液化和处理天然气的方法

文档序号:4793270阅读:406来源:国知局
专利名称:液化和处理天然气的方法
技术领域
本发明涉及一种液化和处理含低沸点成分的天然气的方法。低沸点成分通常为氮、氦和氢,这些成分是所谓的“轻成分”。在这种方法中,将液化气在液化压力下液化,随后将液化气的压力降低,以获得处于低压力下的低沸点成分含量减少的液化气,对此液化气可进行进一步的处理或贮存。此方法的处理部分有时称为“目标闪蒸法(end flash method)”。这种目标闪蒸法服务于两个目标,首先,将液化气的压力降至低压力,其次,将具有低沸点成分的气态流从液化气中分离出来,以保证其余的液化气低沸点成分含量充分降低。
天然气的液化压力通常在3.0至6.0MPa的范围内。上述低压力低于液化压力,例如,低压力低于0.3MPa,且适宜的是,低压力约等于大气压力,在0.1和0.15MPa之间。
已公开有一个液化和处理含低沸点成分的天然气的方法,该方法包括下述步骤(a)将处于液化压力下的天然气通过一主热交换器的产物侧;(b)将处于致冷压力下的冷却液化致冷剂导入上述主热交换器的冷侧,使冷却的致冷剂在致冷压力下在主热交换器的冷侧中蒸发以获得处于致冷压力下的气态致冷剂,并且,将气态致冷剂从主热交换器的冷侧排出;(c)将处于液化压力下的液化气从主热交换器的产物侧排出;(d)使上述冷却的液化气通过一膨胀阀膨胀至一低压力,以获得膨胀的流体;(e)将上述膨胀流体供至一分离容器;(f)从上述分离容器的底部将低沸点成分含量减少的液体产物流排出;以及(g)从上述分离容器的顶部将富含低沸点成分的气态流排出。
在英国专利说明书No.1572899中描述了一个液化和处理含低沸点成分天然气的不同方法。该方法包括以下步骤(a)将处于液化压力下的天然气通过一主热交换器的产物侧;(b)将处于致冷压力下的冷却液化致冷剂导入上述主热交换器的冷侧,使冷却的致冷剂在致冷压力下在主热交换器的冷侧中蒸发以获得处于致冷压力下的气态致冷剂,并且,将气态致冷剂从主热交换器的冷侧排出;(c)将处于液化压力下的液化气从主热交换器的产物侧排出;(d)将液化气流过一设在分馏柱下部的热交换器的热侧以获得冷却的液化气;(e)使上述冷却的液化气通过一膨胀阀膨胀至一低压力,以获得膨胀的流体;(f)将膨胀流体喷入分馏柱的顶部;(g)从上述分馏柱的底部将低沸点成分含量减少的液体产物流排出;以及(h)从上述分馏柱的上部将富含低沸点成分的气态流排出。
在上述后一方法中,液化气在其中冷却的热交换器由分馏柱的下部构成,且热交换器的热侧包括设在热交换器下部的管簇。在分馏柱下部的液体冷却流过管簇的液化气。因此不难明白,在步骤(g)中将液体流从分馏柱的底部排出不得不在这样的情况下进行,即热交换器的管簇处于浸在液体中的状态。
这种热交换器即所谓的内部再沸器。但是,不能将一内部再沸器与分馏柱相独立地设计,因此,每单位分馏柱高度所容许的热交换面积受所需的分馏柱尺寸的影响。由于热交换面积对过程设计有影响,机械限制影响过程设计,这样可能导致过程设计不是最优的。
本发明的目的是克服上述不足。本发明的进一步的目的是,在膨胀液化气中获得较大的温降,并因此获得较好的总液化效率,其中,液化效率是被液化的天然气的流速与压缩致冷剂所需的功率的比值。
为此,按本发明的液化和处理含低沸点成分的天然气的方法包括以下步骤(a)将处于液化压力下的天然气通过一主热交换器的产物侧;(b)将处于致冷压力下的冷却液化致冷剂导入上述主热交换器的冷侧,使冷却的致冷剂在致冷压力下在主热交换器的冷侧中蒸发以获得处于致冷压力下的气态致冷剂,并且,将气态致冷剂从主热交换器的冷侧排出;(c)将处于液化压力下的液化气从主热交换器的产物侧排出;(d)将液化气流过一外部热交换器的热侧以获得冷却的液化气;(e)使上述冷却的液化气膨胀至一低压力,以获得膨胀的流体,上述膨胀至少有部分是动态地完成的;(f)将膨胀流体导入一设有一接触部的分馏柱的上部中,上述接触部布置在上述分馏柱的上部和下部之间;(g)使膨胀流体中的液体向下流过接触部;(h)将包括从接触部流出的液体的液体循环流从分馏柱排出;(i)将液体循环流通过外部热交换器的冷侧,以获得加热的两相流体;(j)至少将两相流体中的蒸气导入分馏柱下部和接触部之间,并使蒸气向上流过接触部;(k)至少将两相流体中的一部分收集于一产物收集器中,并从此产物收集器将含低沸点成分业已减少的液体产物流排出;以及(l)将富含低沸点成分的气态流从分馏柱的上部排出。
涉及到美国专利说明书No.3203191。该文献公开了对来自主热交换器的液化气的膨胀有一部分是在一膨胀机中动态地进行的。按此文献所得的结果是,对于给定的压降,蒸发的液化气的量小于在一膨胀阀中进行膨胀情况下所蒸发的量。
下面,参照附图通过例子详细说明本发明,附图中

图1为以示意且未按比例的方式表示的本发明过程的流程图;图2为示意表示的图1所示流程的处理部分的替换方案;图3为示意表示的图2所示处理部分的替换方案;以及图4为示意表示的按图1所示过程的流程的替换方案。
现参见图1。含有低沸点成分的天然气通过管道1供给主热交换器2。天然气含有约4mol%的氮和200ppmv(按体积的百万分率)的氦。天然气在其4MPa的液化压力下。
主热交换器2具有一个产物侧5,它与冷侧7有热交换关系。在图1所示的主热交换器2中,产物侧5为管侧,而冷侧7为壳侧。
天然气在液化压力下通过主热交换器2的产物侧5,并经管道8离开产物侧5。从主热交换器2流出的天然气的温度为-150℃。
为了将穿过主热交换器2产物侧5的天然气冷却并液化,将冷却液化致冷剂导入主热交换器2的冷侧7。在图1所示流程中,冷却液化致冷剂在两个位置经入口装置10和11导入。使致冷剂在致冷压力下在冷侧7中蒸发,并将气态致冷剂经管道13从主热交换器2中去除。冷却液化致冷剂以下述方式获得。将经管道13去除的气态致冷剂在压缩机15中压缩至高压,并将压缩流体一部分在热交换器17中冷凝,从而获得部分冷凝的两相致冷流体,将此两相致冷流体经管道10供给分离容器22。在分离容器22中,致冷流体被分离成第一冷凝部分和第一气化部分。第一冷凝部分通过管道24导至主热交换器2。在主热交换器2中,第一冷凝部分在第一致冷侧27中冷却并液化,从而获得在高压下的冷却的第一冷凝部分。使冷却的第一冷凝部分经管道30中的膨胀阀29膨胀,以获得处于致冷压力的膨胀流体。处于致冷压力的膨胀流体经设在管道30端部的入口装置10导入主热交换器2的冷侧7。第一气化部分经管道32供给主热交换器2。在主热交换器2中,第一气化部分在第二致冷侧33中冷却并液化,从而获得处于高压状态的冷却的第二冷凝部分。使冷却的第二冷凝部分经设在管道37中的膨胀阀35膨胀,以获得膨胀的处于致冷压力下的流体。处于致冷压力下的膨胀的流体通过设在管道37端部的入口装置11导入主热交换器2的冷侧7中。第一和第二致冷侧27和33与冷侧7具有热交换关系。
将多组分的液化气经管道8从主热交换器2中抽出,并供给下面将要说明的处理部分。
液化天然气通过管道8供给一外部热交换器41。液化气通过呈热交换器41管侧形式的热侧43。在热交换器41中,利用与流经呈热交换器41壳侧形式的冷侧44的冷却剂的间接热交换关系,将液化气冷却,以获得通过管道45去除的冷却的液化气。冷却剂将在后续阶段进行讨论。
热交换器41为釜式,这种形式的热交换器是已知的,故不准备详加讨论。
使冷却的液化气在膨胀装置47中膨胀。膨胀装置47具有一个在其中动态进行膨胀的膨胀机48和一个利用管道50与膨胀机48连接的膨胀阀49。膨胀分两阶段完成,以避免在膨胀机48中蒸发,并允许更柔性的操作。膨胀后的压力为在分馏柱51中处理膨胀流体时的压力。由于冷却和膨胀,膨胀流体的温度低于流经管道8的液化天然气的温度,且有部分氮和氦蒸发。
从膨胀装置47流出的膨胀流体通过设有入口装置54的管道53导入分馏柱51的上部55,该分馏柱51在大致大气压下工作。分馏柱51设有位于其上部55和下部59之间的接触部58。如图1所示的接触部58具有筛板(未示出)。筛板本身是已知的,故不准备对其详加讨论。
使膨胀流体的液相向下游流过接触部58。在接触部58之下,设有带通气口(chimney)69的泄流板68。从接触部58流出的液体经泄流板68从分馏柱51中抽出。该液体形成循环流,且此循环流经管道70供给外部热交换器41。
循环流穿过外部热交换器41的冷侧44,于是循环流就成为冷却液化天然气的冷却剂。将循环流加热,结果获得了加热的两相流体。将热两相流体中的蒸气经管道71从外部热交换器41中除去,并将其通过设在管道71端部并位于泄流板68之下的入口装置72导入分馏柱51的下部59。蒸气通过通气口69并向上流过接触部58,以汽提(strip)向下流过接触部58的液体。
两相流体中的液体从外部热交换器41的冷侧44溢过堰板75流入产物收集器76。低沸点成分含量已减少的液化天然气的产物流经管道78从产物收集器76排出。可将产物流导入贮槽(未示出)或导至其他处理装置(未示出)。
从分馏柱51的上部55经管道79将富含低沸点成分的气态流排出。此气态流可用作气体燃料。此气态流还可用于供给一氦回收设备(未示出)。
本发明的方法提供了一种有效的途径,将天然气在液化压力下液化并处理天然气以获得低沸点成分业已除去的较低气压的液化天然气。分馏柱和热交换器可独立地进行优化。此外,通过膨胀机进行膨胀所产生的温降比只通过膨胀阀进行膨胀所产生的温降大。且对膨胀装置的供给进行了冷却,由此使整个方法的总效率更好。
当上述釜式热交换器用一种逆流式热交换器取代时,可得到对上述方法的改进。在釜式热交换器中,冷侧44中的液体基本上处于相同的温度,使得离开冷侧44的液体和蒸气的温度基本上等于进入冷侧44的循环流的温度。尽管离开热侧43的液体43o的温度低于进入热侧43的液体43i的温度,但液体43o的出口温度不能低于从冷侧44流入产物收集器76中的液体的温度。然而,可将一逆流式热交换器运作成,使离开热侧液体的温度低于离开冷侧液体的温度。因此,使用逆流式热交换器进一步改善了总效率。
取代经膨胀阀29和35膨胀致冷流,可以利用膨胀机(未示出)动态地进行致冷流的膨胀。
现参见图2,该图示出本发明处理部分的一实施例,其中采用了一逆流式热交换器。图2所示的与图1所示相同的设备具有相同的附图标记,为清楚起见,逆流式热交换器以附图标记41’标示。
如以上参照图1所述,从一主低温热交换器(未示出)排出的液化天然气形式的多组分液化气经管道8导至一外部逆流式热交换器41’。液化气流过呈热交换器41’壳侧形式的热侧43。在热交换器41’中,利用与流过呈热交换器41’管侧形式的冷侧44的冷却剂的间接热交换关系,将液化气冷却,以获得通过管道45排除的冷却的液化气。冷却剂将在一后续阶段进行讨论。
使上述冷却的液化气在膨胀装置47和膨胀阀49中膨胀,膨胀装置47具有在其中可实现动态膨胀的膨胀机48,而膨胀阀49利用管道50与膨胀机48相连。膨胀后的压力为膨胀的流体在分馏柱51接受处理时的压力。由于冷却和膨胀,膨胀的流体的温度低于流经管道8的液化气温度,且有一部分氮和氦蒸发。
来自膨胀装置47的膨胀流体经设有入口装置54的管道53导入在大气压下工作的分馏柱51的上部55。分馏柱51设有位于其上部55和下部59之间的接触部51。接触部58具有筛板(未示出)。
使膨胀流体中的液体相向下流过接触部58。在分馏柱51的下部59中收集液体,并通过管道70将循环流从分馏柱51中排出。循环流被导至外部热交换器41’。
上述循环流通过外部热交换器41’的冷侧44,于是循环流就成为冷却液化天然气的冷却剂。将循环流加热,结果获得了加热的两相流体。将热两相流体经管道71从外部热交换器41’中除去,并将其通过位于接触部58之下的入口装置72导入分馏柱51的下部59。使蒸气向上流过接触部58,而液体则被收集在分馏柱51的下部59中。低沸点成分含量已减少的液化天然气的产物流经管道78从分馏柱51的下部59排出。可将产物流导入贮槽(未示出)或导至其他处理装置(未示出)。分馏柱的下部用作两相流体中的液体以及来自接触部58的液体的收集器。
从分馏柱51的上部55经管道79将富含低沸点成分的气态流排出。此气态流可用作气体燃料。此气态流还可用于供给一氦回收设备(未示出)。
该实施例的一个优点是,可将上述逆流式热交换器41’运作成,使离开热侧43的液体43o的温度低于离开冷侧44的液体44o的温度。然而,由于循环流和产物流均从分馏柱51的下部59排出,所以,它们具有相同的成分。
上述流的分离可以通过在分馏柱51的下部59中设置内部部件而得以实现。这一改进的实施例示于图3。图3所示的与图1所示相同的设备具有相同的附图标记,为清楚起见,以下仅讨论图3所示方法与图2所示方法之间的不同部分。
在分馏柱51的下部59中,设有内部部件将来自接触部58的液体与通过入口装置72供入的两相流体中的液体隔开。上述内部部件包括一个将循环收集器61与产物收集器62隔开的隔板60、一个下导流板63以及一个设有通气口65的上导流板64。
在正常工作期间,来自接触部58的液体被上导流板64导流以便使其被收集在循环收集器61中。从循环收集器61将循环流经管道70导至热交换器41’的冷侧44。
将循环流加热,由此得到热两相流体。将热两相流体经管道71从外部热交换器41’中除去,并将其通过位于下导流板63和上导流板64之间的入口装置72导入分馏柱51的下部59。使蒸气向上通过通气口65并流过接触部58,而液体则被收集在分馏柱51的下部59的产物收集器62中。低沸点成分含量已减少的液化天然气的产物流经管道78从产物收集器62排出。可将产物流导入贮槽或导至其他处理装置。
与使来自接触部58的液体和通过入口装置72供入的两相流体中的液体分离有关,有两个优点。首先,循环流中低沸点成分的浓度大致等于来自接触部58的液体中低沸点成分的浓度,且这一浓度大于在上面结合图2所述方法的下部59中所收集的液体混合物中低沸点成分的浓度。再者,来自接触部58的液体的温度低于产物收集器62中两相流体之液体的温度,所以,循环流的温度低于在来自接触部58的液体同图2所示实施例一样与两相流体中的液体混合情况下的循环流的温度。
将参照图1-3所述的处理部分用于与一具体的液化过程相结合是合适的。下面参照图4详细说明本发明的这一实施例。
现参见图4,其中将处于致冷压力下的冷却的致冷剂导入主热交换器的步骤不同于参照图1所述的步骤。
含低沸点成分的天然气通过管道81导至一主热交换器82。天然气含有约4mol的氮和200ppmv(按体积的百万分率)的氦。天然气处于其4MPa的液化压力下。
主热交换器82具有一个产物侧85,它与冷侧87有热交换关系。
天然气在液化压力下通过主热交换器82的产物侧85,并经管道88离开产物侧85。从主热交换器82流出的天然气的温度为-150℃。
为了将穿过主热交换器82产物侧85的天然气冷却并液化,将冷却液化致冷剂导入主热交换器82的冷侧87。冷却液化致冷剂在两个位置经入口装置90和91导入。使致冷剂在致冷压力下在冷侧87中蒸发,并将气态致冷剂经管道93从主热交换器82中去除。冷却液化致冷剂以下述方式获得。
将从主热交换器82中去除的气态致冷剂在压缩机95中压缩,并在热交换器97中冷却,以获得部分冷凝的高压两相致冷流体。将此部分冷凝的两相致冷流体在分离容器102中分成第一冷凝部分和第一气化部分。
第一冷凝部分通过管道104导至主热交换器82中的第一致冷侧107,以获得冷却的第一冷凝部分。使冷却的第一冷凝部分经管道109中的膨胀装置108膨胀,以获得处于致冷压力的膨胀流体,并将此膨胀流体经设在管道109端部的入口装置90导入主热交换器82的冷侧87,且使其在此蒸发。
膨胀装置108包括一个膨胀机110和一个膨胀阀111,从而至少有一部分膨胀是动态进行的。
第一气化部分经过管道112供给设在主热交换器中的第二致冷侧113,以获得冷却的第二冷凝部分。使第二冷凝部分在设在管道117中的膨胀阀115中膨胀到致冷压力。使冷却的第二冷凝部分在致冷压力下在主热交换器82的冷侧87蒸发。
通过管道88从主热交换器82排出的液化气在上面结合图1-3已经讨论的处理部分中处理。为清楚起见,上述处理部分已经示于图4中,且该处理部分用附图标记120表示。
通过管道121将具有低沸点成分含量已经减少的液化天然气的产物流从处理部分120中排出。可将产物流导入贮槽(未示出)或导至其他处理装置(未示出)。此外,从处理部分120经管道122将富含低沸点成分的气态流排出。此气态流可用作气体燃料。
将气态流用于第一冷凝部分中的冷却部分是合适的,为此,一部分第一冷凝部分通过管道123供至一热交换器125,在此热交换器中,此第一冷凝部分通过与上述气态流的热交换而得到冷却。从此热交换器将冷却的第一冷凝部分经管道128导至管道117,并将其在管道117中导至膨胀阀115的下游。
上述这一方法的优点是,在致冷流中,只需要一个膨胀机。通常的设想是,为液化含氮的天然气,在主热交换器82冷侧顶部位置的温度应进可能低,因此,第二冷凝部分通过一个膨胀机进行膨胀。然而,在本发明的处理部分中所获得的温降使得在冷侧顶部中的温度不必那么低,故此,可省去上面那个膨胀机,在冷的第一冷凝部分中只要一个膨胀机就够了。
在上述各实施例中,接触部均具有筛板,然而,取代筛板,可使用填料或者其他合适的气/液接触装置。分馏柱中的压力不必为大气压,其中的压力可更高一些,只要此压力低于液化压力即可。
在膨胀装置47和108中,膨胀分两个阶段完成,以免在膨胀机48和110蒸发,并允许较为柔性的操作。膨胀还可只利用一个膨胀机来完成,以便全部膨胀动态地完成。
所用的膨胀机可以是任何合适的膨胀机,例如,液体膨胀机或者所谓的佩尔顿冲击式涡轮(Pelton-wheel)。
主热交换器2(图1中)和82(图2中)为所谓的筒管缠绕式热交换器(spoolwound heat exchanger),但是,可以采用任何其他合适类型的热交换器,如板翅式热交换器。
在图1所示流程图中,冷却的液化致冷剂被在两处导入主热交换器中,也可以不分开只在一处导入,或者,进一步分开,在三处导入。
热交换器17(图1中)和97(图2中)可以由串联的多个热交换器构成,这同样也适用于压缩机15(图1中)和95(图4中)。
权利要求
1.一种液化和处理含低沸点成分的天然气的方法,它包括以下步骤(a)将处于液化压力下的天然气通过一主热交换器的产物侧;(b)将处于致冷压力下的冷却液化致冷剂导入上述主热交换器的冷侧,使冷却的致冷剂在致冷压力下在主热交换器的冷侧中蒸发以获得处于致冷压力下的气态致冷剂,并且,将气态致冷剂从主热交换器的冷侧排出;(c)将处于液化压力下的液化气从主热交换器的产物侧排出;(d)将液化气流过一外部热交换器的热侧以获得冷却的液化气;(e)使上述冷却的液化气膨胀至一低压力,以获得膨胀的流体,上述膨胀至少有部分是动态地完成的;(f)将膨胀流体导入一设有一接触部的分馏柱的上部中,上述接触部布置在上述分馏柱的上部和下部之间;(g)使膨胀流体中的液体向下流过接触部;(h)将包括从接触部流出的液体的液体循环流从分馏柱排出;(i)将液体循环流通过外部热交换器的冷侧,以获得加热的两相流体;(j)至少将两相流体中的蒸气导入分馏柱下部和接触部之间,并使蒸气向上流过接触部;(k)至少将两相流体中的一部分收集于一产物收集器中,并从此产物收集器将含低沸点成分业已减少的液体产物流排出;以及(l)将富含低沸点成分的气态流从分馏柱的上部排出。
2.如权利要求1所述的方法,其特征在于,步骤(h)至(k)包括(h’)将包含从接触部流出的液体的液体循环流从分馏柱中排出;(i’)将液体循环流通过外部热交换器的冷侧以获得加热的两相流体;(j’)将两相流体中的蒸气导入分馏柱下部和接触部之间,并使蒸气向上流过接触部;以及(k’)将两相流体中的液体收集于一个产物收集器中,此产物收集器与外部热交换器的冷侧具有流体相通的关系,并且,将低沸点成分含量业已减少的液体产物流从产物收集器中排出。
3.如权利要求1所述的方法,其特征在于,步骤(j)包括将两相流体导入分馏柱下部和接触部之间,并使蒸气向上流过接触部;步骤(k)包括将两相流体中的液体收集于分馏柱下部中,并且,将低沸点成分含量业已减少的液体产物流从分馏柱的下部排出。
4.如权利要求1或3所述的方法,其特征在于,步骤(h)包括将从接触部流出的液体收集于分馏柱的下部中,并且,将液体循环流从分馏柱的下部排出。
5.如权利要求1所述的方法,其特征在于,步骤(h)至(k)包括(h”)将从接触部流来的液体收集于收集于位于分馏柱下部中的一循环收集器中,并且,将液体循环流从循环收集器中排出;(i”)将液体循环流通过外部热交换器的冷侧,以获得加热的两相流体;(j”)将两相流体导入分馏柱下部和接触部之间,使蒸气向上流过接触部,并且,至少将一部分液体收集于位于分馏柱下部中的一个产物收集器中;以及(k”)将低沸点成分含量业已减少的液体产物流从产物收集器中排出。
6.如权利要求1至5之一所述的方法,其特征在于,上述将处于致冷压力下的冷却液化致冷剂导入上述主热交换器中的步骤包括压缩从主热交换器排出的气态致冷剂并冷却压缩的致冷剂,以获得部分冷凝的处于高压下的两相致冷流体;将致冷流体分离成第一冷凝部分和第一气化部分;将第一冷凝部分在主热交换器的第一致冷侧中冷却,以获得冷却的第一冷凝部分;使冷却的第一冷凝部分膨胀,以获得处于致冷压力的膨胀流体,上述膨胀至少有一部分是动态完成的;使膨胀的流体在致冷压力下在主热交换器的冷侧中蒸发;在主热交换器的第二致冷侧中冷却第一气化部分,以获得冷却的第二冷凝部分;使冷却的第二冷凝部分在一膨胀阀中膨胀至致冷压力;以及,使冷却的第二冷凝部分在致冷压力下在主热交换器的冷侧中蒸发。
全文摘要
一种液化和处理含低沸点成分的天然气的方法,它包括以下步骤:将天然气在主热交换器中液化,在一外部热交换器(41’)中冷却液化气(8);使冷却的液化气动态地膨胀(48);将膨胀流体导入一分馏柱(51)的上部;将流过热交换器(41’)的液体循环流排出以获得加热的两相流体;将两相流体导入(70)分馏柱(51),并使蒸气流过接触部(58);将两相流体中的液体收集于分馏柱(51)的下部(59),并由此将低沸点成分含量业已减少的液体产物流(78)排出;以及,将富含低沸点成分的气态流(79)从分馏柱(51)排出。
文档编号F25J1/02GK1188535SQ96194965
公开日1998年7月22日 申请日期1996年6月21日 优先权日1995年6月23日
发明者罗伯特·K·纳格尔福尔特, 克内利斯·J·温克 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1