一种自析晶构筑吸附位点的多孔功能材料制备方法与流程

文档序号:25543970发布日期:2021-06-18 20:41
一种自析晶构筑吸附位点的多孔功能材料制备方法与流程

技术领域:

本发明属于功能材料制备技术领域,具体涉及一种自析晶构筑吸附位点的多孔功能材料制备方法。



背景技术:

矿产资源是人类生产、生活和社会发展的重要物质基础,在经济发展过程中起到了重要作用。然而,在矿产资源的开发中,大量伴生的脉石矿物在选矿过程中被分选出来形成尾矿。这些尾矿大量堆积,占用了土地资源,还破坏了生态系统的稳定,污染了周边的环境。积极探索和研究尾矿的资源化利用技术,并形成规模化应用,是目前社会经济发展过程中迫切需要解决的问题。

铁尾矿是铁矿石选出铁精粉后剩余的固体废弃物,是钢铁工业发展进程中的必然产物。目前中国铁尾矿总量保守估计已超过90亿吨,且随着工业化进程加快,钢铁产量增长,每年还在不断增加。在铁尾矿中有大于65%的尾矿中硅质含量高达70%以上(称为高硅铁尾矿),活性差,不易利用。规模化和高质化利用尾矿的技术研发已迫在眉睫。

多孔陶瓷材料是由体质原料、助熔剂和增孔剂等原料经高温烧制而成的具有一定孔隙结构的新型陶瓷材料。因其极强的热稳定性和机械稳定性,较高的生物相容性,可调的孔径分布和良好的无定形网络结构等优点,在废水处理中表现出良好的应用前景。目前多孔陶瓷材料在废水处理方面仍存在污染物吸附量较低,修饰活性位点方法复杂且成本较高等问题,需要开发一种连通性较好且表面活性位点易于形成的适合废水处理的多孔功能材料。



技术实现要素:

本发明的目的是克服上述现有技术存在的不足,提供一种自析晶构筑吸附位点的多孔功能材料制备方法,具体的基于高硅铁尾矿中含有大量硅质成分和部分选余的金属氧化物等特点,根据矿物相变原理与多孔功能材料制备技术相结合,将尾矿中这些矿物组成经过物相重构,在硅质基体表面以自析晶的方式形成了赤铁矿、透辉石、铁辉石、钙长石和钠长石等矿物及其中间相的异质结构,从而构建出可对污染物进行快速吸附的位点。所制备出的具有废水降解功能的新材料,使这些大量堆积的废弃物获得有效利用,转变成为一类新资源。

为实现上述目的,本发明采用以下技术方案:

一种自析晶构筑吸附位点的多孔功能材料制备方法,包括以下步骤:

(1)研磨:将铁尾矿送入行星式球磨机研磨成粉,筛分出粒度分布范围在30~75μm的尾矿粉;

(2)混料:按质量比,尾矿粉:页岩:(发泡剂+助结晶剂)=(50~70):(20~40):(4~12),总份100份,称取各物料并加入球磨罐中,配去离子水混合均匀;

(3)成型:将混合料均匀填料在模具中,经表面压紧后,放入烘箱中干燥成型;

(4)烧制:将干燥后的坯体放入电窑内烧制,烧成温度为1130~1160℃,保温时间为10~30min,控制降温速率冷却到室温,制得自析晶构筑吸附位点的多孔功能材料,所述的烧制过程具体为:

以8~10℃/min的升温速度,从室温升温到600~650℃,保温30~50min进行坯体预热;

以3~5℃/min的升温速度,从600~650℃升温到900~950℃,保温60~90min促进液相生成;

以3~5℃/min的升温速度,从900~950℃升温到烧成温度1130~1160℃,保温10~30min,期前为发泡剂进行发泡作用;

以15~25℃/min的降温速度从烧成温度降至850~950℃,保温70~100min,实现晶体结晶生长并进行表面晶体析出调控,而后以5~10℃/min的速度降至室温,获得多孔功能材料。

所述的步骤(1)中,铁尾矿为高硅型铁尾矿,所述的铁尾矿包括物相及质量百分含量为石英65%~71%,铁辉石21%~26%和埃洛石8%~13%;所述的铁尾矿包括组分及质量百分含量为sio270.48-81.39%,al2o33.11-6.62%,cao3.08-3.81%,fe2o37.60-13.99%,mgo3.65-4.94%,k2o0.74-1.16%,na2o0.23-0.43%,tio20.10-0.16%,p2o50.15-0.23%,mno0.10-0.23%,so30.01-0.05%。

所述的步骤(1)中,页岩包括组分及质量百分含量为sio244.69-45.32%,al2o314.18-15.12%,cao17.70-18.90%,fe2o39.18-10.35%,mgo7.54-8.61%,k2o2.31-2.89%,tio20.95-1.12%,na2o0.26-0.46%,p2o50.29-0.40%,mno0.21-0.31%,so30.42-0.52%。

所述的步骤(1)中,研磨转速为300~350r/min,研磨时间为0.5~1h。

所述的步骤(2)中,发泡剂为碳化硅粉和/或碳酸钙粉,助结晶剂为氧化铁粉和/或碳酸钙粉。

所述的步骤(2)中,发泡剂为碳化硅粉和碳酸钙粉,助结晶剂为氧化铁粉和碳酸钙粉,所述的发泡剂和助结晶剂统一加入比例关系为,按质量比,碳化硅粉:碳酸钙粉:氧化铁粉=1:2:2。

所述的步骤(2)中,碳酸钙粉既作为发泡剂同时作为助结晶剂。

所述的步骤(2)中,通过不同种类的发泡剂选择,利用成孔条件的不同,在大孔孔壁之间破壁形成小孔,增加多孔功能材料中孔隙的连通性。

所述的步骤(2)中,通过助结晶剂的选择以调整原料配比中的金属元素含量,为析出晶体提供化学成分条件。

所述的步骤(2)中,按重量比混合料:去离子水=1:(1.5~2)。

所述的步骤(2)中,研磨转速为300~350r/min,混合时间为3~5min。

所述的步骤(3)中,烘箱温度为100~110℃,干燥时间为3~5h。

所述的步骤(4)中,电炉为德国进口nabertherm电炉,烧成气氛为氧化气氛。

所述的步骤(4)中,900℃后的升温过程中,发泡剂中碳化硅和碳酸钙分别发生分解和氧化反应,生成co或co2气体,部分溶解游离于高温熔融液相,部分以化学结合态形式存在。

所述的步骤(4)中,以15~30℃/min的降温速度从烧成温度降至850~950℃后,保温时间优选为80~90min。

所述的步骤(4)中,制备的多孔功能材料孔径范围为φ<1.0mm占60%,φ1.0~2.0mm占30%,φ2.0~2.5mm占10%;孔隙率为67.19%~80.28%,其中连通孔占比87.34%~96.39%。

所述的步骤(4)中,制备的多孔功能材料用于废水中总磷去除,经检测,污水中tp初始浓度为1.1-5.5mg/l,ph为7.3-7.6,tp去除率为50.1-69.3%,吸附量为0.387-0.715mg/g。

本发明的有益效果:

1.本发明以难处理的高硅型铁尾矿为主要原料,配以页岩和其他化学助剂,原料成本低,制备过程简洁,无需后期二次负载,解决了多孔功能材料生产成本高、功能位点负载方式复杂等问题。

2.本发明通过调整原料体系中的金属元素含量,使多孔功能材料的大孔孔壁区域表面析晶形成不稳定的中间相。根据鲍文反应序列控制熔体中结晶相的析出顺序,铁镁硅酸盐结晶序列中主要有辉石结晶析出,钙钠硅酸盐结晶序列中从高温到低温依次为钙质斜长石向钠质斜长石方向变化,控制特定析晶温度使目标矿物在孔壁和孔内中析出,成为孔壁表面的活性位点,构成孔壁有自析晶异质结构活性吸附位点的多孔功能材料。通过控制降温速率调控矿物结晶速率和状态,降温速度越快,结晶数量越少,在850~950℃增加一定保温时间可使自形晶体增多,使吸附位点的数量增大,提高多孔功能材料的吸附效果。

3.本发明建立“以废治废”新模式,利用废弃物处理废水,建立尾矿重构硅基新材料处理废水的理论模型和技术模式,为其他类似尾矿的利用奠定基础。

附图说明:

图1为本发明实施例采用的高硅型铁尾矿物相组成图;

图2为本发明实施例1制备的自析晶构筑吸附位点的多孔功能材料样品的sem图,其中,图a1-a9为不同视域sem图;

图3为本发明实施例2制备的自析晶构筑吸附位点的多孔功能材料样品的sem图,其中,图b1-b9为不同视域sem图;

图4为本发明实施例3制备的自析晶构筑吸附位点的多孔功能材料样品的sem图,其中,图c1-c9为不同视域sem图;

图5为本发明实施例4制备的自析晶构筑吸附位点的多孔功能材料样品的sem图,其中,图d1-d9为不同视域sem图。

具体实施方式:

下面结合实施例对本发明作进一步的详细说明。

以下实施例中:

采用的铁尾矿为高硅型铁尾矿,物相组成图如图1所示,物相组成包括石英(68%),铁辉石(21%)和埃洛石(11%);铁尾矿包括组分及质量百分含量为sio280.19%,al2o33.11%,cao4.08%,fe2o38.62%,mgo3.65%,k2o0.74%,na2o0.24%,tio20.10%,p2o50.22%,mno0.12%,so30.01%。

采用的页岩包括组分及质量百分含量为sio244.89%,al2o314.48%,cao18.90%,fe2o39.18%,mgo7.54%,k2o2.71%,tio20.95%,na2o0.29%,p2o50.29%,mno0.24%,so30.43%,余量其他。

析出晶体总体含量的由高到低的顺序为实施例4>实施例2>实施例3>实施例1。

实施例1

(1)研磨:将铁尾矿送入行星式球磨机研磨成粉,球磨机转速为350r/min,原料与磨球的比例为1:2,研磨时间为0.5h,使尾矿粒度主要分布在10~100μm范围且小于100μm占比80%以上,研磨后筛分出粒度分布范围在30~75μm的尾矿粉。

(2)混料:按比例准确称量研磨后的尾矿粉60份、页岩30份、碳化硅2份、碳酸钙4份、氧化铁3份,混合料与去离子水以重量比1:1.5混合加入球磨罐中,球磨机转速为350r/min,混合时间为5min;

(3)成型:将混合料均匀填料在模具中,表面稍做压紧,放入烘箱中干燥成型,烘箱温度为110℃,干燥时间为3h;

(4)烧制:将干燥后的坯体放入电窑内烧制,升温过程以10℃/min的升温速度从室温逐渐升温到650℃,保温30min,5℃/min的升温速度从650℃逐渐升温到950℃,保温60min,以5℃/min的升温速度从950℃逐渐升温到1160℃,保温20min。降温过程以20℃/min的降温速度从烧成温度降至900℃,保温80min,促进材料表面晶体析出,而后以10℃/min的速度降至室温,制得多孔功能材料,其sem图如图2所示,其中,图a1-a9为不同视域sem图。

所获得的多孔功能材料比重为0.4792,孔径范围为φ<1.0mm占60%,φ1.0~2.0mm占30%,φ2.0~2.5mm占10%;孔隙率为77.63%,通孔率占比为92.12%,气孔分布较为均匀,形成了清晰致密的骨架结构,其大孔孔壁骨架上存在破壁形成的小孔。

通过对样品的探针片进行光学显微镜下观察,可见部分未完全熔融的石英颗粒及矿物单体颗粒,可得出部分孔隙的形成是由于无压烧结,原料中部分颗粒并未压实,熔融后形成的孔洞。

通过对样品的探针片进行扫描电子显微镜下观察和能谱测试,发现大颗粒残余体成分为石英,骨架上椭圆状自形晶体为赤铁矿,聚合状晶体的成分计算结果为铁辉石,孔洞内成分计算为硅铝石。

将制备的多孔功能材料研磨粉碎至40-60目,用去离子水冲洗3遍后烘干、备用。取0.25g破碎后的多孔功能材料加入含50mltp污水的150ml锥形瓶中,在140r/min气浴恒温摇床内震荡4h后取样,将溶液分别用0.45μm的滤膜过滤,检测其中tp的浓度。

tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为60.4%,吸附量为0.387mg/g;

tp的初始浓度为5.4mg/l时,ph为7.52,经过4h静态吸附的去除率为50.1%,吸附量为0.541mg/g。

对比例1

同实施例1,区别在于,烧成后,降温过程以20℃/min的降温速度从烧成温度降至900℃后,保温时间缩短至60min,最终制得多孔功能材料,相较于实施例1,样品表面析晶占比大幅减少,赤铁矿自形程度明显降低,经检测,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为37.6%。

实施例2

(1)研磨:将铁尾矿送入行星式球磨机研磨成粉,球磨机转速为350r/min,原料与磨球的比例为1:2,研磨时间为0.5h,使尾矿粒度主要分布在10~100μm范围且小于100μm占比80%以上,研磨后筛分出粒度分布范围在30~75μm的尾矿粉。

(2)混料:按比例准确称量研磨后的尾矿粉70份、页岩20份、碳化硅2份、碳酸钙4份、氧化铁4份,混合料与去离子水以重量比1:1.5混合加入球磨罐中,球磨机转速为350r/min,混合时间为5min;

(3)成型:将混合料均匀填料在模具中,表面稍做压紧,放入烘箱中干燥成型,烘箱温度为110℃,干燥时间为3h;

(4)烧制:将干燥后的坯体放入电窑内烧制,升温过程以10℃/min的升温速度从室温逐渐升温到650℃,保温30min,5℃/min的升温速度从650℃逐渐升温到950℃,保温60min,以5℃/min的升温速度从950℃逐渐升温到1160℃,保温20min。降温过程以20℃/min的降温速度从烧成温度降至950℃,保温80min,促进材料表面晶体析出,而后以10℃/min的速度降至室温,制得多孔功能材料,其sem图如图3所示,其中,图b1-b9为不同视域sem图。

所获得的多孔功能材料比重为0.5576,孔径范围为φ<1.0mm占60%,φ1.0~2.0mm占30%,φ2.0~2.5mm占10%;孔隙率为78.86%,通孔率占比为94.37%,气孔分布较为均匀,形成了清晰致密的骨架结构,其大孔孔壁骨架上存在破壁形成的小孔。相较于实施例1,铁尾矿所用的比例升高,比重也随之增加。

通过对样品的探针片进行扫描电子显微镜下观察和能谱测试,发现大颗粒残余体成分为石英,骨架上椭圆状自形晶体为赤铁矿,聚合状晶体的成分计算结果为透辉石,零散分布的灰度较低的他型晶体为钙质长石到钠质长石的中间相。

以上述同样方法测试多孔功能材料对污水中总磷的吸附情况,

tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为66.1%,吸附量为0.423mg/g;

tp的初始浓度为5.4mg/l时,ph为7.52,经过4h静态吸附的去除率为56.7%,吸附量为0.612mg/g。

对比例2

同实施例2,区别在于,烧成温度降至1110℃,最终制得多孔功能材料,相较于实施例2,材料成型效果较差,孔隙率降低,孔道边缘粗糙,表面析晶占比有所减少,经检测,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为38.2%。

实施例3

(1)研磨:将铁尾矿送入行星式球磨机研磨成粉,球磨机转速为350r/min,原料与磨球的比例为1:2,研磨时间为0.5h,使尾矿粒度主要分布在10~100μm范围且小于100μm占比80%以上,研磨后筛分出粒度分布范围在30~75μm的尾矿粉。

(2)混料:按比例准确称量研磨后的尾矿粉70份、页岩20份、碳化硅2份、碳酸钙4份、氧化铁4份,混合料与去离子水以重量比1:1.5混合加入球磨罐中,球磨机转速为300~350r/min,混合时间为5min;

(3)成型:将混合料均匀填料在模具中,表面稍做压紧,放入烘箱中干燥成型,烘箱温度为110℃,干燥时间为3h;

(4)烧制:将干燥后的坯体放入电窑内烧制,升温过程以10℃/min的升温速度从室温逐渐升温到650℃,保温30min,5℃/min的升温速度从650℃逐渐升温到950℃,保温60min,以5℃/min的升温速度从950℃逐渐升温到1140℃,保温20min。降温过程以20℃/min的降温速度从烧成温度降至900℃,保温90min,促进材料表面晶体析出,而后以10℃/min的速度降至室温,制得多孔功能材料,其sem图如图4所示,其中,图c1-c9为不同视域sem图。

所获得的多孔功能材料比重为0.5962,孔径范围为φ<1.0mm占60%,φ1.0~2.0mm占30%,φ2.0~2.5mm占10%;孔隙率为69.81%,通孔率占比为89.52%,气孔分布较为均匀,形成了清晰致密的骨架结构,其大孔孔壁骨架上存在破壁形成的小孔。相较于实施例2,原料配比相同,最高烧成温度降低,孔隙率降低,发泡孔径相较减小,材料比重略有上升。

通过对样品的探针片进行扫描电子显微镜下观察和能谱测试,与实施例2近似,最高烧成温度的变化对多孔功能材料的孔隙率和孔隙结构产生较大影响,对材料表面析晶影响较小。

以上述同样方法测试多孔功能材料对污水中总磷的吸附情况,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为61.3%,吸附量为0.392mg/g。多孔功能材料孔隙率和通孔量降低会影响流体介入反应过程,减弱含磷污水与吸附位点反应效果。

对比例3

同实施例3,区别在于,氧化铁原料加入量降至2份,最终制得多孔功能材料,相较于实施例3,样品表面赤铁矿析晶占比减少,经检测,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为42.5%。

实施例4

(1)研磨:将铁尾矿送入行星式球磨机研磨成粉,球磨机转速为350r/min,原料与磨球的比例为1:2,研磨时间为0.5h,使尾矿粒度主要分布在10~100μm范围且小于100μm占比80%以上,研磨后筛分出粒度分布范围在30~75μm的尾矿粉。

(2)混料:按比例准确称量研磨后的尾矿粉70份、页岩20份、碳化硅2份、碳酸钙4份、氧化铁4份,混合料与去离子水以重量比1:1.5混合加入球磨罐中,球磨机转速为350r/min,混合时间为5min;

(3)成型:将混合料均匀填料在模具中,表面稍做压紧,放入烘箱中干燥成型,烘箱温度为110℃,干燥时间为3h;

(4)烧制:将干燥后的坯体放入电窑内烧制,升温过程以10℃/min的升温速度从室温逐渐升温到650℃,保温30min,5℃/min的升温速度从650℃逐渐升温到950℃,保温60min,以5℃/min的升温速度从950℃逐渐升温到1160℃,保温20min。降温过程以15℃/min的降温速度从烧成温度降至900℃,保温90min,促进材料表面晶体析出,而后以10℃/min的速度降至室温,制得多孔功能材料,其sem图如图5所示,其中,图d1-d9为不同视域sem图。

所获得的多孔功能材料比重为0.5853,孔径范围为φ<1.0mm占60%,φ1.0~2.0mm占30%,φ2.0~2.5mm占10%;孔隙率为79.74%,通孔率占比为95.06%,气孔分布较为均匀,形成了清晰致密的骨架结构,其大孔孔壁骨架上存在破壁形成的小孔。相较于实施例2,原料配比相同,升温曲线相同,生成材料孔隙率近似,降温过程中延长保温时间促进析晶。

通过对样品的探针片进行扫描电子显微镜下观察和能谱测试,与实施例2相比较,所生成的赤铁矿和铁辉石晶体自形程度最高,面积占比更大,作为吸附位点对低浓度tp的吸附效果有促进作用。

以上述同样方法测试多孔功能材料对污水中总磷的吸附情况,

tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为69.3%,吸附量为0.443mg/g;

tp的初始浓度为5.4mg/l时,ph为7.52,经过4h静态吸附的去除率为66.2%,吸附量为0.715mg/g。

对比例4-1

同实施例4,区别在于,降温速率调整为30℃/min,最终制得多孔功能材料,经检测,相较于实施例4,降温速率过快产生大部分玻璃相成分,结晶时间不足导致结晶相占比大幅减少,经检测,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为20.5%。

对比例4-2

同实施例4,区别在于,烧成后,降温过程以15℃/min的降温速度从烧成温度降至900℃,保温时间延长至120min,最终制得多孔功能材料,相较于实施例4,材料表面结晶相以枝晶状生长覆盖部分纳-微米孔隙,导致通孔率降低,阻碍流体通道和吸附过程,经检测,tp的初始浓度为3.2mg/l时,ph为7.51,经过4h静态吸附的去除率为35.8%。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1