蚀刻闪光灯成象的制作方法

文档序号:4484033阅读:246来源:国知局
专利名称:蚀刻闪光灯成象的制作方法
技术领域
本发明涉及一种在工件上建立定形图象的方法,特别涉及一种通过样板用脉冲幅射在工件上产生定形图象的方法。
有多种多样在工件上建立定形图象的方法,诸如广泛用于各类电子装置(如磁盘、存储卡电路及柔性电路)的制造技术。相关的技术也用于以某种信息如条形码标识各种装置,制作印刷元件(如印刷版),及设计装饰图案。
模压是在工件上制作定形图象的技术之一,例如用压模在磁盘上压制可光读识的伺服缝。模压技术的缺陷是压模使用寿命较短。寿命期限后,磁盘本身的弹性将使压制缝发生几何变形。
另一种在工件上建立定形图象的技术是化学蚀刻。该技术是将光致抗蚀剂涂布在基底上并构成需要的图形。然后,用化学蚀刻除去抗蚀剂被显影部分、留下定形图象。蚀刻用的化学品并非尽善尽美,例如,某些化学品可能会蚀刻工件的未显影部分。这种无益的蚀刻将限制在工件上建立的定形图象的大小和位置。
其它周知的技术是用电子束、离子束及等离子体在工件上制作定形图象。由于这些手段的能量流低,因此这些方法是具有低热转换率、连续的或长脉冲长度的蚀刻工艺。对于聚合物基的蚀刻面涂层,低热转换率是有害的。具体地说,低热转换率会在非蚀刻的涂层区产生不良的热处理效果。
激光技术也是一类在工件上建立定形图象的有用方法。其一,是使用氩离子激光器在磁盘上直接烧蚀一个接一个的光学可读的伺服缝。当被烧蚀的磁盘旋转时,激光束被光控地启动和关闭,同时一个最终镜头目标被变换。其二是关于在工件(例如,电视显象管的玻璃荧光屏面板)表面制作机械可读编码标记的方法,该方法使用二氧化碳激光在该荧光屏面板上蒸镀相似宽度的平行区而实现标记制作。
将图象烧蚀在荧光屏面板上的无机颜料涂层中而直接构成电视显象管玻璃面板标记以及用高能激光在聚合物基层的金属涂层上构图的方法均是已有技术。
另一成熟技术是利用准分子激光器在位于聚合物膜前、后侧的金属涂层上蚀刻图样。首先,以单个脉冲方式的激光在聚合物膜前侧金属涂层上蚀刻图样。而后,在以单个脉冲的激光穿过聚合物膜前侧已蚀刻的图样并穿过该聚合物膜到达其后侧,而在该膜后侧蚀刻图样。
尽管当工件上的图象结构较简单及工件批量较小时单独图象结构的直接成象较好,但是图象结构直接成象并非总是最佳选择。例如,用一次仅成一个图象结构的直接激光成象的方法在工件上制多个图象或图象结构时就要花费更多的时间。
已有技术可用激光一次构成一个以上的图象或图象结构。例如,在瓷基镀铝层工件上用接触光刻技术制作定形图象。在该技术中,把对所用激光波长具有高反射的材料掩膜贴置在铝镀层上。用二氧化碳激光器发出的激光照射在该掩膜上,以便将未遮盖的铝镀层去掉。掩膜的反射表面把激光幅射从被掩膜遮盖的工件部分反射掉。
将油墨图样加在工件上以在工件上制作定形图象的方法也是公知技术。其常用的工件多是在陶瓷或聚合物基底上涂覆金属或聚合物涂层的工件。将油墨图样直接施加在上述涂层上。用激光器(如,准分子激光器)发出的光照射该油墨图样,以除去未被该油墨图样遮盖的涂层部分。
使用准分子激光器和掩膜的投影式光刻也是已知技术。掩膜离开工件设置,激光器发出的光直接穿过工件掩膜蚀刻多层印刷电路板上的聚酰亚胺涂层。距投影光学设备4.2米的准分子激光器的输出光束是矩形的(1厘米×3厘米)。
用掩膜曝光制作定形图象时,激光束最好等同或大于被蚀刻区域,以确保光束完全覆盖所有的图象或图象结构。激光器的输出光束通常需用光学设备再整形和聚焦以确保最佳光束形状及产生足够的能量密度。小于被蚀刻区域的光束必须覆盖掩膜而扫描,且不能超出该掩膜。
虽然,在某些场合使用激光器是有益的,但对于图样成象投影而言,激光器,也并非总是最好的选择。激光成象处理往往需要复杂的光学设备用以整形和传输光束及集中光束能量。既使是高功率激光器(例如,准分子激光器)亦非总能充分地用泛光照射所要求的图象区。在用泛光照射图象区时,复合扫描图象区的方法使激光器的经济性和生产率都降低。激光成象处理所用设备、特别是那些所需的复杂光学设备的成本很高。
另外,人们已发现在蚀刻期间准分子激光器会使受损材料产生一个狭窄区。每个激光脉冲都产生一个受损材料的分隔区。该分隔区围绕由激光蚀刻区的边缘延伸。在金属涂层中,受损区一般是相对非成象金属涂层发生微裂和变厚的金属层。在聚合物涂层中,受损区含有大量表面碎屑。无论什么涂层中,受损材料都比非受损材料更难于充分地烧蚀。对于工件上某些必须清除以便蚀刻出完美定形图象的被损材料,既使让工件长时间反复在激光束照射之下移动也不可能完全被烧蚀掉。
与油墨图样结合使用激光器以在工件上制作定形图象时也存在问题。油墨特别是薄油墨常较疏松且有穿透油墨图样的空隙。已知高分辨率激光器,例如准分子激光器,相应油墨图样中的空隙将在工件上烧蚀许多针孔。若油墨图样是金属涂层上被蚀刻的导电图样,则上述针孔可能被导通。
在有关用闪光灯照射半晶体聚合物表面层以在该表面层内生成类非晶聚合物的评述中,人们注意到,通常类非晶层有增强半晶体聚合物与其它材料(包括粘接材料)粘接的作用。类非晶层还可减小光学反射率、增强半晶体聚合物的光学透射,增强涂层与半晶体聚合物的粘接以及减小半晶体聚合物的表面摩擦系数。
上面讲述了用闪光灯照射半晶体聚合物表面层以在该表面层内生成具有图形分布的类非晶聚合物。在该表面层被照射后,可用活性离子蚀刻法选择性地除去非晶体聚合物。
已知用闪光灯可将金属和聚合物基底上的涂料层除掉。在能量密度为9-10J/cm2及发射波长为170nm至5000nm的范围内,闪光灯较长的脉冲宽度在1200至240μs之间。采用闪光灯的涂料除去过程是通过监测涂料层的光谱辐射来控制的。
本发明涉及用闪光灯在工件上制作定形图象的方法。该方法包括将模板贴紧工件定位并在小于约100μs的短脉冲期间用闪光灯经模板照射该工件。本发明也涉及在小于约100μs的短脉冲内使用宽带光源在工件上制作定形图象的方法。本发明还涉及在小于约100μs的短脉冲内用发出辐射的闪光灯在工件上制作定形图象的系统。


图1,本发明系统的透视图。
图2,本发明系统另一实施例的透视图。
图3,根据本发明由闪光灯定形的图样放大顶视图。
图4,由激光器定形的图样放大顶视图。
图5,图3中图样的局部放大顶视图。
图6,图4中图样的局部放大顶视图。
本发明涉及一种用短脉冲闪光灯在工件上制作定形图象的方法和一种带有短脉冲闪光灯在工件上制作定形图象的系统。
根据本发明的方法和系统,来自短脉冲光源(如图1所示的闪光灯12)的宽带光幅射照在工件14上,以在工件14上构成例如三维图样13的定形图象。位于闪光灯12上方的反射器15以选择的能量密度将光辐射导向工件14。模板16(例如,具有导槽图样的掩膜18)贴紧该工件14定位,以将光辐射以图样13的形式投射在工件14上。特殊用途的工件包含一个基底(未示出)。基底的一个或多个侧面可具有涂层(未示出),不含涂层的基底可含有取代涂层的边界部分(未示出)。如果基底含有涂层,则图样13最好制作在该涂层上,如果基底不含涂层,则图样13制作在该边界部分。
基底可由多种有机或无机材料构成。这些材料包括硅,金属,及掺入诸如碳和玻璃的纤维或掺入诸如聚酯,聚碳酸酯,聚乙烯,聚乙烯对酞酸盐,聚酰胺,聚酰亚胺的聚合物的复合材料。基底可为柔性或刚性结构。边界部分的构成材料最好与基底相同。该涂层包含一个表面涂层,并可包含一或多个附加涂层。上述各涂层依照设计的顺序进行涂层。根据需要,图样13可形成在上述涂层中任何一个能获得充足的光辐射量以形成具有图样13的涂层。所述的形成图样13的涂层厚度最好小于1μm。
有机和无机材料可掺入上述各涂层,以提供所需的操作、结构、识别和美学特性。例如,由导电金属构成的一个或多个涂层可提供所需的导电特性。良好的导电金属包括铜、银、镍、铬,以及它们的合金和铟、氧化锡。由磁性金属构成的一个或多个涂层可提供所需的磁特性。用于本发明目的的磁性金属是单体金属或具有磁特性的金属化合物。磁性金属可以是一特定涂层的某一组分或是构成该特定涂层的若干组分的一种组合,例如一种在该特定涂层中分布的磁性颗粒。磁性金属包括,铁,氧化铁,铁酸钡,镍钴合金,铬钴合金,磷化钡,及钡的氧化物。
潜在的工件可以是包括涂有磁性金属或磁材料的基底,例如,磁数据存储盘、通常最好是软盘。潜在的工件也可以是涂有导电金属的基底,例如,存储卡电路、触屏电路。潜在的工件还可以是包括聚合物涂覆的基底,例如,带有条码信息的基底。
短脉冲光源(最好是闪光灯12)用众所周知为下文将描述的光解蚀刻技术在工件14的涂层或边界部分有选择地构成图样。图样13的蚀刻成形取决于涂层或边界部分对短脉宽、高密度能量的实际吸收程度。
在短促的图样蚀刻过程中,短脉宽、高密度能量的吸收在极短的时间周期内所产生的大量的热滞留在该涂层或边界部分上。短脉宽、高密度能量会集中在紧靠图样13的涂层或边界部分而不渗入工件14上离开图样13的区域,或不渗入工件14上非所说涂层或边界部分的区域。
良好的图样蚀刻条件包括在脉冲宽度小于100μsec期间产生的能量密度大于或等于约0.5J/cm2。低密度(约小于0.5J/cm2),长脉宽(约大于100μsec)脉冲的能量不能完全集中在贴近图样13的涂层或边界部分,且会对工件14离开图样13的区域带来不良的热影响。最好,闪光灯12的宽带辐射在短脉宽(小于100μsec)期间即达到高能量(约大于1.5J/cm2)以保证在工件14的涂层或边界部分获得图样13的满意的蚀刻图象。
辐射波长的范围和分布也与光源、尤其是闪光灯12的选择有关。波长的选择应结合基底及涂层的性质(如,成分和厚度)来考虑。不同工件14的涂层和边界部分依据许多可变量(例如,工件14的成分,涂层的成分和厚度,以及辐射的能量密度)以不同的比率吸收辐射的不同波长。由于良好的蚀刻特性取决于辐射能量的快速吸收,因此选择能被工件14的涂层或边界部分迅速吸收的辐射波长就可以显著改善图样的蚀刻。例如人们熟知的用波长小于800nm的短波长辐射的集中能量加工某些基底和涂层,可以改善蚀刻成象效果、降低成本和提高效率。
使用吸收增强剂可提高对辐射的吸收。用于本发明的吸收增强剂是一种为提高辐射吸收,可以根据涂层或边界部分的性质而选择辐射波长,而被施加在工件14的涂层或边界部分中的化学制剂。吸收增强剂可包括某些染料和颜料。吸收增强剂也可是一种在金属涂层表面中生成的氧化物。该氧化物可抵消某些金属(如铝)的反射特性。
可通过改变与工件14的涂层或边界部分接触的辐射波长,以使该波长更好地以多种方式与被涂层或边界部分吸收的波长相匹配。例如,改变闪光灯12的输入功率而有效地改变辐射的波长分布和峰值波长。另一作法是,将一光滤波器置于闪光灯12与工件14之间,以使辐射穿过该光滤波器。光滤波器应设置得能将不需要的波长从辐射中滤掉。滤掉不需要之波长也就提高了所需波长的辐射能量密度。滤掉不需要的波长即可减小辐射对工件产生的负作用(如使工件发热),从而改善蚀刻质量。
也可根据吸收染料或颗粒来选择或更换基层以减少到达基底背侧涂层的能量密度。另外,可将反射材料用于基底中或作为基底背侧涂层的内层,以减小背侧涂层或基底吸收的能量。
在一个实施例中,闪光灯12最好是直线型闪光灯。直线型闪光灯能在5μsec级的较短脉冲内以较短波长产生大功率并释放高的能量密度。典型的直线型闪光灯是管壁厚1mm,内腔直径为3-20mm,长度达数厘米的石英灯。常用的钨制电极密封在石英灯管的两端。灯管内充入惰性气体,为提高光效,最好充入氙气。
通常,利用电容器组迅速将5-40KV的高电压加在电极上,而触发直线型闪光灯。电荷电离氙原子而形成发出辐射的等离子体。高电压以极大的速率加在电容器组上,而后快速闭合断电开关,以产生5μsec级的短脉冲。几个安培的低压直流电,即常说的小电流最好在闪光灯的触发期间内及两次触发之间始终通过电极,以保持等离子体的温度。在闪光灯12触发时,等离子体的加温可防止闪光灯12内的热冲击。
另外,与其他辐射(如激光器)相比,直线型闪光灯能在较大的区域施加高密度能量。对于有导槽图形的掩膜18的这种大辐射覆盖区,闪光灯12之类的光源往往可在闪光灯12与掩膜18或工件4不发出相对移动的条件下,根据需要、一次制作出多个图象结构。
与激光器、例如准分子激光器的辐射覆盖区相比,闪光灯的大辐射覆盖区将被蚀刻涂层或边界部分中有害的受损材料区减至最低。如已指出的,每个激光脉冲产生一个被损材料分离区。这种被损材料区的产生被认为它是由于靠近照射在涂层或边界部分上的激光周边的能量密度下降而引起的。能量密度的降低可因系统振动而产生的光束离散和光束振动引起,也可因非均匀激光等离子体产生所造成的光束振动而引起。
在闪光灯的每个脉冲期间,闪光灯12也会使涂层或边界部分中出现被损材料区。闪光灯12造成的被损材料区是因闪光灯12发出并照射在涂层或边界部分的辐射周边区域的能量密度下降而引起的。被蚀刻图样周边附近的热扩散将导致闪光灯12辐射能量密度下降。由于辐射的吸收时间远大于其释放的时间周期,所以激光器产生显著的热扩散。由于闪光灯在大于激光器的脉冲周期内产生能量密度,因此闪光灯的辐射吸收较慢。
虽然闪光灯造成被损材料,但其被损材料区并不明显小于激光器的被损材料区。但激光器造成的被损材料区与闪光灯的被损材料区相比在蚀刻区中占有较大的比例。因此,与激光器相比,闪光灯的被损材料蚀刻的影象修正较少,同时闪光灯造成的被损材料对生产的影响也较小。
根据本发明,所述模板16(例如具有导槽的掩膜18)可贴靠涂层或边界部分定位。掩膜18的导槽形主要是一个或多个可将闪光灯12的辐射引向涂层或边界部分,以在工件14上构成图样13的窗口(未示出)。工件14位于掩膜18的一侧,闪光灯12位于掩模18的另一侧。
掩膜18最好具有用于其窗口部分的下垫支撑。被支撑的掩膜易调准且不变形。被支撑的掩膜可含有掩膜材料的隔离区,如X-Y图样或字母″O″的中心。
掩膜18最好含有高透过闪光灯12辐射的基底材料,例如被通称为合成石英的石英玻璃。跨越掩膜窗口区的基底材料的高透过率可把穿过该掩膜辐射的扭曲和衍射以及由于对辐射的吸收而引起的掩膜温升降至最小。掩膜18还有一个对闪光灯12的辐射强反射的表面层。高反射率的掩膜18可将掩膜18上用于阻挡辐射的区域以及掩膜18的有害温升减至最小。
在一个实施例中,掩膜18的表面层由真空蒸镀在石英玻璃基底材料上约60nm厚的铝层构成。该铝层用标准半导体工业照相及湿刻技术成形在掩膜18上并具导槽图形。
对于另一种掩膜18,模板16可是一种贴靠涂层或边界部分设置的油墨构形(未示出)。该油墨构形取代掩膜18对闪光灯12的辐射导向。
有时油墨构形具有的空隙可使工件的涂层中产生针孔烧蚀。当激光器、例如准分子激光器穿过有空隙的油墨构形在工件上形成图样时,工件涂层中会烧蚀出高分辨率的针孔。而用闪光灯12通过与激光器所用类似的油墨在工件上形成图样时则可以大大减少可观测到的烧蚀的针孔。与激光器相比,使用闪光灯12烧蚀图样时针孔的大小及数量均下降。当烧蚀导电金属时,希望尽可能降低针孔的尺寸和数量,以便减小某些导电图样、如图样13中的类似开口。
闪光灯给予涂层的热效应可使闪光灯相比激光器降低了针孔的形成。特别是与激光器相比闪光灯12可在较长的时间周期内对涂层施加能量密度。闪光灯在涂层中产生的热能量穿过油墨构形中的空隙离开闪光灯辐射成象部分而扩散。工件中能量扩散减低了工件中的热量聚集,也就减少了被闪光灯辐照涂层中形成的针孔的数量和大小。闪光灯辐照可使针孔形成下降的其它原因包括,闪光灯辐射扩散的增强和闪光灯光辐射方向均匀性下降。
在图1的实施例中,隔离层20贴靠工件14的涂层或边界部分设置。涂层或边界部分中的图样13的蚀刻会引起涂层的高能碎化。在不设置隔离层20时,碎化的碎屑将以一或二厘米的量级从工件14游离。隔离层20实际上是一个防止碎屑离开工件14而与模板16,如掩膜18接触的物理性防渗透隔层。
隔离层20的设置充分靠近工件14的涂层或边界部分,以确保碎屑离开工件14的移动小于数毫米。如果不设置隔离层20,碎屑将接触并粘结到窗口内的掩膜18上。清除掩膜18上的碎屑或更换掩膜18必须防止辐射的散射和衍射,以及不良的成象效果。清除碎屑具有破坏性,而更换掩膜18其价格昂贵。
当使用油墨构形时,作为物理性防渗透隔层的隔离层20可限止碎屑离开工件14的运动,并防止碎屑与闪光灯12接触。如果将油墨构形直接施加在涂层或边界部分,则该油墨构形被置于隔离层20与工件14之间。否则,隔离层20被置于该油墨构形与工件14之间。若不设置隔离层20,则碎屑将接触并粘到闪光灯12上。清除闪光灯12上的碎屑或更换闪光灯12必须防止辐射的散射和衍射以及不良的成象效果。清除碎屑对生产有破坏性,而更换闪光灯12很昂贵。
在图2的实施例中,工件14的基底是隔离层20。基底的一个涂覆侧(未示出)有涂层。基底还有一个非涂覆侧(未示出)。该涂覆侧与非涂覆侧彼此相对。闪光灯2设置在基底非涂覆侧。闪光灯12的辐射进入基底非涂覆侧,并穿过基底。辐射照到与基底接触的涂层侧的涂层上,并在工件14的涂层上产生图样13。
在其它优选实施例中,隔离层20可以是如图1的膜片22、也可以是将涂层或边界部分与闪光灯12隔开的膜板(未示出)。除非另有说明,所有关于隔离层20的解释均是对膜片22、膜板以及基底(当基底是隔离层20时)而言。隔离层20很牢靠地提供强控制特性,充分地限制游离于工件14的碎屑的通过。
通常,可将隔离层20贴靠涂层或边界部分,以使闪光灯接近工件14。减小工件14与闪光灯间的间隔可使成象更经济且改善图样特征。这种近间隔也可限制位于图样13外侧的工件14非成象部分的污染。
隔离层20与涂层或边界部分的接近程度取决于工件的某些变化特征,例如工件14涂层或边界部分的粗糙度。一些涂层表面比另一些涂层表面更粗糙,与粗糙面紧密接触的隔离层20会适应该粗糙面,将使被辐射产生的图样13获得较差的分辨率。较差的分辨率是因辐射未以垂直隔离层20的方向穿过隔离层20所产生的扩散和衍射而引起的。
以基底作隔离层20时,隔离层20与涂层的间隔自然可做得很小。如图1所示,在抵靠着工件14的涂层或边界部分涂布隔离层时,隔离层20与涂层或边界部分间的间隔极小,以至隔离层20与工件14彼此粘接在一起。诸如薄膜片的隔离层可用常用的层压或挤压技术和设备把它层压或挤压在涂层或边界部分上。
在另一种改型中,可用连续操作系统,依靠动力设置该涂层或边界部分和隔离层20,以使隔离层20和涂层或边界部分以同一速度、同一方向彼此相接地移动、但彼此不相固结。这里,工件14构成工件板(未示出)而隔离层20构成隔离板(未示出)。
优选的隔离层20应确保工件14涂层或边界部分中的最佳图象形状及辐射的利用效率。在涂层或边界部分构成所需的图样13主要取决工件14涂层或边界部分的辐射吸收特性。辐射穿越隔离层20的透过率决定实际到达涂层或边界部分的辐射量。隔离层20的较高透过率降低了对闪光灯能量的要求,并可降低隔离层20的热吸收。隔离层20的透过率尤其与隔离层20的制作材料及厚度有关。
充分透过闪光灯12辐射的隔离层20将使穿过隔离层20的辐射保留了在工件14涂层或边界部分构成图样13的足够能量。隔离层20对辐射的透过应很强,以使图样13完全形成在涂层或边界部分上。隔离层20最好允许至少百分之五十(50%)的辐射完全通过,能使至少百分之八十(80%)的辐射通过则更好。
隔离层20的选择也可确保在涂层或边界部分上构成最佳图象形状。由于辐射路径穿过隔离层20,所以图象定形取决辐射的几何变化(如辐射的散射和衍射)。隔离层20的制造缺陷,如挤压线,表面不平度以及内径的不均匀度均可使辐射发生几何变化。应将隔离层20的制造缺陷减至最小,以便以合格的品质在涂层或边界部分上形成优良的象分辨率。
隔离层20的制作材料,制作厚度及其本身的制作缺陷将影响隔离层20的透过率并致使辐射产生几何变化。业已发现,某些聚合物薄膜,诸如特级聚丙烯薄膜,在一定条件下能显著改善图象形状,并有效地利用闪光灯12的辐射。
隔离层20,尤其是薄膜片,可由商业级聚合物膜、诸如商业级聚丙烯和聚乙烯制作。然而,商业级聚合物膜往往因其存在的制作缺陷,诸如挤压线、表面不平度和内径不均匀度而不能被选用。当辐射穿过薄膜片时上述缺陷常使辐射变得不规则。另外,带有上述缺陷的商业级聚合物膜会吸收辐射的能量,使聚合物膜的温度升高,并降低该膜的耐久性和使用寿命。
在非选用商业级聚合物不可时,应注意对于某些需要的波长带而言,商业级聚乙烯的透过率明显地小于商业级聚丙烯的透过率。因此,对于在同样的工件14上制作同样的图样时,闪光灯12经商业级聚乙烯膜发射辐射所加的功率应大于用类似闪光灯12经商业级聚丙烯膜发射辐射所加的功率。
隔离层20最好用电容器级的双轴取向的聚丙烯(BOPP)制作。电容器级聚丙烯为闪光灯12辐射提供高透过率。另外,电容器级聚丙烯可具有平滑的表面、均匀的厚度和最小的表面缺陷,如模压痕迹。这些优良特性使穿越薄膜片的辐射的几何变化减至最小,从而保持了图样分辨率并延长了薄膜的寿命。
在涂层或边界部分上构成图样13后,隔离层20被从工件14上除去。当隔离层20是由双轴取向聚丙烯制成时,常有大量碎屑随薄膜片被除去。然后,用常规的二氧化碳雪喷法清除涂层或边界部分上剩余的碎屑。根据雪喷法,二氧化碳以约850PSI(59.76kg/cm2)与空气混合而产生结晶的雪粒。利用市售的喷枪以喷沙方式将结晶雪粒投射到工件14的涂层或边界部分。
下述实施例仅是根据本发明的几个典型,它们并不限制本发明的实施例。
实施例1-3(金属基底的闪光灯蚀刻)参照图1,各实施例中的工件14是在真空室内用标准电子束蒸发技术在聚乙烯对酞酸盐(PET)基底上蒸镀75nm铜层而制成的真空金属化聚合物膜。隔离层20是由产自Connecticut州的Dayville的Bollmet公司的电容器级双轴取向聚丙烯膜构成。隔离层20厚0.001英寸(25μm)。
闪光灯12是产自California州Sunnyvale的ILC科技公司的ILC-18型直线型闪光灯。闪光灯12含有一个直径6.0mm的灯腔和一个壁厚1.0mm的透明石英玻璃灯管。灯腔内含有表压为400mm汞柱(0℃)的高压氙气。闪光灯12的脉冲宽度6μs(FWHM)、其输出能量100焦耳。对2μF电容量的电容器施加10KV的充电电压,以触发闪光灯12。给闪光灯12的电极施加1.7A的小电流以维持等离子体的温度并防止对闪光灯12的热冲击。椭圆形反射器把闪光灯12的辐射导向工件14上面积为44.5cm2的表面。反射器的开口宽5.0cm,闪光灯弧长8.9cm。
实施例1在闪光灯12曝光前,用常规技术将油墨构形印在工件14的铜涂层上。图样13是一列平行的排线。每排线的线宽为0.002英寸(50μm)至0.010英寸(250μm)。隔离层20被置于油墨构形之上并与该油墨构形和铜涂层紧密接触。闪光灯触发时,在44.5cm2被照区域中的14cm2的面积被烧蚀。这14cm2面积内具有线宽0.004英寸(100μm)、线与线间隔为0.002英寸(50μm)的优良的分辨率。另外,隔离层20可防止烧蚀的碎屑沾污闪光灯12和反射器15。
实施例2将隔离层20置于工件14上并与铜涂层紧密接触。具有导槽图形的掩膜18与隔离层20紧密接触。掩膜18的基底材料是石英玻璃,其表面层材料是铝。铝被真空沉积在石英玻璃基底材料上约600nm厚。用标准的半导体工业照相及湿刻技术使铝在掩膜18上构成导槽图形。
图样13是一列平行的排线。每排的线宽为0.002英寸(50μm)至0.010英寸(250μm)。在44.5cm2被照区域中的14cm2的面积被烧蚀。这14cm2面积内具有线宽0.006英寸(150μm)、线与线间隔为0.003英寸(75μm)的优良的分辨率。此外,隔离层20可防止烧蚀碎屑沾污掩膜18、闪光灯12和反射器15。
实施例3本实施例的工件14与实施例1和2所述工件相同。模板16是由普通有机油墨形成的油墨构形并用常规技术被印制在工件的铜涂层上。油墨构形的导槽图样具有中心距为0.008英寸(200μm),宽为0.004英寸(100μm)的线。隔离层20由产自Connecticut州Dayville的Bollmet公司的电容器级双轴取向聚丙烯膜制成。隔离层20厚为0.001英寸(25μm)。
闪光灯12是产片California州Sunnyvale的ILC科技公司的L786E型直线型闪光灯。闪光灯12有一个壁厚1.0mm的透明石英玻璃灯管和一个直径8.0mm的灯腔。灯腔内含有表压为400mm汞柱(0℃)的压缩氙气。闪光灯12的脉冲宽度为4μs(FWHM),其输出能量是200焦耳,每个脉冲能烧蚀60cm2。对0.84μF电容量的电容器施加21.8KV的充电电压,以触发闪光灯12。给闪光灯12的电极施加1.9A的小电流。尖顶形反射器把闪光灯12的辐射导向工件14。反射器开口宽是50cm,闪光灯弧长是20.3cm。闪光灯12在工件14上产生的能量密度是1.5J/cm2。
(在图3和图5中,浅色区是涂层被烧蚀的区域,深色区是涂层未烧蚀的区域)。(图3是12.5倍的放大图,图5是200倍的放大图)。
如图3所示,闪光灯12在工件14上构成线23的图样。与比较实施例1的激光器相比,闪光灯12烧蚀出的线23图样的分辨率较低,但是合格的。导致分辨率下降的原因是闪光灯12每单位时间的能量密度较低。
每个闪光灯12的脉冲在涂层上产生受损材料的狭窄区(未示出)。在实施例1中,激光器每个脉冲产生的受损材料区在被烧蚀涂层中的百分比要比闪光灯12每个脉冲产生的同种百分比大若干倍。
比较实施例1本实施例中的工件14,模板16和隔离层20与实施例3中的工件件14,模权16和隔离层20相同。以激光器(未示出)代替闪光灯12和反射器15。
激光器是产片Massachusetts州Acton的Lambda Physik的LPX315型150瓦准分子激光器。LPX315型激光器可以高达150Hz的脉冲频率在400至800mJ的范围内选择光束的能量输出。该激光器脉冲宽度是0.02微秒(FWHM),每个脉冲的烧蚀范围在2至3cm2。该准分子激光器最好选用充氟的,并产生波长248nm的紫外辐射。设置一个焦距42英寸(106.68cm)的柱面会聚透镜和一个焦距6英寸(15.24cm)的柱面发散透镜对激光器的光束聚焦并整形。调整会聚透镜和激光器之间以及会聚透镜和发散透镜之间的距离,以便同时满足烧蚀铜涂层所需光束的宽度、高度及能量密度。
工件14被安装在一个X-Y向移动平台上,该平台穿过激光束平移以使激光束扫描油墨构形的导槽图样进而在铜涂层上制作该图样。X-Y向移动平台沿Y向以100英寸/分(254cm/min)的速度移动。激光器在工件14上产生125mJ/cm2的能量密度。测量能量密度的ED-500开窗式焦耳计产自加拿大的Queqec省ste-Fog的Gentech。
(在图4和图6中,浅色区是涂层烧蚀区,深色区是涂层未烧蚀区。图4是12.5倍的放大图,图6是200倍的放大图)。
如图4所示,激光器在工件14上产生线25的图样。激光器烧蚀出分辨率良好的线25的图样,并在覆盖工件14的油墨构形处烧蚀出针孔26。与实施例3中闪光灯12烧蚀的针孔24相比,针孔26的尺寸和数量均明显偏大。由于针孔26比针孔24具有更大的尺寸和更多的数量,所以极清晰地显示出,在图6中位于金属涂层中的针孔26比闪光灯12产生的针孔24更可能引起电路断开。
在每个脉冲期间激光器在涂层上产生的受损材料狭窄区(未示出)紧靠着被烧蚀的涂层。激光器每个脉冲产生的受损材料区在被烧蚀涂层中的百分比要比实施例3中闪光灯12每个脉冲产生的同种百分比大若干倍。
本文仅叙述了本发明的优选实施例。对本领域技术人员而言,在不脱离本发明本质和范围的前提下对本发明实施例之形式和调节作某些变化是可能的。
权利要求
1. 一种用闪光灯在工件上制作定形图象的方法,该方法包括将一模板紧贴工件定位;将闪光灯在约等于或小于100微秒的短脉冲内发射的辐射通过模板导向工件,辐射可从工件上去除碎屑。
2. 如权利要求1的方法,其中辐射波长小于800nm。
3. 如权利要求1的方法,其中辐射波长在200nm与800nm之间。
4. 如权利要求1的方法,进一步包括在闪光灯和工件之间设置一光学滤波器,辐射穿越滤光器时被滤掉的辐射波长不能通过光学滤波器。
5. 如权利要求1的方法,其中的闪光灯是一个充有氙气的管状灯体的直线型闪光灯。
6. 如权利要求1的方法,进一步包括紧贴模板设置一个防止碎屑从工件上扩散的层,该层的设置使闪光灯的辐射在工件上形成图样前穿过该层,该层允许足够的能量透过,以使闪光灯能够建立定形图象。
7. 如权利要求1的方法,其中工件包括一个具有磁性的或导电性的金属涂层的基底。
8. 如权利要求7的方法,其中基底包含选自由聚酯,聚乙烯对钛酸盐,和聚酰亚胺构成基体的单一聚合物。
9. 一种在工件上制作定形图象的系统,该系统包括一个紧贴工件设置的模板和,一个靠近模板设置的直线型闪光灯,该闪光灯在等于或小于约100μs的短脉冲内发射波长小于800nm的辐射,该辐射穿过模板射向工件。
全文摘要
本发明涉及一种用闪光灯在工件上制作定型图象的方法,该方法包括将模板紧贴工件并用闪光灯在等于或小于约100μs的短脉冲内发射的辐射经模板照射工件。
文档编号B29C59/00GK1115875SQ94120780
公开日1996年1月31日 申请日期1994年12月17日 优先权日1993年12月17日
发明者道格拉斯S·邓恩, 杰弗里B·希尔, 安德鲁J·乌德柯克 申请人:美国3M公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1