一种可实现制冷、制热和供热水功能的三联供方法

文档序号:4672624阅读:177来源:国知局
专利名称:一种可实现制冷、制热和供热水功能的三联供方法
技术领域
本发明涉及一种可实现制冷、制热等多项功能的联合功能方法。
背景技术
由于全球气温变暖、气候异常等环境问题日益严重,常规一次能源(如石油、 煤等)逐渐枯竭,环保、节能和寻找新能源已经成为目前整个国际社会的重大而 紧迫的课题。
目前大量使用的氟利昂户式热泵空调系统,夏季室外冷凝器的放热量大,形
成局部热污染,且室外气温越高制冷效率越低,能耗越高;在北方的过渡季节或 南方的冬季,室外气温较低的时候,热泵供热效率很低,需要增加辅助的电加热 装置来满足需求,能耗也大大增加;另外随着人们生活水平的提高,家庭生活热 水的需求量也越来越大,其所需的能耗约占家庭总能耗的30%左右, 一般采用电 加热或燃气加热制得热水,空调系统和热水供应系统单独设立,设备利用率低, 成本高。
太阳能冷管在一根玻璃管内就可完成太阳能吸附脱附制冷循环,它利用固体 吸附式制冷原理,采用沸石分子筛一水作为吸附工质对(也可采用活性炭一甲醇 等其他工质对),吸附床填充复合吸附剂。单只太阳能冷管就是一个集制冷、供 热水于一体的能量转换单元。吸附床由复合吸附剂整体成型,具有较好的传热传 质与吸附脱附性能,其外壁为双层真空管(玻璃外管和玻璃内管),外面还有一 个带选择性涂层的玻璃套管,可以高效吸收太阳能并大大降低热损。在吸附床中
部埋有热量导出管(中芯导热管),吸附阶段其内流动的换热介质(冷水),使吸 附床迅速降温,实现吸附剂床在阳光下高效集热与离开阳光后有效散热。冷凝器 位于吸附床下部,为一与冷凝水箱(热水箱)接通的单层壳管、通过与冷凝水箱 冷却水进行热交换而使制冷剂蒸汽充分得到冷凝,并充分利用制冷剂的凝结热, 用该热量来提供生活热水。蒸发器位于冷凝器下部,其内装有制冷剂,在吸附剂 冷却吸附时,蒸发器通过制冷剂的蒸发吸收蒸发器水箱内冷冻水的热量达到制冷 的目的,此时冷量从太阳能冷管的蒸发器输出。太阳能冷管的结构示意图见附图
1、附图2。
太阳能冷管的制冷过程是在白天时候,太阳能冷管吸附床接受太阳能辐射 后吸附剂温度升高,床内制冷剂气体压力上升,当吸附床温度达到制冷剂脱附温 度后开始脱附,当脱附出来的制冷剂蒸汽遇到冷凝器的时候,由于冷凝器温度低 于制冷剂的此时压力下的饱和温度,于是制冷剂蒸汽开始在冷凝器上进行冷凝, 变成了液体的制冷剂,为了强化冷凝效果,在冷凝器通入冷却水强化制冷剂的冷 却效果,制冷剂冷凝热量通过热水向外输出。制冷剂液体靠自身重力作用流到蒸 发器储存起来。傍晚时刻,太阳光辐射减弱,太阳能冷管的吸附床温度开始降低, 为使其温度能有效快速降低,在中芯导热管中注入冷水,当吸附床温度降低至吸 附剂吸附温度的时候,吸附床内的吸附剂开始吸附周围的制冷剂蒸汽,随着吸附 过程的继续,太阳能冷管内制冷剂蒸汽的压力降低,当制冷剂蒸汽压力降至蒸发 器内液体制冷剂的饱和蒸汽压力时候,蒸发器内的制冷剂开始汽化,在汽化的过 程中,需要吸收汽化潜热来维持汽化,于是产生了制冷效果,蒸发器制取的冷量 可以用冷冻水输出,输送到需要用冷的场所(如风机盘管等),吸附制冷过程直 至次日清晨吸附床不再吸附制冷剂蒸汽为止。
CCM乍为一种自然物质,是较为理想的制冷剂,其优点在于无毒、不燃、0DP
值为零、温室效应较小、价格低廉、勿需回收、对环境没有副作用等。从1866 年开始,至20世纪30年代,C02亚临界循环曾被广泛使用,但由于其效率较低, 系统工作压力高,设备机械强度要求高等原因,被后来的氟利昂系统所取代。
所谓跨临界C02循环是指C02在低于临界压力条件下在蒸发器内吸热,而在 超临界压力条件下在气休冷却器内放热(C02在该过程中始终为气态而没有冷凝) 的循环。跨临界C02循环的放热过程温度较高,且存在一个相当大的温度滑移(约
80 iocrc),用于热泵循环具有独特的优势。研究表明,同样工况下,(i)将
水从10°C加热到60°C , C02热泵热水器要比电热水器和燃气热水器节能75%; (2)
co2热泵热水器可以生产出温度达9crc的热水,而传统热泵系统的热水温度一般
低于55t:; (3)采用C02热泵为商用和住宅建筑供应热水,可使其总用能量减少 20%; (4) C02热泵系统在低温环境下能够维持较高的供热量,大大节约辅助加热
设备所耗费的能量。

发明内容
本发明的目的就是解决目前供能技术上存在的能耗及设备浪费,提供一种可 实现制冷、制热和供热水功能的三联供方法。
本发明的发明人通过对几种供能技术优缺点的充分研究,认为太阳能冷管只 能在夜间提供冷量,这与普通现代家庭对冷量的需求基本一致,而且夏天用冷, 太阳辐射也较强,这使得太阳能冷管在家用空调领域的使用具有可行性,并且随 着技术的发展,太阳能冷管成本的降低,将使这一技术更具竞争力。太阳能冷管
在提供冷量的同时,还能提供生活热水;当太阳能不足或阴雨天气时,可用跨临界C02系统作为辅助来实现制冷和制热;太阳能冷管只能晚间供冷,当白天需要 供冷时也可由跨临界C02系统制冷。因此,如果将太阳能冷管和跨临界C02系统 巧妙联合,即集合太阳能制冷、空调热泵和供热水系统,既可以提高设备的利用 率,又可以实现环保、节能的效果。
木发明所述的可实现制冷、制热和供热水功能的三联供方法,就是将太阳能
冷管制冷系统、跨临界C02热泵循环系统和热水循环系统相连在一起。
太阳能冷管制冷系统用于制冷和制取热水,跨临界C02热泵循环系统用于制
热、制取热水,热水循环系统用来提供热水。
通过对室外温度、湿度的监测实现对太阳能冷管系统和跨临界C02系统的自
动切换,也可采用手动的方式来控制系统。本发明的方法能提供五种运行模式
制冷+供热水、制热+供热水、单独制冷、单独制热、单独供热水,满足不同气候 条件和用户的不同需要,实现集节能、环保、紧凑、高效为一体的供热、空调及 热水联合供应。
太阳能冷管制冷系统为室内空气换热器5、太阳能冷管11、太阳能冷管冷却 水换热器12、太阳能冷管冷冻水换热器13、冷冻水泵14和截止阀A15通过管道 连接组成的循环管路。为满足用户使用所需的冷量,可将多根冷管并联到一起, 并设置冷冻水换热器和冷却水换热器。太阳能冷管的吸附工质对可选用沸石分子 筛一水,也可选用活性炭一甲醇等其他工质对。
跨临界C02热泵循环系统为通过管道串联的截止阀C4和热水换热器6与 通过管道串联的截止阀B3和室内空气换热器5并联后依次与四通阀B7、节流阀 8、室外空气换热器9、四通阀A2连接组成循环管路,C02压縮机1、储液器10 和四通阀A2通过管道连接成循环支路。跨临界二氧化碳的工作压力为 3.0-12.0MPa;工作温度在低温侧可达-20°C,高温侧可达95 T;跨临界二氧化 碳热泵系统的循环管路及主要部件应满足15MPa的耐压要求。
热水循环系统为依次通过管道连接的热水换热器6、三通阀A16、截止阀D17、 热水泵18、热水箱19、三通阀B20和太阳能冷管冷却水换热器12组成的循环管 路。
本发明的有益效果本发明将太阳能冷管吸附式制冷系统和跨临界C02热泵 系统联合,充分发挥了太阳能冷管夏季制冷并提供热水的特点和跨临界C02热泵 循环在冬季制热和提供热水方面的独特优势,综合了两个独立系统之长来弥补各 自系统的不足。既能满足夏季的制冷以及冬季的供暖,又能满足全年各时期的供 热水需求,不但在环境保护方面具有很大的优势,而且其节能的潜力非常大,还 使用了环保的新能源一太阳能。该方法将热泵空调及供热水系统合二为一,不但 使整个的方法实施起来结构紧凑,还有效提高了设备的利用率。


图l是太阳能冷管的结构示意图,其中+表示白天制冷剂走向,个表示夜间 制冷剂走向
图2是太阳能冷管的截面结构示意图
图3为太阳能冷管和跨临界C02联合系统的结构原理图
图4为联合系统中太阳能冷管系统制冷+供热水的运行模式原理图,同时也 是单独供热水、太阳能不足或阴雨天气时以及白天需要供冷时跨临界C(^系统单 独制冷的运行模式原理图。
图5为联合系统中跨临界C02系统的制热+供热水的运行模式原理图,同时也是单独制热、太阳能不足时单独供热水的运行模式原理图 图中各附图标记的名称如下
111-中芯导热管112-玻璃内管113-玻璃外管 114-玻璃套管 115-吸附床 116-冷凝器 117-蒸发器 118-吸附剂通道
1-C02压縮机2、 7-四通阀A、 B 3、 4、 15、 17-截止阀A、 B、 C 5-室内空气换热器6-热水换热器8-节流阀 9-室外空气换热器 10-储液器 11-太阳能冷管 12-太阳能冷管冷却水换热器 13-太阳能冷管冷冻水换热器 14-冷冻水泵 16、 20-三通阀A、 B 18-热水泵 19-热水箱
具体实施方式
实施例1
本发明所述的可实现制冷、制热和供热水功能的三联供方法,就是将太阳能 冷管制冷系统、跨临界C02热泵循环系统和热水循环系统相连在一起。具体的实 施方式之一如图3所示
太阳能冷管制冷系统为室内空气换热器5、太阳能冷管11、太阳能冷管冷却 水换热器12、太阳能冷管冷冻水换热器13、冷冻水泵14和截止阀A15通过管道 连接组成的循环管路。太阳能冷管的吸附工质对可选用沸石分子筛一水。
跨临界C02热泵循环系统为通过管道串联的截止阀C4和热水换热器6与 通过管道串联的截止阀B3和室内空气换热器5并联后依次与四通阀B7、节流阀 8、室外空气换热器9、四通阀A2连接组成循环管路,C02压縮机1、储液器10 和四通阀A2通过管道连接成循环支路。循环管路及主要部件应满足15MPa的耐压要求。
热水循环系统为依次通过管道连接的热水换热器6、三通阀A16、截止阀D17、 热水泵18、热水箱19、三通阀B20和太阳能冷管冷却水换热器12组成的循环管 路。
太阳能冷管制冷系统和跨临界C02热泵循环系统共用一个室内空气换热器, 并分别通过热水换热器与热水循环系统相连。
本发明的方法利用三个独立的循环管路太阳能冷管制冷系统管路、跨临界 C02循环管路和热水循环管路,可根据不同的气候条件及用户的不同需要通过两 个子系统和不同管路之间的协调配合,实现制冷、制热、供热水三种功能。总的
来说,有5种工作模式,分别是1)制冷+供热水工况;2)制热+供热水工况;
3)单独制冷工况;4)单独制热工况;5)单独供热水工况。下面结合图3、图4、
图5分别予以介绍
1)制冷+供热水工况
晴天时,开启太阳能冷管系统和热水系统,C02系统处于关闭状态。 热水管路中三通阀A16、三通阀B20的通道a与c分别连通,截止阀A15、 截止阀D17开通。
白天,太阳能冷管吸附床11接受太阳能辐射后吸附剂温度升高,当达到制 冷剂脱附温度后开始脱附,脱附出来的制冷剂蒸汽在冷凝器冷凝成液体制冷剂, 通过太阳能冷管冷却水换热器12将热量传递给冷却水,加热后的冷却水在热水 泵18的作用下被送至热水箱19,作为生活热水向外输出;制冷剂液体靠自身重 力作用流到蒸发器储存起来。夜间,没有了太阳光辐射,并在中芯导热管中注入 冷水,太阳能冷管吸附床11的温度开始降低,当降至吸附剂吸附温度时,吸附 床内的吸附剂开始吸附周围的制冷剂蒸汽,随着吸附过程的进行,太阳能冷管内 制冷剂蒸汽压力降低,当制冷剂蒸汽压力降至蒸发器内液体制冷剂的饱和蒸汽压 力时,蒸发器内的制冷剂开始汽化,通过太阳能冷管冷冻水换热器13吸取冷冻 水的热量,于是产生了制冷效果,冷冻水泵14将冷冻水输送到室内空气换热器 5,冷量就这样被传递到室内。吸附制冷过程直至次日清晨吸附床不再吸附制冷 剂蒸汽为止。
当太阳能不足或阴雨天气时以及白天需要制冷的时候,开启跨临界C02系统, 截止阀B3开启,截止阀C4关闭,四通阀A2的通道a、 d和b、 c分别联通,四 通阀B7的通道a、 b和c、 d分别联通,此时不提供热水(即单独制冷工况)。
该工况一般在夏季运行,运行原理如图4所示。
2) 制热+供热水工况
开启C02系统和热水系统,太阳能冷管系统处于不运行状态。
热水管路中三通阀A16、三通阀B20的通道a与b分别连通,四通阀2、 7 的通道a、 c和b、 d分别联通,阀3、阀4、阀17开通。
C02系统是跨临界运行的,因此具有很大的温度滑移,在气体冷却器中可以 产生很大的排热,该排热的一部分用于在热水换热器6中加热热水,另一部分则 在室内空气换热器5中与空气进行热交换,将热量传递给室内,达到供暖的目的。
该工况一般在冬季时运行,运行原理如图5所示。
3) 单独制冷工况
开启太阳能冷管系统和跨临界C02系统,白天时热水系统也同时开启。 阀3开启,阀4关闭,四通阀2的通道a、 d和b、 c分别联通,四通阀7 的通道a、 b和c、 d分别联通,这时室外空气换热器9相当于系统的气体冷却器,
室内空气换热器5相当于蒸发器,三通阀16、 20的通道a与c分别连通。
该工况下的夜间供冷由太阳能冷管系统实现,当冷量不足的时候,运行跨临 界C02系统;白天供冷则由跨临界C02系统实现。运行原理如图4所示。
4) 单独制热工况
只单独开启跨临界C02系统,太阳能冷管系统和热水系统处于不运行状态。 阀3开启,阀4关闭,四通阀2、 7的通道a、 c和b、 d分别联通,这时室
外空气换热器9相当于系统的蒸发器,室内空气换热器5相当于气体冷却器,运
行原理如图5所示。
5) 单独供热水工况
首先开启太阳能冷管系统和热水系统,跨临界C02系统处于不运行状态。 热水管路中三通阀16、 20的通道a与c分别连通,阀17开通;由于不需要
制冷,所以冷冻水泵14不需开启。此时热水是由太阳能冷管系统提供的,运行
原理如图4所示。
当太阳光不足时,则开启跨临界C02系统来补充热水的供给。此时需要开启 跨临界C02系统,四通阀2、 7的通道a、 c和b、 d分别联通,热水管路中三通 阀16、 20的通道a与b分别连通,阀4、阀17开通,阀3关闭。这时该系统相 当于C02热泵热水器,C02系统的排热全部用于加热热水,这一过程在热水换热器 6中实现,室外空气换热器9相当于系统的蒸发器,运行原理如图5所示。
权利要求
1.可实现制冷、制热和供热水功能的三联供方法,该方法是将太阳能冷管制冷系统、跨临界CO2热泵循环系统和热水循环系统相连在一起。
2. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,太阳能冷管制冷系统用于制冷和制取热水,跨临界C02热泵循环系统 用于制热、制取热水,热水循环系统用来提供热水。
3. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征在于,能提供五种运行模式制冷+供热水、制热+供热水、单独制冷、单独制热、单独供热水。
4. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征在于,太阳能冷管的吸附工质对选用沸石分子筛一水或活性炭一 甲醇工质对。
5. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,跨临界二氧化碳的工作压力为3. 0-12. OMPa。
6. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,跨临界二氧化碳热泵系统的循环管路及部件需满足15MPa的耐压要求。
7. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,太阳能冷管制冷系统为室内空气换热器(5)、太阳能冷管(11)、太阳 能冷管冷却水换热器(12)、太阳能冷管冷冻水换热器(13)、冷冻水泵(14) 和截止阀A (15)通过管道连接组成的循环管路。
8. 如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,跨临界C02热泵循环系统为通过管道串联的截止阀C (4)和热水换 热器(6)与通过管道串联的截止阀B (3)和室内空气换热器(5)并联后依次 与四通阀B(7)、节流阀(8)、室外空气换热器(9)、四通阀A (2)连接组成 循环管路,C02压縮机(1)、储液器(10)和四通阀A (2)通过管道连接成 循环支路。
9.如权利要求1所述的可实现制冷、制热和供热水功能的三联供方法,其特征 在于,热水循环系统为依次通过管道连接的热水换热器(6)、三通阀A (16)、 截止阀D (17)、热水泵(18)、热水箱(19)、三通阀B (20)和太阳能冷管 冷却水换热器(12)组成的循环管路。
全文摘要
本发明涉及一种可实现制冷、制热等多项功能的联合功能方法。本发明所述的可实现制冷、制热和供热水功能的三联供方法是将太阳能冷管制冷系统、跨临界CO<sub>2</sub>热泵循环系统和热水循环系统相连在一起。本发明将太阳能冷管吸附式制冷系统和跨临界CO<sub>2</sub>热泵系统联合,综合了两个独立系统之长来弥补各自系统的不足,既能满足夏季的制冷以及冬季的供暖,又能满足全年各时期的供热水需求,不但在环境保护方面具有很大的优势,而且其节能的潜力非常大。该方法将热泵空调及供热水系统合二为一,不但使整个的方法实施起来结构紧凑,还有效提高了设备的利用率。
文档编号F24D17/02GK101354204SQ200810042658
公开日2009年1月28日 申请日期2008年9月9日 优先权日2008年9月9日
发明者静 吕, 周传煜, 王伟峰, 赵惠忠 申请人:上海理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1