堇青石质烧结体、其制法及复合基板的制作方法

文档序号:11170817阅读:750来源:国知局
堇青石质烧结体、其制法及复合基板的制造方法与工艺

本发明涉及堇青石质烧结体、其制法及复合基板。



背景技术:

堇青石是耐热性高、热膨胀系数小的材料,因此,已知为热冲击性高的材料。还已知在堇青石中复合化杨氏模量、强度高的氮化硅或碳化硅等,以便提高堇青石的机械特性(专利文献1、2)。专利文献1中,在平均粒径1.2μm的堇青石中添加稀土类氧化物和氮化硅或碳化硅并在大气中进行烧成,由此,得到相对密度97~98%的堇青石质烧结体。专利文献2中,在平均粒径3μm的堇青石中添加平均粒径为1μm的氮化硅或碳化硅并在氮气氛下进行常压烧成,由此,得到杨氏模量高的堇青石质烧结体。

另一方面,专利文献3中记载有如下例子:将包含钽酸锂、铌酸锂等的功能性基板和堇青石烧结体制支撑基板通过直接接合进行接合,得到复合基板,将该复合基板利用于弹性表面波元件等弹性波器件。该弹性波器件中,作为支撑基板的堇青石烧结体的热膨胀系数非常小,低至1.1ppm/℃(40~400℃)左右,因此,使频率的温度依赖性得到大幅改善。

现有技术文献

专利文献

专利文献1:日本特许第3574560号公报

专利文献2:日本特许第4416191号公报

专利文献3:国际公开第2015/186571号小册子



技术实现要素:

像专利文献3那样将功能性基板和支撑基板接合的情况下,要求在两个基板的表面具有较高的平坦性。但是,关于专利文献1的堇青石质烧结体,相对密度低至97~98%,存在几个百分点的气孔,因此,即使对该烧结体的表面进行抛光,也无法得到较高的平坦性。另外,关于专利文献2的堇青石质烧结体,堇青石原料粒子高达3μm,还添加有烧结助剂,因此,烧结粒径的大小为堇青石原料粒子以上。因此,即使抛光,也无法得到较高的平坦性。另外,如果将该堇青石质烧结体应用于弹性波器件,则烧结粒径有时大于电极彼此之间的间隔,这种情况下,有可能产生复合基板的声速偏差而导致元件特性产生偏差。

本发明是为了解决该课题而完成的,其主要目的是使堇青石质烧结体在维持堇青石的低热膨胀系数的状态下提高刚性,并且,提高研磨面的平坦性。

本发明的堇青石质烧结体以堇青石为主成分,且包含氮化硅或碳化硅,其中,40~400℃下的热膨胀系数低于2.4ppm/℃,开口气孔率为0.5%以下,平均结晶粒径(烧结粒子的平均粒径)为1μm以下。根据该堇青石质烧结体,能够在维持堇青石的低热膨胀系数的状态下提高刚性,并且,能够提高研磨面的平坦性。

本发明的堇青石质烧结体的制法包括以下工序:(a)将平均粒径0.1~1μm的堇青石粉末60~90体积%和平均粒径0.1~1μm的氮化硅粉末10~40体积%按合计为100体积%进行混合,得到混合原料粉末;或者,将平均粒径0.1~1μm的堇青石粉末70~90体积%和平均粒径0.1~1μm的碳化硅粉末10~30体积%按合计为100体积%进行混合,得到混合原料粉末;(b)将所述混合原料粉末成型为规定形状的成型体,将所述成型体以压制压力20~300kgf/cm2、烧成温度(最高温度)1350~1450℃进行热压烧成,由此,得到堇青石质烧结体。该制法适合于制造上述的本发明的堇青石质烧结体。应予说明,粉末的平均粒径是通过激光衍射法测定得到的值(以下相同)。

本发明的复合基板是将功能性基板和支撑基板接合而得到的复合基板,其中,所述支撑基板为上述的堇青石质烧结体。该复合基板由于作为支撑基板的堇青石质烧结体的研磨面的平坦性高,因此,与功能性基板良好地接合。另外,将该复合基板利用于弹性表面波器件的情况下,频率温度依赖性得到大幅改善。另外,即便在光波导器件、led器件、开关器件中,支撑基板的热膨胀系数也较小,由此,性能得到提高。

附图说明

图1是堇青石质烧结体的制造工序图。

图2是复合基板10的立体图。

图3是使用复合基板10制作得到的电子器件30的立体图。

图4是实验例3的堇青石质烧结体的研磨面的sem图像,(a)是原始数据,(b)是二值化处理后的数据。

具体实施方式

以下,对本发明的实施方式具体地进行说明,但是,本发明并不限定于以下的实施方式,应当理解为:基于本领域技术人员的通常知识,在不脱离本发明的主旨的范围内,可以适当进行变更、改良等。

本实施方式的堇青石质烧结体以堇青石为主成分,且包含氮化硅或碳化硅。应予说明,所谓主成分,是指烧结体中包含的体积最多的成分。该堇青石质烧结体优选在40~400℃下的热膨胀系数低于2.4ppm/℃,开口气孔率为0.5%以下,平均结晶粒径为1μm以下。该堇青石质烧结体包含热膨胀系数比堇青石高的氮化硅或碳化硅,但是维持低热膨胀系数。另外,该堇青石质烧结体包含杨氏模量比堇青石高的氮化硅或碳化硅,因此,与堇青石单体相比,刚性高。此外,该堇青石质烧结体的开口气孔率为0.5%以下,几乎没有气孔,平均结晶粒径低至1μm以下,因此,抛光面(研磨面)的平坦性提高。

本实施方式的堇青石质烧结体优选研磨面的每100μm×100μm面积中存在的最大长度1μm以上的气孔的数量为10个以下。如果气孔的数量为10个以下,则抛光面的平坦性进一步提高。该气孔的数量更优选为3个以下,进一步优选为零。

本实施方式的堇青石质烧结体的杨氏模量优选为160gpa以上,4点弯曲强度优选为220mpa以上。氮化硅及碳化硅的杨氏模量、强度比堇青石高,因此,通过调整相对于堇青石的添加比例,能够使堇青石质烧结体的杨氏模量为160gpa以上,并使4点弯曲强度为220mpa以上。

本实施方式的堇青石质烧结体优选研磨面的中心平均粗糙度ra为1.5nm以下。作为被用于弹性波器件等的复合基板,已知有将功能性基板和支撑基板接合得到的复合基板,但是,通过像这样将研磨面的ra为1.5nm以下的堇青石质烧结体用作支撑基板,支撑基板与功能性基板的接合性变得良好。例如接合界面中实际接合的面积的比例(接合面积比例)为80%以上(优选为90%以上)。研磨面的中心平均粗糙度ra更优选为1.1nm以下,进一步优选为1.0nm以下,特别优选为0.8nm以下。

本实施方式的堇青石质烧结体在40~400℃下的热膨胀系数更优选为2.0ppm/℃以下。通过将以该堇青石质烧结体为支撑基板的复合基板用于弹性波器件,在弹性波器件的温度上升的情况下,功能性基板的热膨胀比原来的热膨胀小,因此,弹性波器件的频率温度依赖性得到改善。在40~400℃下的热膨胀系数进一步优选为1.8ppm/℃以下。

对于本实施方式的堇青石质烧结体,在包含氮化硅的情况下,优选堇青石相为60~90体积%,氮化硅相为10~40体积%,在包含碳化硅的情况下,优选堇青石相为70~90体积%,碳化硅相为10~30体积%。如果为像这样的组成比例,则气孔的数量、杨氏模量、研磨面的中心平均粗糙度ra、40~400℃下的热膨胀系数等特性成为良好的值,因此优选。各相的体积%如下求出。即,利用sem对本实施方式的堇青石质烧结体的研磨面实施背散射电子图像观察及组成分析,由图像的对比度的比值求出各相的面积比率,为了方便,以该面积比率为烧结体的各相的体积比率(体积%)。

接下来,对本发明的堇青石质烧结体的制造方法的一个实施方式进行说明。如图1所示,堇青石质烧结体的制造流程包括以下工序:(a)调制混合原料粉末;(b)制作堇青石质烧结体。

·工序(a):混合原料粉末的调制

作为堇青石原料,优选使用纯度高且平均粒径小的粉末。纯度优选为99.0%以上,更优选为99.5%以上,进一步优选为99.8%以上。纯度的单位是质量%。另外,平均粒径(d50)优选为1μm以下,更优选为0.1~1μm。堇青石原料可以使用市售品,也可以使用采用高纯度的氧化镁、氧化铝、二氧化硅粉末制作得到的物质。作为制作堇青石原料的方法,例如可以举出专利文献3中记载的方法。作为氮化硅原料或碳化硅原料,优选使用平均粒径小的粉末。平均粒径优选为1μm以下,更优选为0.1~1μm。调制堇青石原料与氮化硅原料的混合原料粉末的情况下,例如可以将堇青石原料60~90体积%和氮化硅原料10~40体积%按合计为100体积%进行称量,用罐式球磨机等混合机进行混合,根据需要用喷雾干燥器进行干燥,得到混合原料粉末。另一方面,调制堇青石原料与碳化硅原料的混合原料粉末的情况下,例如可以将堇青石原料70~90体积%和碳化硅原料10~30体积%按合计为100体积%进行称量,用罐式球磨机等混合机进行混合,根据需要用喷雾干燥器进行干燥,得到混合原料粉末。

·工序(b):堇青石质烧结体的制作

将工序(a)中得到的混合原料粉末成型为规定形状的成型体。对于成型方法没有特别限制,可以使用一般的成型法。例如可以将混合原料粉末直接通过模具压制成型。压制成型的情况下,如果将混合原料粉末预先通过喷雾干燥法制成颗粒状,则成型性变得良好。此外,可以加入有机粘合剂,制作生坯而进行挤压成型,或者制作浆料而进行片成型。这些工艺中,必须在烧成工序前或者烧成工序中除去有机粘合剂成分。另外,还可以利用cip(冷等静压制)进行高压成型。

接下来,将得到的成型体烧成,制作堇青石质烧结体。此时,从提高堇青石质烧结体的表面平坦性方面考虑,优选维持烧结粒子较为微细,并在烧结中排出气孔。作为其方法,热压法非常有效。通过使用该热压法,与常压烧结相比,在低温下以微细粒的状态进行致密化,能够抑制在常压烧结中常见的粗大气孔的残留。该热压时的烧成温度优选为1350~1450℃,更优选为1375~1425℃。另外,热压时的压制压力优选为20~300kgf/cm2。由于特别低的压制压力能够使热压夹具小型化且长寿命化,因此优选。关于在烧成温度(最高温度)下的保持时间,可以考虑成型体的形状、大小、加热炉的特性等,适宜地选择适当的时间。具体的优选保持时间例如为1~12小时,更优选为2~8小时。对于烧成气氛也没有特别限制,热压时的气氛一般为氮、氩等不活泼气氛。升温速度、降温速度只要考虑成型体的形状、大小、加热炉的特性等适当设定即可,只要在例如50~300℃/hr的范围设定即可。

接下来,对本发明的复合基板的一个实施方式进行说明。本实施方式的复合基板是将功能性基板和上述的堇青石质烧结体制支撑基板接合得到的。该复合基板的两个基板的接合面积比例增大,表现出良好的接合性。作为功能性基板,没有特别限定,例如可以举出:钽酸锂、铌酸锂、氮化镓、硅等。接合方法优选直接接合。直接接合的情况下,对功能性基板和支撑基板各自的接合面进行研磨后,活化,在使两个接合面相对的状态下按压两个基板。接合面的活化例如除了对接合面照射不活泼气体(氩等)的离子束以外,通过照射等离子、中性原子束等来进行。功能性基板与支撑基板的厚度比(功能性基板的厚度/支撑基板的厚度)优选为0.1以下。图2中示出复合基板之一例。复合基板10是通过直接接合将作为功能性基板的压电基板12和支撑基板14接合得到的。

本实施方式的复合基板可用于电子器件等。作为该电子器件,除了弹性波器件(弹性表面波器件、兰姆波元件、薄膜谐振器(fbar)等)以外,还可以举出:led器件、光波导器件、开关器件等。弹性波器件中利用上述的复合基板的情况下,作为支撑基板的堇青石质烧结体的热膨胀系数非常小,低至小于2.4ppm/℃(40~400℃),因此,频率温度依赖性得到大幅改善。图3中示出使用复合基板10制作得到的电子器件30之一例。电子器件30是单端口saw谐振器亦即弹性表面波器件。首先,使用一般的光刻技术,在复合基板10的压电基板12上形成多个电子器件30的图案,然后,通过切割切成一个一个的电子器件30。电子器件30通过光刻技术在压电基板12的表面形成有idt(interdigitaltransducer)电极32、34和反射电极36。

应予说明,本发明不受上述的实施方式任何限定,只要属于本发明的技术范围,当然可以以各种方式进行实施。

实施例

1.混合原料粉末的制作

堇青石原料是使用市售的平均粒径1μm以下、纯度99.9%以上的高纯度的氧化镁、氧化铝、二氧化硅粉末制作的。即,将各粉末按堇青石组成进行称量,混合,于1400℃在大气气氛下加热5小时,得到堇青石粗粒物。利用以氧化铝为球石且溶剂使用离子交换水的罐式球磨机,对得到的堇青石粗粒物进行70小时粉碎,制作平均粒径0.5~0.6μm左右的堇青石粉碎物。将得到的浆料在大气下于110℃进行干燥,将干燥物过筛得到堇青石粉末。将该堇青石原料和氮化硅原料或碳化硅原料按表1的实验例1~9的原料粉末组成的比例进行称量,使用的氧化铝球石进行罐式球磨机混合,利用喷雾干燥法制作混合原料粉末。应予说明,氮化硅原料使用市售的平均粒径0.8μm、纯度97%以上的氮化硅粉末,碳化硅原料使用市售的平均粒径0.5μm、纯度97%以上的碳化硅粉末。

表1

2.堇青石质烧结体的制作

将实验例1~9的混合原料粉末以50kgf/cm2进行单轴模具压制成型,得到且厚度25mm左右的成型体。将各成型体收纳于石墨制模具中,利用热压炉在压制压力200kgf/cm2下于烧成温度(最高温度)1375~1425℃进行5小时烧成,制作堇青石质烧结体。各实验例的烧成温度如表1所示。烧成气氛为氩气氛,升温速度为100℃/hr,降温速度为200℃/hr,降温时从1200℃以下开始实施炉冷。另外,实验例10中,仅以堇青石粉末同样地制作成型体,利用热压炉在压制压力200kgf/cm2下于烧成温度(最高温度)1425℃进行5小时烧成,制作堇青石单体的烧结体。

3.特性评价

从实验例1~10的堇青石质烧结体上切出试验片(4×3×40mm尺寸的抗折棒等),用于评价试验。另外,烧结体的研磨面是通过研磨将4×3×10mm左右的试验片的一面精加工成镜面状而得到的。以3μm的金刚石磨粒、0.5μm的金刚石磨粒依次进行研磨,最终精加工时,使用0.1μm以下的金刚石磨粒,进行精研。评价的特性如下。

(1)结晶相

将烧结体粉碎,利用x射线衍射装置进行结晶相的鉴定。测定条件为cukα、50kv、300ma、2θ=5-70°,使用旋转对阴极型x射线衍射装置(理学电机制rint)。

(2)烧结体的组成

利用sem对如上所述地实施了精加工后的烧结体的研磨面实施背散射电子图像观察及组成分析,由图像的对比度的比值求出堇青石相与其它结晶相的面积比率,以该面积比率为烧结体的体积比率。将研磨面的sem图像之一例示于图4。图4是实验例3的堇青石质烧结体的研磨面的sem图像,(a)是原始数据,(b)是二值化处理后的数据。图4(a)中发黑的部分为堇青石相,发白的部分为氮化硅相。

(3)体积密度、开口气孔率

使用抗折棒,利用采用了纯水的阿基米德法来测定体积密度、开口气孔率。

(4)相对密度

由烧结体的组成和各成分的密度计算出烧结体的计算密度,以上述测定得到的体积密度与计算密度的比值为相对密度。此处,堇青石的密度为2.505g/cm3,氮化硅的密度为3.20g/cm3,碳化硅的密度为3.21g/cm3。此处使用的氮化硅、碳化硅的密度是无视了原料中的杂质氧等所造成的影响的值。

(5)弯曲强度

依据jisr1601,测定4点弯曲强度。试验片形状为3mm×4mm×40mm抗折棒或者其一半大小。

(6)杨氏模量

以依据jisr1602的静态挠度法进行测定。试验片形状为3mm×4mm×40mm抗折棒。

(7)热膨胀系数(40~400℃)

依据jisr1618,以推杆式示差热膨胀计测定。试验片形状为3mm×4mm×20mm。

(8)气孔的数量

以sem观察如上所述精加工后的烧结体的研磨面,计量每100μm×100μm中存在的最大长度为1μm以上的气孔的数量。

(9)表面平坦性(ra)

使用afm,针对如上所述精加工后的烧结体的研磨面测定中心性平均粗糙度ra。测定范围为10μm×10μm。

(10)烧结粒子的平均粒径

将如上所述精加工后的烧结体的研磨面于1200~1400℃进行2hr热蚀刻,以sem测定200个以上烧结粒子的大小,使用线段法计算出平均粒径。线段法的系数为1.5,将以sem实测的长度乘以1.5得到的值作为平均粒径。

(11)接合性

从实验例1~10的烧结体上切出直径100mm、厚度600μm左右的圆板。如上所述对该圆板进行抛光后,进行清洗,除去表面的粒子、污染物质等。接下来,以该圆板为支撑基板,实施支撑基板与功能性基板的直接接合,得到复合基板。即,首先,通过氩的离子束将支撑基板和功能性基板各自的接合面活化,然后,使两个接合面相对,以10tonf进行按压,接合而得到复合基板。作为功能性基板,使用钽酸锂(lt)基板和铌酸锂(ln)基板。接合性的评价如下:根据ir透射图像,将接合面积为90%以上的复合基板评价为“最佳”,将接合面积为80%以上且低于90%的复合基板评价为“良”,将接合面积低于80%的复合基板评价为“差”。

4.评价结果

实验例1~9的堇青石质烧结体包含氮化硅或碳化硅,因此,与实验例10的堇青石单体的烧结体相比,弯曲强度及杨氏模量得到提高。即,杨氏模量提高到160gpa以上,4点弯曲强度提高到220mpa以上。另外,实验例1~4、6~8的堇青石质烧结体在40~400℃下的热膨胀系数低于2.4ppm/℃(添加了氮化硅的实验例1~4为1.4~1.8ppm/℃、添加了碳化硅的实验例6~8为1.8~2.3ppm/℃),虽然与实验例10的堇青石单体的烧结体相比为高出一些的值,但是维持着低热膨胀系数。此外,实验例1~4、6~8的堇青石质烧结体的开口气孔率低于0.1%、平均结晶粒径为1μm以下,因此,研磨面的中心平均粗糙度ra低至1.1nm以下。因此,将从实验例1~3、6、7的堇青石质烧结体上切出的圆板与功能性基板直接接合时的接合性均为接合面积在90%以上的“最佳”,将从实验例4、8的堇青石质烧结体上切出的圆板与功能性基板直接接合时的接合性为接合面积在80%以上且低于90%的“良”。应予说明,研磨面的中心平均粗糙度ra为像这样小的值还有助于使气孔的数量少至3个以下。另外,认为实验例1~9中平均结晶粒径为1μm以下的一个原因还在于没有使用像稀土类氧化物这样的烧结助剂进行烧结。

应予说明,实验例1~4、6~8相当于本发明的实施例,实验例5、9、10相当于比较例。这些实验例并没有对本发明作任何限定。

本申请以2016年3月23日所申请的日本专利申请第2016-058969号以及2017年2月24日所申请的日本专利申请第2017-033437号为主张优先权的基础,通过引用将其全部内容都包含在本说明书当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1