I)用于内燃机,至少在碗边缘(4)和/或碗底部(3)的区域经过焊接处理以将至少一种额外元素引入所述铝活塞(I)的底部材料以及产生金属间相¢),其特征在于, 通过焊接方法将至少一种下列额外元素以特定浓度引入,即l_7wt.% NiU-15wt.%Cu 和 l-5wt.% Fe。
2.一种用于生产铝活塞(I)的方法,所述铝活塞(I)用于内燃机,至少在碗边缘(4)和/或碗底部(3)的区域经过焊接处理以将至少一种额外元素引入所述铝活塞(I)的底部材料以及产生金属间相¢),其特征在于, 通过焊接方法将至少一种下列额外元素以特定浓度引入,即l_7wt.% NiU-15wt.%Cu 和 0.5-5wt.% Fe。
3.根据权利要求1或者2的方法,其特征在于, 使用每单元长度的电弧能量输入/焊缝熔深面积E/A(J/mm3)为特定比的以下焊接方法之一作为焊接方法:电弧焊接,诸如钨极惰性气体保护焊(TIG),其E/A = 7-17J/mm3 ;或者等离子焊接(WP),其E/A = 6-16J/mm3 ;激光束焊接,其E/A = 80-90J/mm3 ;或者电子束焊接,其 E/A = 5-15J/mm3。
4.根据权利要求2的方法,其特征在于, 使用以下方法之一作为每单元长度具有特定能量输入E (J/mm)的焊接处理:电弧焊接,诸如钨极惰性气体保护焊(TIG),其E = 150-450J/mm;或者等离子焊接(WP),其E =250-700J/mm,激光束焊接,其E= 100-400J/mm ;或者电子束焊接,其E = 500-900J/mm,其中,将各成分优选预加热至室温之上的温度,尤其理想的温度范围为100-300°C。
5.根据权利要求1至4中任一项的方法,其特征在于, 通过所述焊接方法将至少一种以下额外元素以特定浓度引入,即2-7wt.% N1、3-15wt.% Cu 和 l_5wt.% Fe。
6.根据权利要求2或者4的方法,其特征在于, 通过所述焊接方法将至少一种以下额外元素以特定浓度引入,即2-7wt.% N1、3-15wt.% Cu 和 0.5-lwt.% Fe。
7.根据权利要求1至6中任一项的方法,其特征在于, 通过所述焊接方法产生的所述金属间相(6)为最大纵向延伸L〈50微米。
8.根据权利要求1至7中任一项的方法,其特征在于, 对于所述铝活塞(I)使用具有以下成分的底部材料:A1 60-90wt.%,Si8-20wt.%, Cu2-6wt.%, Ni l-4wt.% 以及 Mg 0.2-2wt.% ?
9.根据权利要求1至7中任一项的方法,其特征在于, 对于所述铝活塞(I)使用具有以下成分的底部材料:A1 75-85wt.%, Sil0-13wt.%,Cu 3.5-5wt.%, Ni 1.5-2.5wt.% 以及 Mg 0.5-1.5wt.%。
10.根据权利要求1至9中任一项的方法,其特征在于, 所述铝活塞(I)的底部材料补充有至少一种额外元素:Fe、Mn、T1、Zr、V、CA、SR、Na、P,每种元素的浓度均〈lwt.%。
11.根据权利要求1至10中任一项的方法,其特征在于, 在焊接处理期间,将至少一种额外元素以粉末或者金属丝的形式直接添加至熔池。
12.根据权利要求1至11中任一项的方法,其特征在于, 在焊接处理本身之前,使用热喷涂、冷气喷涂、箔、粘附、电流沉积或者化学沉积将至少一种额外元素施加至底部材料。
13.根据权利要求1至12中任一项的方法,其特征在于, 使用金属惰性气体保护焊、激光等离子粉末混合焊接或者激光器-MIG混合焊接作为上述焊接方法。
14.一种内燃机用铝活塞(I),其至少在碗边缘(4)和/或碗底部(3)的区域使用根据权利要求1至13中任一项所述的方法。
【文档编号】C23C4/04GK104185529SQ201380015160
【公开日】2014年12月3日 申请日期:2013年3月25日 优先权日:2012年3月28日
【发明者】卡尔海因茨·宾, 托马斯·哈克, 弗兰克·施奈特 申请人:马勒国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1