火力发电厂水源热泵系统的制作方法

文档序号:4779195阅读:381来源:国知局
专利名称:火力发电厂水源热泵系统的制作方法
技术领域
本实用新型涉及一种水源热泵系统,特别是一种应用于火力发电厂的水源热泵系统。
背景技术
水源热泵系统是利用地球水体所储存的太阳能资源和地热能而形成的低温低位热能资源作为冷热源,进行能量转换的制冷供暖空调系统。水源热泵系统主要功能部件是水源热泵机组,水源热泵机组包括蒸发器和冷凝器。通常作为水源热泵机组水源水的地球水体为地下水或地表水等,这些水体的温度一年四季相对稳定,一般为10 25°C,冬季比环境温度高,夏季比环境温度低,是很好的热泵热源和空调冷源,因此作为水源热泵机组的水源水,夏季可以通过冷凝器将空调系统中的热量转移到水源水中达到制冷目的,冬季则可以通过蒸发器从水源水中提取热量达到供暖目的。但是由于地表水及地下水资源有限, 并且为了减少水源热泵机组中蒸发器和冷凝器产生结垢以及保证机组的换热性能,通常需要增大水源水的流速,这必然造成水源热泵机组在取水和回灌水时流量较大,增加热泵机组的能耗,更为严重的是会对取水地的地质水文产生影响。在火力发电厂中燃料燃烧的总热量只有一部分转变为电能,而另一部分则通过锅炉烟囱和汽轮机凝汽器的循环冷却水散失到环境中。如果能将这部分余热回收利用,利用载有余热的循环冷却水作为水源热泵机组的水源水,则将会使电厂的能源利用率大大提高,同时可以节约地球水体,保护地质形态。

实用新型内容本实用新型需要解决的技术问题是提供一种在节约地球水资源,能够充分利用火力发电厂循环冷却水的余热,采用循环冷却水作为水源热泵机组的水源水进行制冷及供暖的水源热泵系统。为解决上述技术问题,本实用新型所采取的技术方案是火力发电厂水源热泵系统,包括水源热泵机组、通过管路与水源热泵机组连接的水源水循环装置以及空调水循环装置,所述空调水循环装置包括空调供水管道、空调回水管道及设置在空调回水管道中的空调水循环泵,空调供水管道通过设置有季节转换阀的管路连接水源热泵机组的蒸发器和冷凝器,空调回水管道通过设置有季节转换阀的管路连接水源热泵机组的蒸发器和冷凝器;所述水源水循环装置包括通过管路连接的泵前池、水源水循环泵以及循环冷却水系统,泵前池的进水端通过设置有调节阀的管路连接循环冷却水供水管道和循环冷却水回水管道,水源水循环泵的出水端通过设置有季节转换阀的管路连接水源热泵机组的蒸发器和冷凝器,水源热泵机组通过设置有季节转换阀的管路与循环冷却水系统连接。由于采用了上述技术方案,本实用新型取得的技术进步在于本实用新型将水源热泵技术和火力发电厂的凝气余热结合在一起,利用循环冷却水中携带的凝气余热,作为空调的制冷供热源,采用本实用新型,由于可利用的循环冷却水量非常丰富,可以使水源水定流量输送,因此无论是冬季还是夏季都能够最大限度地提高水源热泵机组的能效比,在制冷期,水源热泵机组的综合能效比可达到4. 67,而在采暖期水源热泵机组的综合能效比可达到4. 05,超过了国家标准制冷期的3. 85 (制冷期与水环式热泵机组比较)和采暖期的3.6(采暖期与地下水式热泵机组比较)。本实用新型水源水系统只需配置一套循环水泵,便可使系统运行可靠,大大节约了成本。本实用新型由于在水源水循环泵之前的管路中采用了两路供水并设置泵前池,从而可以充分保证水源水温度稳定在一个设定的区间,使水源热泵机组始终高效工作。

图1 本实用新型的结构示意图。其中1.循环冷却水供水管道,2.循环冷却水回水管道,3.泵前池,4.水源水循环泵,5.水源热泵机组,51.冷凝器,52.蒸发器,53.压缩机,54.膨胀阀,6.空调回水管道, 7.空调供水管道,8.循环冷却水系统,9.空调水循环泵,11 12.调节阀,13 20.季节转换阀。
具体实施方式
以下结合附图对本实用新型作更进一步详细说明一种火力发电厂水源热泵系统,如图1所示。包括水源水循环装置、空调水循环装置和水源热泵机组5,水源水循环装置与水源热泵机组之间通过管路连接,空调水循环装置与水源热泵机组之间通过管路连接。水源热泵机组包括冷凝器51、蒸发器52、压缩机53、膨胀阀M及制冷剂循环管路等其他辅助设施,低温低压的制冷剂在蒸发器52吸热升温后进入压缩机53,被绝热压缩后提高压力,同时温度也升高,然后进入冷凝器51,放热后再进入膨胀阀M,绝热膨胀后压力降低同时温度也降低,低温低压的制冷剂又在蒸发器52吸热升温,周而复始进行制冷(制热)循环。水源水循环装置包括通过管路连接的泵前池3、水源水循环泵4以及循环冷却水系统8,泵前池的进水端通过设置有调节阀11、12的管路连接循环冷却水供水管道1和循环冷却水回水管道2,水源水循环泵的出水端通过设置有季节转换阀13、15的管路连接水源热泵机组的蒸发器52和冷凝器51,水源热泵机组通过设置有季节转换阀14、16的管路与循环冷却水系统8连接。空调水循环装置包括空调回水管道6、空调供水管道7以及空调水循环泵9,空调回水管道通过设置有季节转换阀17、19的管路连接水源热泵机组的蒸发器52和冷凝器51, 空调供水管道通过管路与通过设置有季节转换阀18、20的管道与水源热泵机组的蒸发器 52和冷凝器51连接。本实用新型在冬季工况下工作时,采用制热模式,打开调节阀11、12、季节转换阀 13、14、19、20。调节阀11和12的开度根据水源热泵机组的所需要的水温进行调节匹配。循环冷却水供水管道1和循环冷却水回水管道2中的循环冷却水作为水源水通过管道流入泵前池3进行充分混合后,经过水源水循环泵4、季节转换阀13输送给水源热泵机组的蒸发器52,在蒸发器内与低温低压制冷剂进行热交换,水源水释放热量,制冷剂吸收热量,完成热交换后,水源水温度下降,通过管路流经季节转换阀14输送回循环冷却水系统8,继续重复使用;制冷剂吸收热量后温度升高,经压缩机53压缩后排入冷凝器51与空调水系统进行热交换。完成供热任务的空调回水经空调回水管道6、空调循环泵9、季节转换阀19输送给冷凝器51,在冷凝器内与高温高压制冷剂进行热交换,空调水吸收热量,制冷剂放出热量, 完成热交换后,空调水温度升高,流经季节转换阀20通过空调供水管道7,将热量传递给用户,进行供热过程;制冷剂放出热量后进入膨胀阀M,绝热膨胀后再次进入蒸发器52与水源水系统进行热交换。一般冬季工况下,水源热泵机组水源水的进水温度约为25°C,水源水的出水温度约为20°C,可用温差为5°C,水源热泵机组综合能效比可达到4. 05,高于国家标准的3.6(地下水式热泵机组)。 本实用新型在夏季工况下工作时,采用制冷模式,打开调节阀11、季节转换阀15、 16、17、18。循环冷却水供水管道1中的循环冷却水作为水源水通过管道流入泵前池3经过水源水循环泵4、季节转换阀15输送给水源热泵机组的冷凝器51,在冷凝器内与高温高压制冷剂进行热交换,水源水吸收热量,制冷剂放出热量,完成热交换后,水源水温度升高,通过管路流经季节转换阀16输送回循环冷却水系统8,继续重复使用;制冷剂放出热量后进入膨胀阀54,绝热膨胀后再次进入蒸发器52与空调水系统进行热交换。完成空调任务的空调回水经空调回水管道6、空调水循环泵9、季节转换阀17输送给蒸发器52,在蒸发器内与低温低压制冷剂进行热交换,空调回水释放热量,制冷剂吸收热量,完成热交换后,空调水温度下降,流经季节转换阀18通过空调供水管道7,将冷量传递给用户,进行空调过程; 制冷剂吸收热量后温度升高,经压缩机53压缩后排入冷凝器51与水源水系统进行热交换。 一般在夏季工况下,水源水的进水温度约为31°C,水源水的出水温度约为36°C,可用温差为5°C,水源热泵机组综合能效比可达到4. 67,高于国家标准的3. 85 (水环式热泵机组)。
权利要求1.火力发电厂水源热泵系统,包括水源热泵机组(5)、通过管路与水源热泵机组连接的水源水循环装置以及空调水循环装置,所述空调水循环装置包括空调回水管道(6)、空调供水管道(7)及设置在空调回水管道中的空调水循环泵(9),空调回水管道通过设置有季节转换阀(17、19)的管路连接水源热泵机组的蒸发器(5 和冷凝器(51),空调供水管道通过设置有季节转换阀(18、20)的管道与水源热泵机组的蒸发器(5 和冷凝器(51)连接; 其特征在于所述水源水循环装置包括通过管路连接的泵前池(3)、水源水循环泵(4)以及循环冷却水系统(8),泵前池的进水端通过设置有调节阀(11、1幻的管路连接循环冷却水供水管道(1)和循环冷却水回水管道O),水源水循环泵的出水端通过设置有季节转换阀 (13,15)的管路连接水源热泵机组的蒸发器(5 和冷凝器(51),水源热泵机组通过设置有季节转换阀(14、16)的管路与循环冷却水系统(8)连接。
专利摘要本实用新型涉及一种火力发电厂水源热泵系统,包括水源水循环装置、空调水循环装置和水源热泵机组,水源水循环装置与水源热泵机组之间通过管路连接,空调水循环装置与水源热泵机组之间通过管路连接,水源水循环装置包括通过管路连接的泵前池、水源水循环泵以及循环冷却水系统,泵前池的进水端通过设置有调节阀的管路连接循环冷却水供水管道和循环冷却水回水管道。本实用新型采用电厂中的循环冷却水作为水源热泵机组的水源水,不仅能够满足水源热泵系统的制冷及供暖,而且还可以节约地球水资源,充分利用火力发电厂循环冷却水的余热,提高能源利用率。
文档编号F25B27/02GK202109702SQ20112021391
公开日2012年1月11日 申请日期2011年6月23日 优先权日2011年6月23日
发明者于海洪, 张书梅, 李静宜 申请人:河北省电力勘测设计研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1