一种功率型低温烧结铁氧体材料及其制备方法与流程

文档序号:25543992发布日期:2021-06-18 20:41
一种功率型低温烧结铁氧体材料及其制备方法与流程
本发明属于电子陶瓷材料及其制备
技术领域
,具体涉及一种具有高饱和磁感应强度(bs)和低功率损耗的低温烧结nicuzn铁氧体材料及其制备方法。
背景技术
:随着电子整机产品小型化和集成化发展,ltcc(低温共烧陶瓷)叠层片式电感/磁珠器件凭借其体积小、成本低、屏蔽性能优良、可靠性高、易于实现表贴等优异特性,在移动通信、计算机、汽车电子、电视、广播卫星等领域都获得广泛应用。但是,随着电子产品功率密度的提升,要求ltcc叠层片式感性器件(包括电感、磁珠、变压器、磁性模块等)不仅能够承载较大功率,而且功率损耗也要尽量低。对于常规的磁性器件(磁芯加绕组结构),为了承载更大的功率并降低功率损耗,需要尽可能的提高铁氧体材料的饱和磁感应强度bs并降低其功率损耗pcv,对应的铁氧体材料也称为功率铁氧体材料,典型如日本tdk公司pc40,pc44,pc50,pc95等一系列牌号的功率铁氧体材料。但是,对于用于ltcc技术的低温烧结铁氧体材料而言,因为其目前主要的应用领域,如片式电感、磁珠等,承载的功率都不大,因此更多关注的是其磁导率和品质因数方面的特性,针对其功率特性,包括bs和pcv特性的研究报道都还很少。随着ltcc磁性功率器件的不断涌现,如何在实现铁氧体与ltcc技术兼容(能900℃低温烧结致密化,能与ag电极兼容共烧)的同时,也能尽量提升其功率特性,包括获得高的bs和低的pcv,将会变得越来越重要。电子科技大学罗强等人最近发表了一篇论文,研究了bi2o3掺杂量改变对低温烧结nicuzn铁氧体功率特性的影响(effectsofbi2o3additiononpowerlosscharacteristicsoflow-temperature-firednicuznferrites,ceramicsinternational44(2018)16005–16009)。其研究发现bs与材料的密度成正比,在最高烧结密度时能获得最高的bs。同时,在细晶的微观结构下(bi2o3掺杂量未超过出现不均匀晶粒生长的临界值),铁氧体在不同的测试条件下都能获得更低的功率损耗。虽然该论文主要的是研究材料性能变化的规律,其报道的低温烧结功率铁氧体材料的综合性能并不算很好,但其研究结果对于后来者拓展材料开发的思路有很好的借鉴意义。此外,还有一些发明专利,关注了低温烧结铁氧体材料的抗直流偏置特性,即其可承受更大的饱和电流,如zl201410432796.8中公开了在ni0.30-xzn0.47+xcu0.18co0.05fe1.95o4(其中x的取值范围为0~0.05)配方特征的nicuzn铁氧体材料基础上,通过复合掺入bi2o3:0.5~1wt%,sno2:0.8~1.2wt%,sio2:0.1~0.2wt%,caco3:0.1~0.2wt%等掺杂改性剂,可获得起始磁导率μi在65~70之间,且抗直流偏置磁场h70%(磁导率下降到初始值70%时可承载的偏置磁场)可达770~850a/m的抗直流偏置低温烧结nicuzn铁氧体材料。但对材料的功率特性未作研究。因此,开发一种能兼具高磁导率,高bs以及低功率损耗的低温烧结nicuzn铁氧体材料具有重要的意义,在功率型的ltcc叠层片式磁性器件具有很好的应用前景。技术实现要素:本发明的目的在于:针对上述存在的问题,本发明第一个目的是提供一种功率型低温烧结铁氧体材料。本发明采用的技术方案如下:一种功率型低温烧结铁氧体材料,所述铁氧体材料主相为尖晶石结构,分子结构表达式为co0.02ni0.25-xzn0.48cu0.25+xfe1.98o4,其中x为0~0.02,同时采用bi2o3、wo3和nb2o5作为掺杂剂,其中掺杂剂的重量百分含量为:bi2o30.16~0.20%,wo3:0.08~0.12%,nb2o5:0.1~0.15%;制备的铁氧体材料的起始磁导率≥200;bs≥400mt;在30mt,1mhz,25℃下,pcv≤300kw/m3。优选地,所述掺杂剂掺杂的重量百分含量为:bi2o3:0.18%,wo3:0.1%,nb2o5:0.12%。优选地,所述铁氧体材料主相由原料co2o3、nio、zno、cuo、fe2o3按摩尔比co2o3:nio:zno:cuo:fe2o3=0.01:(0.25-x):0.48:(0.25+x):0.99的比例配制制备而成,其中x为0~0.02。优选地,所述的x为0,0.01或0.02。优选地,原料co2o3、nio、zno、cuo、fe2o3的纯度至少为分析纯。上述低温烧结nicuzn铁氧体材料以尖晶石nicuzn铁氧体为主晶相组成,其在900度保温2~3小时低温烧结条件下,材料起始磁导率≥200,bs≥400mt,pcv(≤300kw/m3,30mt,1mhz,25℃)。本发明的另一个目的是提供一种功率型低温烧结铁氧体材料的制备方法,包括如下步骤:步骤1、以co2o3、nio、zno、cuo、fe2o3为初始原料,按摩尔比co2o3:nio:zno:cuo:fe2o3=0.01:(0.25-x):0.48:(0.25+x):0.99的比例折算出co2o3:nio、zno、cuo、fe2o3的质量百分比,其中x=0~0.02,然后再进行称料、混料、一次球磨后烘干;步骤2、将步骤1所得的一次球磨烘干料过筛后在坩埚中压实打孔,按2-3℃/分的升温速率升至780℃进行预烧,保温2-3小时,随炉冷却到室温得到预烧料;步骤3、将步骤2所得的预烧料从坩埚中取出后放入研钵中进行粗粉粹,然后同时加入预烧料重量百分比为0.16~0.20%的bi2o3,0.08~0.12%的wo3以及0.1~0.15%的nb2o5三种添加剂,然后进行二次球磨,然后将二次球磨料烘干;步骤4、在步骤3得到的二次球磨烘干料中加入相当于二次球磨烘干料重量10%~15%的pva溶液进行造粒并压制成形;步骤5、将步骤4所得的样品放入烧结炉中,以2-3℃/分的升温速率升温至300℃保温0.5-1.5小时排水,然后再以2-3℃/分的升温速率升温至600℃保温0.5-1.5小时排胶,然后再以2℃/分的升温速率升温至900℃保温2~3小时,然后按2-5℃/分的降温速率降至500℃,再在500℃保温2~3小时,最后再随炉冷却至室温得到所述铁氧体材料。优选地,所述步骤1中x为0,0.01或0.02。优选地,所述步骤3中二次球磨在球磨机中进行,二次球磨后粉料的平均粒度d50控制在0.8~1微米。主要是为了让粉料有尽量好的活性,同时又能与ltcc的流延工艺很好的兼容。优选地,所述步骤4中pva溶液的添加量为二次球磨烘干料重量10%~15%。通过购置聚乙烯醇粉料,按8~10%的浓度水浴加热配制。优选地,将步骤4所得的样品放入烧结炉中,以2℃/分的升温速率升温至300℃保温1小时排水,然后再以2℃/分的升温速率升温至600℃保温1小时排胶,然后再以2℃/分的升温速率升温至900℃保温2~3小时,然后按2℃/分的降温速率降至500℃,再在500℃保温2~3小时,最后再随炉冷却至室温得到所述铁氧体材料。本发明首先在nicuzn铁氧体材料的配方上进行了充分的优化创新:采用过量cu离子替代的方案,本发明中cu离子摩尔含量达到了0.25+x,常规低温烧结nicuzn铁氧体中cu摩尔含量一般在0.15~0.2,主要为了通过过量cu离子的助熔效果,进一步降低非磁性助熔剂bi2o3的掺杂量,从而可以在实现材料体系低温烧结的同时尽量提升其bs值;采用0.48摩尔的zn离子含量,则是为了在获得高bs和高磁导率上取得最大的兼顾;采用0.02摩尔的co离子替代主要可确保在磁导率无明显变化的前提下,降低铁氧体材料的剩磁和矫顽力,进而降低其磁滞损耗。需要特别说明的是:本发明的配方中co离子的摩尔含量必须严格控制,过多则会导致材料的磁导率出现显著下降,过少则达不到降低功率损耗的效果。同样zn离子的摩尔含量也必须严格控制,增加其量虽然材料磁导率会有适当上升,但bs会开始出现明显的下降,而zn含量下降的话,一方面磁导率会显著下降,另一方面bs起初无明显变化(zn含在0.46~0.48之间时),之后也会显著下降;因此,zn含量为0.48是兼顾高磁导率和高bs的最佳选择;cu离子的含量可以在一个小范围内波动(0.25~0.27),材料的整体性能都处在一个比较好的区间。最后,本发明的掺杂方案需要三种掺杂剂与相应的材料主配方配合使用,并且需要同时掺入才能达到预期的效果,其中0.16~0.20wt%的bi2o3助熔剂掺杂的目的是配合如上的cu过量的主配方设计,就能实现材料体系900℃低温烧结致密化,并且能够获得致密的细晶微观结构,有利于降低材料体系功耗。0.08~0.12wt%的wo3掺杂的目的则是在本发明的配方设计方案上,通过进一步均匀致密化材料微观结构,提升材料磁导率,确保材料在仅有0.48摩尔zn含量的前提下,获得超过200的起始磁导率。0.1~0.15wt%的nb2o5掺杂的目的则是在配方的基础上,在不对磁导率和bs构成明显影响的前提下,通过优化材料微观形貌,例如抑制晶粒的异常生长,细化和均匀化晶粒,并提升材料体系的电阻率来进一步降低材料体系的功率损耗,达到使材料体系同时满足低温烧结、高磁导率、高bs以及低功率损耗等多项技术指标的目的。以上掺杂剂含量需严格控制,过多或过少都会产生明显的负面影响,同时三种掺杂剂的效果也会产生相互的影响,需要同时配合使用。本发明通过以上材料配方和掺杂方案的创新设计,最终获得的铁氧体材料体系不仅能实现900℃的低温烧结,并且能够很好的兼顾高起始磁导率,高bs以及低功率损耗的综合目标要求,非常适合功率型叠层片式磁性器件和模块的研发和生产需要。与现有的技术相比本发明的有益效果是:本发明采用的生产原料便宜,工艺简单,操作方便,很好的兼顾了低温烧结、高磁导率、高bs,低功率损耗等多项技术指标的要求,起始磁导率≥200;bs≥400mt;在30mt,1mhz,25℃下,pcv≤300kw/m3,综合性能好且稳定,非常适合功率型叠层片式磁性器件和模块的研发和生产需要。附图说明图1为本发明功率型低温烧结nicuzn铁氧体材料的制备工艺流程图。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。为了提供一种具有高饱和磁感应强度(bs)和低功率损耗的低温烧结nicuzn铁氧体材料,本发明提供了一种功率型低温烧结铁氧体材料,所述铁氧体材料主相为尖晶石结构,分子结构表达式为co0.02ni0.25-xzn0.48cu0.25+xfe1.98o4,其中x为0~0.02,同时采用bi2o3、wo3和nb2o5作为掺杂剂,其中掺杂剂的重量百分含量为:bi2o30.16~0.20%,wo3:0.08~0.12%,nb2o5:0.1~0.15%;制备的铁氧体材料的起始磁导率≥200;bs≥400mt;在30mt,1mhz,25℃下,pcv≤300kw/m3。一种功率型低温烧结铁氧体材料的制备方法,包括如下步骤:步骤1、以co2o3、nio、zno、cuo、fe2o3为初始原料,按摩尔比co2o3:nio:zno:cuo:fe2o3=0.01:(0.25-x):0.48:(0.25+x):0.99,其中x分别取0,0.01和0.02的比例折算出co2o3:nio、zno、cuo、fe2o3的质量百分比,然后再进行称料、混料、一次球磨后烘干;步骤2、将步骤1所得的一次球磨烘干料过筛后在坩埚中压实打孔,按3℃/分的升温速率升至780℃进行预烧,保温2小时,随炉冷却到室温得到预烧料;步骤3、将步骤2所得的预烧料从坩埚中取出后放入研钵中进行粗粉粹,然后同时加入预烧料重量百分比为0.18wt%的bi2o3,0.1wt%的wo3以及0.12wt%的nb2o5三种添加剂,然后在球磨机中进行二次球磨,二次球磨后粉料的平均粒度(d50)控制在0.8~1微米,然后将二次球磨料烘干;步骤4、在步骤3得到的二次球磨烘干料中加入相当于二次球磨烘干料重量10%的pva溶液进行造粒并压制成形;步骤5、将步骤4所得的样品放入烧结炉中,以2℃/分的升温速率升温至300℃保温1小时排水,然后再以2℃/分的升温速率升温至600℃保温1小时排胶,然后再以2℃/分的升温速率升温至900℃保温2.5小时,然后按2℃/分的降温速率降至500℃,再在500℃保温2小时,最后再随炉冷却至室温得到所述的低温烧结nicuzn铁氧体材料。最终研制材料的综合性能如下,如表1所示。表1x值为0、0.01、0.02的本发明的材料的综合性能x值起始磁导率bs(mt)pcv(≤300kw/m3,30mt,1mhz,25℃)02084062850.012104052880.02210403291由表1可知,本发明操作方便且成本低,很好的兼顾了低温烧结、高磁导率、高bs,低功率损耗等多项技术指标的要求,起始磁导率≥200;bs≥400mt;在30mt,1mhz,25℃下,pcv≤300kw/m3,综合性能好且稳定,非常适合功率型叠层片式磁性器件和模块的研发和生产需要。以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。当前第1页1 2 3 
再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1