仿生膜的制作方法

文档序号:5005276阅读:213来源:国知局
专利名称:仿生膜的制作方法
本申请要求提交于2002年7月29日的美国临时申请号60/398784和提交于2003年1月9日的临时申请号60/438784的权利,这两项申请的内容纳入本文作为参考。
背景技术
本发明涉及生产人造器件的方法,所述人造器件具有生物膜和膜蛋白的性质和功能;还涉及这种器件的结构。
生物膜蛋白具有各种各样的功能,包括作为泵、通道、阀、换能器和机械、热及电传感器,等等。由于这些蛋白质尺寸是纳米级,而且效率高,所以它们在用于人造器件方面颇具吸引力。但是,它们的天然脂质膜环境有缺点,如强度低,需要水环境,对化学或微生物降解敏感。
发明概述简言之,本发明一方面将天然或基因工程膜蛋白掺入嵌段共聚物基体,产生具有各种遗传功能的膜,包括在流体之间选择性输运和/或滤过化合物的能力。通过选择具有特定性质的蛋白质,可制成具有特定功能度的膜,包括通过定向静电力、电磁力和化学力的分子标度寻址性。
可设计和产生本发明的嵌段共聚物,使它们按要求具有以下性质形成具有所需厚度的膜的能力;形成所需化学成分的膜的能力;形成高强度膜的能力;按需要提高已经形成的膜的强度的能力。这些膜的最重要的性质之一是它们能够容纳处于一种功能状态的天然生物膜蛋白,这些复合膜坚固且寿命长,因为通过这种聚合物膜中插入生物膜蛋白,可以产生具有蛋白质的性质和功能的器件。合适的聚合物只需形成这样的膜,即将膜蛋白分成上下两半,充分类似于天然脂质膜,当它们适当定向时容易插入蛋白质,而且它们不兼顾蛋白质的天然功能。满足这些条件的聚合物包括三嵌段共聚物,它们具有亲水外部嵌段和疏水内部嵌段的一般性质。
本发明一方面涉及含有两种不同蛋白质的复合膜的产生,当一致作用时,得到光生电的器件——“生物太阳能电池”。本发明另一方面利用水转运蛋白使任意水源的水净化。以下将详细描述这些方面。
由于器件微型化方面的技术革新使电子器件更小、更轻和更高有效,但这些器件所用电源方面的进展则相对缓慢。21世纪的电源面临给越来越多的器件供能,但尺寸和重量要不断减小的挑战。此外,明天纳米技术和生物技术产品对电源的要求在形式或功能上甚至不类似于今天使用的电源。
当前迫切需要更轻、更小型的电源,以满足条件不断出现的新应用的需求。这种电源或许能比当代的电池技术实现更大范围的功能目标,使功率密度最大,重量最轻,需要推行特定的电源要求。重量要求是关键的,因为对传统燃料来源燃料来源必须靠近器件,如果可移动的话,还要运输器件。燃料还可能耗尽,因此必需补充供给。这对使用者的范围和流动性造成一定限制。
当代科学表明,发展纳米生物技术具有激动人心的潜力。利用不浪费原子的组分制造器件在效率和最高水平的微型化方面是有希望的。虽然是近有关电源技术的进展令人振奋,但它们只是在现有技术得到递增的改进。理想地适合下一代器件的电源将采用纳米技术增进它们的功能,也能够以最高水平的性能驱动当前这一代器件。
仅最近才具备了开发第一个纳米生物技术器件所需要的技术和知识,已报道由生化燃料ATP驱动纳米尺度有机/无机混合器件的工程和构造(Soong,R.K.,Bachand,G.D.,Neves,H.P.,Olkhovets,A.G.,Craighead,H.G.和Montemagno,C.D.(2000),Science,290,1555-1558页)。用于这些器件的ATP的产生以及用这些器件驱动其他机械,在宏观尺度和纳米尺度之间能量的转移以及不同类型的能量的互换方面引起兴趣。
在本发明的另一方面,具有不同功能度的其他蛋白质可用于输送电子/质子,使电能和化学能转导,并且起机械阀和传感器的作用。
在本发明优选实施方式中,可用膜提供生物太阳能材料和织物,它由薄织物构成,其中掺有具有生物相容性聚合物膜,所述聚合物膜包埋了两种能量转换蛋白质,细菌紫红质和细胞色素氧化酶,它们能将光能转化为电能,并将此能量传递到外负载。由于使用薄(小于1μm)聚合物膜,以及不需要携带具有电源的燃料,所以大大省去了重量。因此,可以开发一种系统,可将它整合入布料和多数材料的表面,提供重量轻(小于1kg/m2)的能源,其效率等于或大于用太阳能电池所达到的效率。这样,生物太阳能材料形成了混合有机/无机电源,它可从光获取能量。
本发明工艺涉及一种薄织物的生产,该织物由包埋两种能量转换蛋白质,细菌紫红质和细胞色素氧化酶的生物相容性聚合物膜组成,它们能将光能转换为电能并将此能量传递到外负载。经过数百万年的自然选择,已经分离和优化了这些蛋白质,能将光和电能转换为电化学能。装入器件,它们能不确定地提供有用量的电力,并且足够轻、小型、和稳定,在有利和不利环境下,均适合要求流动性高的应用。
细菌紫红质是一种细菌蛋白质,吸收光线时,它能将质子输送过细胞膜。细胞色素氧化酶是一种膜蛋白,能用高能电子输送质子。协同使用这些蛋白质,可将光能转换为电化学质子梯度,该梯度随后转化为可用于外部工作的电动力。由于该器件是传统太阳能电池的生物“版本”,电源不需要携带“燃料”,显著地提高了功率密度。此外,从这种器件理论上可用推断的最大能量是无限的,只要有太阳或器件存在,它就能工作。最终器件的估计面积量密度为~100g/m2,提供了轻的能源,而效率等于或大于太阳能电池的效率。此生物太阳能电池的材料成分和尺寸使得它最终得到大功率密度(>250W/kg)和大能量密度(800Whr/kg 3小时,9500Whr/kg 3天,32000Whr/kg 10天),足以驱动大量设备,而有效占有体积和重量为0。此外,其工作时产生可忽略的声、热和电子特征。
本发明电源与传统太阳能电池之间有重要的区别。因为本发明电源由大规模生产的蛋白质和普通聚合物构成,它重量轻、灵活、坚固,可以低成本大量。此器件的相关长度是包装的厚度,小于1μm。通常含有这些酶的膜厚度为5nm。生物太阳能电池的层状板可掺入布料和其他表面,而不会在重量方面增加成本,因为它们无论如何必须穿着。适当的模块设计织物中的动力产生电池,将使电力织物保持明显的防损和维持功能的能力。利用电能和生化能之间的相互转换能力可构造电动生物器件,以及使生化燃料转化为电。利用电、生化和光形式之间转换能源的能力,可以设计和生产纳米生物技术器件,而不受输入能量类型的限制。
附图简述借助下面的附图和对优选实施方式的详尽描述,将能最好地理解本发明的上述及其他目的、特点和优点,其中


图1是细菌紫红质的简化主链带结构的示意图,其中质子通过中心内通道输送穿过膜。
图2说明一种过程,在盐制品盐杆菌(Halobacteriam salinarium)中,在吸收绿光的光子时BR泵将质子从细菌中抽出,产生电化学梯度,而ATP合酶使这些质子回到细胞中,利用它们的电化学能由ADP制备ATP,提供从光能到化学能的净转换。
图3A和3b说明COX的主链带结构,其中图3A是膜,图3B是胞质体,打星号的三个区域是公认为质子输送通道的“孔”。
图4a说明脂质体掺入平面固体支持的脂质双层;图4b说明囊泡与COX结合合并入平面膜中。
图5是本发明生物太阳能电池的示意图。
图6是纯化的细菌紫红质的层析图。
图7是含细菌紫红质()和不含细菌紫红质(□)的脂质体在30分钟内形成的pH梯度图。
图8说明因存在ATP而发出的荧光素荧光,所述ATP由含有不同量的细菌紫红质和F0F1-ATP酶的脂质体产生。
图9是硅尖阵列的SEM显微图(尖小于1nm,轴约1μm)。
图10是COX的超量表达和纯化方法的示意图。
图11是可测定和控制的质子与电子输送通过COX的设备的部分截面示意图。
图12是水通道蛋白的示意图。
图13是图12的部分蛋白的放大图。
图14说明用膜掺入水通道蛋白进行水净化池。
图15是传统水净化系统的示意图。
优选实施方式的描述在本发明的一种实施方式中,将细菌紫红质和细胞色素氧化酶整合入生物相容性聚合物膜,与微制造的电极接触。所提出的器件的操作在整合入组菌紫红质、细胞色素氧化酶之后可得到最好的理解,同时也理解它们整合入脂质和聚合物膜。所有这三者都已经广泛研究,有许多有关它们的合成和功能的文献。
细菌紫红质(BR),作为最广泛研究的离子转运蛋白,是分子量为26kD的质子转运蛋白,如图1中标号10所示,它在盐制品盐杆菌的细胞膜内发现,是一种在明亮光照的盐水和沼泽中孳生的嗜盐古细菌。BR允许盐制品盐杆菌在厌氧环境中生存;当没有足够的氧气进行呼吸过程时,BR就发生作用。如图2所示,BR12细胞吸收绿光光子18(λ=500-600nm)时,使质子14输送穿过细胞膜16,并从细胞中出来。每个BR分子在受到光激发并输送质子的过程中,经历了各种电子中间状态,BR回复到其初始状态的总时间为3ms的级。这是能量转移的最短时标。
随着质子14从细胞12中泵出,形成的电荷和pH梯度(低H+-高H+)穿过细胞膜16,形成电化学势。此电化学势为驱动ATP合酶(ATP酶)提供了能量,如标号20所示。ATP酶在将质子14转回穿过膜中,利用其电化学能产生三磷酸腺苷(ATP),如图2标号22所示。ATP是普遍存在的生物燃料,它推动了大部分对生命必需的细胞过程。这种天然的生物系统已经在实验室得到复制,具体方法是在脂小泡中构建由BR和ATP酶组成的体系(Pitard,B.,Richard,P.,Dunarch,M.,&和Riguard,J.(1996),Eur.J.Biochem.,235,769-788页),其中BR在40℃下可在小泡边界那边形成并维持1.25的pH差异。在20℃,可以得到ΔpH=2。较高的pH差异则无法得到,因为BR受到质子梯度的及馈抑制。质子梯度用来产生ATP,并测定体系中两种酶的性能。此项工作还表明,在脂质体膜中加入带负电荷的磷脂,可以提高BR与ATP酶之间的偶合效率。
BR是器件集成的理想候选者,因为蛋白质作为二维晶体,可以高浓度存在于细胞膜中。就此而言,在视网膜蛋白质中,它是独一无二的。它在这种形式下称为“紫膜”,质量比例中蛋白质占7%,脂质占25%(~10个脂质分子/蛋白质)。观察到,这些紫膜的膜片尺寸为0.5μm或更大。由于这些蛋白质聚集体在如此高的浓度下是稳定的(以自然状态存在),它们提高了能量产量,为任何制造的器件提供了冗余度、工程安全性的元件。此外,盐制品盐杆菌的进化优化了BR的功能,因为它可在高温、大光通量下操作更长的时间。
上面提到的Pitard等的工作利用在小(150nm)脂质膜中高度稀释的BR,结果表明,ATP的产率与BR/脂质质量比成反比。将他们得到的有关紫膜的BR/脂质质量比的数据进行外推,发现每毫克BR每分钟产生320nmol ATP。ATP酶用图2中标号24所示ADP和无机磷酸合成ATP,增加35kJ/mol能量。只考虑紫膜和脂质的质量,这种光驱动的ATP合成系统提供的功率密度是140W/kg。如果ATP合酶将质子泵出的速度与BR将它们泵入的速度一样快,则产生的功率将增加到180-280W/kg。
由于大量有关BR及其强度和寿命的学识,在开发BR作为光学器件和计算机存储应用中的活性光学元件方面引起了广泛的兴趣和研究。已经表明,紫膜在光照下有数年的活性,在高达180℃的聚合物基质中,在pH值0-12之间,在有机溶剂存在下,当完全脱水时,紫膜是稳定的(Vsevolodov,N(1998),《生物分子电子学光敏蛋白质概论》(Biomolecular ElectronicsAnIntroduction via Photosensitive Proteins),125页,Birkhauser,Boston)。由于科学界和工程界的关注,制定了盐制品盐杆菌的BR超产菌株的生产和分离的方案(Lorber,B.和DeLucas,L.J.(1990)FEBS Lett.261,14-18页)。对紫膜进行大量提取和纯化方法,以及加工和搬运是熟知的(例如Stuart,J.A.;Vought,B.W.,Schmidt,E.J.;Gross,R.B.;Tallent,J.R.;Dewey,T.G.;Birge,R.R.,IEEE EMBS,付印中)。有关它与非生物材料结合的实验表明,BR可与普通聚合物配合使用,如聚(乙烯醇)和聚(丙烯酰胺)(Birge,R.,Gillespie,N.,Izaguirre,E.,Kusnetzow,A.,Lawrence,A.,Singh,D.,Song,W.,Schmidt,E.,Stuart,J.,Seetharaman,S.,Wise,K.(1999),J.Phys.Chem.B 103,10746-10766)。
第二种酶——细胞色素氧化酶(COX)是电子和质子转运蛋白,使呼吸发生的四种酶中的最后一种。图3A中标号30所示COX主链带的膜图,而图3B中标号32所示其胞质体图,打星号的区域34表示“孔”,或者质子转运通道。在呼吸中,NADH的高能电子(一开始由葡萄糖的氧化产生)转移到O2,因为它还原产生H2O。
COX从呼吸过程的前阶段接受电子,电子由细胞色素c携带,且转移到两个含铁离子和铜离子的内部血红素基团上。这些血红素基团被接受自细胞色素c的电子还原,在电子转移到停靠有血红素之一的分子O2之后,这些血红素基团被去氧。O2获附加得附加的电子,成为与外围质子氧化反应的目标,反应之后,O2就从血红素上脱离。随着这些高能电子的转移,从其460mV的电压降获得的能量(Nicholls,D.(1982),《生物能学化学渗透理论导论》(BioenergeticsAn Introduction to the Chemiosmotic Theory),123页,Academic Press,London)用于将质子转移到线粒体空间,质子与电子的转移比例通常为1∶1(Lee,H.,Das T.,Rousseau,D.,Mills D.,Ferguson-Miller,S.,Gennis,R.(2000),Biochemistry 29,2989-2996),虽然已讨论过其他比例(Papa,S.,Lorusso,M.,和Capitanio,N.(1994),J.Bioenerg.Biomembr.26,609-617页,Michel,H.,Behr,J.,Harrenga,A.,和Kannt,A.,(1998),Ann.Rev.Biophys.Biomol.Struct.27,329-356页),该比例通常是膜电势的函数(Murphy,M.,和Brand,M.(1998),Eur.J.Biochem.173,645-651页)。
当质子从线粒体基质中泵出时,产生了电化学质子梯度。ATP酶借助此质子梯度产生ATP。BR和COX在产生质子梯度方面非常相似;不同之处是BR由光驱动,而COX由化学能驱动。这可从图2看出,以COX替换BR12,以来自细胞色素c的高能电子替换绿光子18,并加上氧还原成水。实际上,BR和COX均用于盐制品盐杆菌,并起到相同的目的当没有足够氧气供应呼吸时BR用于盐制品盐杆菌中,而COX则用于生物体。
将COX整合入固体基质支持的脂质膜40,如图4A和4B所示,表明有可能利用电学方法测定电子输运以及控制质子输运(Naumann,R.,Schmidt,E.,Jonezyk,A.,Fendler,K.,Kadenbach,B.,Liebermann,T.,Offenhausser,A.,Knoll(1999),Biosensors & Bioelectronics 14,651-662页)。这些实验用与金膜44相连的硫功能化肽链42作为二豆蔻酰磷脂酰乙醇胺(DMPE)的脂质膜单层46。将COX和细胞色素c掺入DMPE的脂质体小泡48,后者熔合到肽表面上,如图4A中标号50所示。电学测定表明,电子通过COX转移进出金基基质,以及通过施加电流控制质子的输运。
虽然体外实验提供最准确重现膜结合蛋白质的自然环境,但这些条件并非最有助于测量被其他细胞过程所模糊的现象,或者这些在实验时间尺度不频繁发生的现象。此外,用蛋白质作为活性元件生产有用器件需要容易生产和维护支持体,它不能使蛋白质变性,而且要使蛋白质的功能保持得尽可能与体内一样密切,同时容易使用和制造。在实验中已经将大量生物酶掺入人造脂质膜,它们在有效实验时间里保持功能;本发明涉及使用脂质和聚合物膜生产BR/COX光驱动器件。
由卵磷脂或DMPE制备的人造脂质膜复制天然细胞膜的两亲组分。加入洗涤剂如Triton-X或十二烷基硫酸钠使膜蛋白溶解且对蛋白质/脂质溶液轻度超声处理掺入脂质体。脂质体可以保持小泡状(Pitard等,1996),也可以在平整基质存在下形成平面(Naumann等,1999和Steinber-Yfrach,G.,Rigaud,J.,Durantini,E.,Moore,A.,Gust,D.,Moore,T.(1998),Nature,392,479-482页)。保持蛋白质的生物功能,可达到蛋白质的浓度比体内的浓度高数千倍,使实验高度灵敏和精确。蛋白质浓度高对于构建电源和生物传感器也是必要的,因为它们利用各分子的集体效应。
定下BR的性质,就可以预计器件利用BR和COX可能发生的功率。地球表面上每平方米的面积上每秒钟入射绿光范围中的太阳光子约为7.5×1020,或者在BR分子面积(25nm2)上有1.9×104个。BR的吸收系数是66000/mol/cm(Vsevolodov,N.(1998),《生物分子电子学光敏蛋白质概论》(Biomolecular ElectronicsAn Introduction via PhotosensitiveProteins),125页,Birkhauser,Boston),或约4.4×10-4/单层BR。BR的量子效率为0.7,质子输运概率为3.08×10-4。因此,可以预期每个BR分子每秒钟在阳光中约发生5.8次输运事件。
在1m2的面积上,BR∶COX为57∶1时,得到稳态的质子输送率,COX每输运一个质子,BR就输运一个质子。在这个比例下,每平方米单层有3.9×1016BR。由于COX中每个质子输运一个电子,因此得到37mA/m2/单层的电流。1千个堆积的单层只利用36%的光,但在760mV的电流增加到37A/m2,得到28W/m2。虽然这些电流和电压不适用于所有器件,器件的电流输出是高度可配置的,大范围的电压和电流组合对任何功率输出是可能的。此体系中蛋白质和脂质(或等价物)的质量是2.3g/m2。由于金电极和聚乙烯醇的聚合物层厚度相同(5nm),得到105.3g/m2的区域质量密度,产生的功率密度超过265W/kg。这种器件3小时的可供能量是795Whr/kg,3天的可供能量是9540Whr/kg,10天的可供能量是31800Whr/kg。由于能量获得自太阳,获得的能量直接随着日光曝露的持续时间而增加这些功率和能量密度可随着交替选择电极和聚合物材料而增加,但由于附加的重量增加和光散射,也可随着不同选择的层厚度而减少。电极和聚合材料的光散射效应可以忽略不计,原因如下(1)所用聚合物在λ=500-650nm范围内活性最小;(2)金属电极不吸收通过器件起始层的部分非透射光;如果光与电极相互作用,它仅仅在器件内反射,最终被BR所吸收。
如上所述,BR和COX都是质子转运蛋白,它们分别将光和高能电子的能量转换为驱动ATP酶和产生ATP的质子梯度。使COX反向作用,可将质子梯度转化为电动势(EMF),将能量传给电子。消除氧和细胞色素C,以连接到外部负载的电极替换,然后EMF可以起作用。电极过载膜中BR和COX的组合在图5所示过程和结构中达到顶点。该图是生物太阳能电池60的示意图,其中细菌紫红质62吸收绿光的光子68时,将质子64输送过聚合物膜66。这增加了膜的上侧70上的质子浓度,使细胞色素氧化酶(黄色)72发生反向作用。结果,获得自质子64的电化学能输送到膜的下侧74,此能量用来将质子76从膜上侧上的上电极78输送到膜下侧上的下电极80,产生电动势穿过电极,此电动势力用来做外部工作。
电子转移结束时,该体系回复到其初始状态COX已还原又被再氧化,聚合物膜66的两侧上的质子浓度不变,电极没有获得到或者没有消耗任何净电荷。EMF做外部工作,已吸收光子。该体系准备将下一个光子的光能转化为电能。
将质子动力转换为电动力的核心过程是通过COX72反向作用。文献中有许多可逆能量转换蛋白质的例子,如F0F1-ATP酶(Hammes.G.(1983),TrendsBiochem.Sci.8.131-134页)和离子转运蛋白(Nicholls,D.,(1982),《生物能学化学渗透理论导论》(BioenergeticsAn Introduction to theChemiosmotic Theory,123页,Academic Press,London)。然而,也有不能反向作用的能量转换蛋白质,例如细菌紫红质对质子梯度的反应不发出绿光。
在Wikstrom所做的工作中(Wikstrom,(1981),Proc.Natl.Acad.Sci.USA 78,4051-4054页),在加入ATP的线粒体中,观察到COX中电子流动的部分反向。F0F1-ATP酶是具有以下功能的可逆质子泵ATP酶将外部质子转移到线粒体基质中生产ATP。反过来,它可以消耗ATP而将质子泵出。如Wikstrom所述,ATP酶将质子转穿过膜,加入ATP时与COX平行。此反应在膜的外侧上产生高质子浓度,反向在COX上形成电渗质子压力梯度。当产生这种条件时,观察到吸收光谱中的偏移,表明电子从水转移到血红素中,这是典型过程的逆转。以下分析为什么会发生这种情况。
在电化学反应中,反应过程中能量过剩或不足由下式给出(例如,参见例子,De Vault,D.,(1971),Biochim.Biophys.Acta 226,193-199页)-ΔE=ΔG/(nF)其中,ΔE是供电子前后氧化还原电势中的变化,ΔG是反应中的自由能变化,n是电子转移的数量,F是法拉第常数。在电子从细胞色素c(还原电势=+220mV)通过COX转移的过程中,电子的自由能连续地下降,直到它们最终将O2(还原电势=+860mV)还原为H2O。每转移的电子,自由能变化为-14.8kcal/mol。此能量用于输运质子,且产生电化学梯度。Wikstrom充分地提高外部质子浓度,使ΔG对COX的正常作用为阳性,使向前泵送质子所需的能量比O2还原所能提供的能量更多。通过利用“氧化还原缓冲液”,细胞色素c的氧化还原电势保持恒定;这意味着H2O/O2的氧化还原电势随ΔG的改变而改变。由于产生了足够高的外部质子浓度,电子发生反向转移,从水接收电子并供给COX。然而,电子的完全逆向转移并没有完成,因为O2还没有产生。
在本发明体系中,如图5所示,COX既没有Wikstrom所述体系的起始电子供体——细胞色素c,也没有最终的电子受体——O2。因为电子源是电极78而不是水,与H2O的820mV相比,电子获得成本最低。电子到达血红素a3上时,受到正氧化还原电势+380mV,血红素可用于做外部工作。到血红素a1时,此电势下降了140到+240mV,这时需要从质子梯度输入能量。到Cua时,电势进一步下降50到+190mV,最终在0V转移到电极80上,要求输入能量。由于电子从起始电极78转移到血红素a3是还原电势增加(自由能下降),此反应自发地发生。电子从a3转移到反电极是还原电势下降380mV,需要外部能量输入(质子动力)才能发生。利用BR62并对膜66进行适当掺杂,可增大质子动力。由于电极是电子供体,从它们获得电子比从H2O获得容易,而且避免在水和氧之间的任何化学中间体。
因为膜表面上的离子扩散大,并且通过合适选择的膜组成可以更大,膜表面本身就需要生物太阳能电池的获得成功的功能(Pitard等,1996)。脂质膜,如膜40(图4A)或许多生物相容性聚合物基质的任何一种包含蛋白质,且作为质子载体。这些聚合物基质非常普通,只要求(a)它们形成可将蛋白质分为上下一半的膜,(b)它们形成充分类似于天然脂质膜的环境,使得蛋白质容易插入具有适当定向的膜,(c)蛋白质所受到的聚合物膜的局部化学环境不会使蛋白质展开或变形,以这样的方式构成蛋白质的天然功能。满足这些条件的聚合物包括但不限于三嵌段共聚物,它们具有亲水外嵌段和疏水内嵌段的一般性质。BR62和COX72在聚合物膜66中定向和结,膜是用电极78和80覆盖。
图2所示为光驱动ATP生产体系的构造、执行过程和评定,该体系可连续为F1-ATP酶驱动的纳米化学器件提供能量。如图5所示,本发明涉及包含BR和ATP酶的脂质体小泡66的构造,ATP酶以这样的方式定向,即利用来自绿光的能量连续从ADP产生ATP。已经建立了一套系统,用于大规模生产和纯化细菌紫红质(BR),从超产的盐杆菌中分离出来,用凝胶过滤色谱纯化(图6中曲线90)。
根据本发明,用纯化的卵磷脂、磷脂酸和胆固醇,按照前述方法(Pitard等,1996)重构脂质体。脂质体依次用0.45和0.2μm过滤器挑选尺寸,使溶液中留下的脂质体小于200nm。F0F1-ATP酶和BR的掺入在Triton X-100的存在下进行。为保证脂质体的形成,加入Pyranine作为pH敏感指示剂,该指示剂利用荧光显微镜通过肉眼评定。此项工作显示,大到1.5的pH梯度可在20℃获得,如图7中曲线92和94所示,含细菌紫红质(曲线92)和不含细菌紫红质(曲线94)的脂质体在30分钟内形成的pH梯度。
分析证明,用脂质体产生ATP,如图8中标号96所示。此图显示了由于存在脂质体产生的ATP而发生的荧光素荧光,脂质体包含不同量的BR和F0F1-ATP酶。将ADP加入溶液之前,脂质体在光照下培养2.5小时。目标是优化电化学梯度,使稳态ATP的产生速率增加到前面所述的水平(Pitard等,1996)。
用带有原子级尖顶的空心圆筒阵列——“纳米注射器”——将上述纳米级复合分子器件注射到活细胞中。此过程的第一步是构建纳米注射器的非空心型式。图9是硅尖阵列100的部分显微图,它包括直径小于10nm的尖102和直径约1μm的轴104。用这些阵列100作为电极,用电化方法沉积纳米级镍点的阵列,作为各种分子器件的载体。这些阵列也允许直接在布满蛋白质的膜顶部沉积微米级或纳米级电极。
BR的生产和合成是常规的。盐杆菌以50L批发酵,发酵处理和纯化之后,得到100mg以上的紫膜。这与约60m2的蛋白质单层面积相符合,它足以应付原型器件。
可采用Zhen,Y.,Qian,J.,Follmann,K.,Hayward,T.,Nilsson,T.,Dahn,M.,Hilmi,Y.,Hamer,A.,Hosler,J.,Ferguson-Miller,S.(1998),Prot.Expr. & Pur.13,326-336所述方法生产COX(Zhen等,1998)。此方法涉及由类球红细菌(Rhodobacter sphaeroides)超表达和纯化COX,如图10中标号90所示。构建超表达质粒pRK-pYJ123H的过程包括由类球红细菌将细胞色素c氧化酶的亚单位I基因(coxI)亚克隆入PUC19,利用pJS2-X6H2中的SmaI位点,产生pJS3-SH,如图所示。标记His-tag的六一组氨酸序列位于coxI的C-端,通过将来自pYJ100的PstI/PstI片段连接入pJS3-SH上的独特PstI位点中而产生pYJ124H。接着,用EcoRI和HindIII位点将三个亚单位基因放入表达载体Prk415-1中。此过程产生61mg/10L培养液,相对于大的单层面积而言,这是一个大的量。
产生和合成BR和掺入BR的脂质体小泡是常规的。用均匀的泡加电场插入脂质之前,BR的定向是最容易促进通过具有平面对称性的膜,虽然它是球形小泡方面的问题。图11中标号120所示设备是用于测定阻抗光谱的电化学池,且设计用来测定由质子转运引起的电子输运和电势,且用于平面膜。此外,容易适合于在膜/蛋白质复合物上施加电场。此池包括塞子121,Ag:AgCl饱和KCl参考电极122,液体出口123,特氟龙间隔物124,高尔夫支持体125,液体进口126和铂反电极127,如Naumann所述。
关于紫膜和BR的定向,文献中报道了许多技术静电层-层组装;电场增强的Langmuir-Blodgett膜形成;在空气冷凝器的电场中BR的定向;在悬浮体上直接施加电场;和电场和磁场的组合。多数技术利用PM的大的天然永久电偶极矩(直径为1μm颗粒的~106德拜)。这种大电偶极矩源自单个BR偶极矩的相加性(从理论计算估计为570德拜和实验为55德拜)。只需对膜垂直施加~20V/cm的电场就足以使BR定向,这种电场容易获得。
已定位的COX的偶极矩要足够大,以增强细胞色素c的停靠。COX利用其内部偶极穿过膜吸引和推开膜,就像BR那样。因为COX的胞质体部分是亲水的,酶对脂质中旋转有一道屏障。椭圆形蛋白质也阻止这种运动。因此,有必要在COX掺入脂质膜中之前就使其定向。COX掺入脂质膜后加入PM,定向需显著较低的电场,这样不会干扰COX的排列。如果COX的排列需要电压与实验的其他部分不相容,如脂质膜、BR或水的水解,反电极移动更近,并将施加的电压保持在安全水平,确保既产生所需电场,又不扰动该过程的剩余部分。
上面用来各自在脂质膜中使PM和COX定向的设备也可用来测定BR中质子的输运和电子通过COX的输运。
只用掺入脂质膜中的定向BR的初步实验是使用上述图5的结构进行的。质子泵送穿过膜得到易检测的信号。用COX重复这些实验。
在图5所示设备中,电极78和80的作用是提供电子和接收电子,作为器件中不存在的细胞色素c和O2的替代物。因为电流通过COX72泵送质子会使质子流量的测定复杂,因而采用了类似于前面脂质体BR的实验中所用的pH敏感荧光指示剂。电极与COX连系的能力通过将蛋白质单独放在脂质膜中测定。用上述(Naumann等,1999)相同的方法监控BR的质子泵送情况,研究了利用转移自所连电极COX泵送质子的能力。用和不用施加定向电场进行的实验表明,定向是成功的。通过电场引导质子泵送的一个主要结果是ATP酶可掺入具有COX的脂质膜中。活化COX产生质子梯度,然后ATP酶可用来制备ATP。这说明用电方法可以合成ATP,这是生物学上的一个主要里程碑,对于进一步开发ATP驱动的纳米器件具有重要意义。
为测试酶的逆向功能,产生了一个人工pH梯度,即使膜空间一侧的酸性大于另一侧。通过测定质子输运确定COX定向后,测定因质子逆向流动产生的电压和通过COX的电流。如果电极的构造如图11所示,则电子流动不发生。在这种情况下,可使上电极更靠近膜的顶部表面。
可采用许多方法提高电极与蛋白质的接近度。可将电极栅直接放在脂质顶部,其形式为细丝网,可外连接进行电学测量。从顶部表面上除去液体后,可直接在膜上喷铝或镍的薄透明层,形成反电极。或者,通过光栅图9所示的尖端阵列将电极用电化学方法沉积在脂质表面上。这种沉积可在膜的顶部表面上形成上百万的纳米线。重复和组合以上步骤,导致定向的COX和BR钆含在脂质膜中。
BR和COX的定向有两种可能的方案平行和逆平行偶极定向。如果偶极是平行的,施加一个电场就同时取得两者的排列。如果它们是逆平行的,就要用大的PM集合偶极矩。在高电场中使COX初始定向,接着在一个电场中使PM定向,这个电场足够小,以避免干扰COX,大得足够充分地操作,PM片段这样就获得了适合的定向。
最初,测定电压应表明BR适当地起作用,并且形成了质子梯度。来自此梯度的跨膜电压预计为数百mV。随后电流的测定表明成功,并且可通过膜中的电极估计可以接近部分起作用的COX蛋白质。
因为质子通过COX反转移,因此电流取决于BR所提供的质子浓度,电流应与光强度成正比。总电流也与起作用的COX分子数成正比,由于脂质膜中COX分子的平行构型。如上所述,所产生的电压应恒定,>200mV,同样产生的功率由光强度和以适当方向定向的净数COX所确定。
使功率的最大化的方法集中在优化COX的定向以及适当选择并改进膜层。该器件可在各种照射条件下传递功率,例如在高强度和低强度下连续照射,周期性照射等。
宜采用聚合物膜,理由如下它们比脂质膜具有更长的寿命;它们更加坚固;它们有更容易制备的性质,如电子和离子导电性及通透性。这些膜的内部必须是疏水和有弹性的,以便可以模拟尽可能接近天然的蛋白质环境。
许多生物相容性膜具有广泛的性质,如吸光性、极性、电子和离子导电性,等等。能提高本发明太阳能电池性质的聚合物必须与蛋白质和电极相容。对质子的不通过也是重要的。聚合物表面的掺杂能力也很重要,因为它在质子导电性和跨膜传导性中扮演主要角色。聚合物的寿命以及它对其中所含蛋白质的寿命的影响也是相关的,是选择聚合物时的因素。选择寿命短但性能高的聚合物可用于特殊应用。
前面介绍了用生物组分制备高效、高产太阳能电源的方法,表明能量转换生物蛋白质与外部器件整合起来;且指出了有助于能大规模生产生物太阳能电池、能驱动各种器件的制造途径的方法。
另一方面,通过使用水通道蛋白族蛋白质掺入三嵌段共聚物膜,产生了只允许水通过的稳定膜,因此促进水的净化、脱盐和通过透析进行分子浓缩。水通道蛋白隔断任何污染物的通过,包括细菌、病毒、矿物、蛋白质、DNA、盐、洗涤剂、溶解气体,甚至来自水溶液的质子,但水通道蛋白分子因其结构而能够输运水。如图12所示,每个水通道蛋白130包含6个跨膜α螺旋区域132-137,它们将蛋白质锚定在膜中,和两个高度保守的NPA环138和140,它们在蛋白质中心顶点到顶点聚集在一起,形成一种沙漏形状。此沙漏的狭窄处是水分子以一行通过膜的地方,如图13中标号142所示。已表明,水的移动是对称的,且可在两个方向中进行;这一事实是重要的,因为此过程不消耗能量。水以特定方向通过膜是因为水压或渗透压的缘故。如图14所示,水的净化和脱盐可用双室器件150实现,该器件有室152和154,中央被刚性膜156隔开,膜中填满了水通道蛋白。此膜本身不渗水,它将室152中的污水158和室154中的纯净水160隔开。只有纯水能够在两个室之间流动。因此,与将膜一侧上的海水或其他污水158置于合适的压力下时,纯水就自然地流进另一室154。因此,纯水可从非饮用水源获得,或者,如果水源中含有感兴趣的化学物质,则可以选择地除去水,将所需的高浓度化学物质留在输入室中。但重要的是,水通道蛋白也适用于本发明,其原因不是它对水有专一选择性。此蛋白质家族的许多成员(如水通道蛋白Z(AqpZ))非常稳定,可经受污水源中的恶劣条件,而不丧失功能。AqpZ在酸、电压、洗涤剂和热存在下也不会变性或分解。因此,该器件可用于净化被物质污染的水源,这些物质可能弄脏或破坏别的膜,它还能用于持续有高温的地区。
AqpZ也是可变的。由于此蛋白质在宿主细菌中根据基因序列专一地表达,此基因序列影响其最终形状和功能,所以技术人员容易改变其基因密码,以便改变蛋白质的特性。因此,可对蛋白质进行加工,以满足所需的应用,这种应用可能不同于蛋白质原来的功能。例如,简单地将图13中靠近水通道142中心的特定氨基酸残基换成半胱氨酸,所产生的水通道蛋白或许结合溶液中的任何自由汞,且由于阻断而停止输水。因此,膜器件中所用的这些突变蛋白质可检测水样中的汞污染,当有毒物质的浓度上升太高时,水简单地停止流动。
本发明的优选实施方式是传统滤盘的形式,因为它最容易测定功能。为制备这种盘,可用Langmuir-Blodgett槽在25mm商业超滤盘的表面上沉积5nm厚的单层合成的三嵌段共聚物和蛋白质。然后用254nm UV光照射盘上的单层,使聚合物交联,增加其耐受性。最后,用环氧化物将孔径为220nm的PVDF膜粘到盘表面上,以确保安全搬运并防止边缘处渗漏。
测验器件时,将它固定在如图14所示室内,迫使加压水源穿过膜。当只有纯水通过膜的另一侧和污染溶质仍集中在开始的室中时,认为该器件有功能。必须对污染的溶液加压,以克服纯水自然流到大量溶解颗粒的室中。水通道蛋白Z膜的目的是发生反渗透,且将纯水从污染溶质中分离出来。系统的这种趋势,或者渗透压可用磅/平方英寸(psi)表示。例如,海水的渗透压约为360psi。
有若干方法可用来使器件承受这些类型的压力。一些聚合物天生比其他聚合物更耐受,并且可用UV光交联,以提供超刚性。另一种方法是在淡水室中加入高浓度的无毒、易除去的溶质,以促正常渗透穿过膜,同时由于室增压,也发生返渗透。最后,减少返渗透所需压力的方法可以是在含有污染物浓度依次减少的一串密封、相连的室中使用多个AqpZ器件。所得压力是净化每对室所需的压力,它是反渗透所需总压力的一部分。因此,每个室只需经受小压力,保持完整的可能性很大。因此,如果每对室之间的浓度差只是10%,而不是100%,只需10%的上述高压即可净化每个连接处的水源。最后的室中可以恒定的压力和流速连续产生纯水。
水通道蛋白反渗透膜只需一步即可净化具有几种不同类型的污染物的水。如图15中标号170所示传统高纯系统需要数个组分,包括水软化剂172、碳过滤器、离子交换剂、UV或化学灭菌174和双通道反渗透过滤器装置176在产生水(即没有水通道蛋白纯化水那样清晰)之前可联合使用。这种复杂的装置不能像水通道蛋白膜那样从水源中除去溶解气体或小于150道尔顿的物质。此外,所有这些组件均需要维护。UV灯泡需要更换和能量。当离子交换剂充满叶后需要化学再生。软化剂需要盐。碳和反渗透筒堵塞时必需更换。最后,与典型净化系统相比,单步器件所需空间小得多,且轻得多,这个优点使本发明的水通道蛋白净水器件便于携带。
水通道蛋白膜也比常规系统快。常规高速反渗透(R.O.)单位每分钟能产生约28.4升(7.5加仑)净水。当前的研究表明,水分子通过AqpZ饱和脂质膜(0.0177mm2)的速率为54μmol/s(Pohl,P.,Saparov,S.M.,Borgnia,M.J.,和Agre.P.(2001)Proceedings of the National Academy of Science 98,9624-9629页)。因此,表面积为1.0平方米的水通道蛋白Z反渗透膜每分钟能过滤3295升纯净水。此速率比常规净水器快116倍。
最后,生产新的基于蛋白质的膜也很廉价。从大肠杆菌工程菌株中容易得到毫克量的该过程的核心——AqpZ。从每升培养液中平均可以得到2.5mg纯蛋白质。从约5美元的生长培养基中可以产生10mg蛋白质。这对于几个满尺寸器件是足够的蛋白质。包埋AqpZ的聚合物可在同一实验室中制备,每个器件所用化学试剂只值几个美分。水通道蛋白Z反渗透膜是新型、有效、廉价的水净化工具。
因此,已经公开了用生物组分从脏水、盐水或其他污染的水中以高效率生产完全纯净水的方法和设备。本发明说明了整合水输运生物蛋白质和外部器件,并指出了能大规模生产水净化水器件的制造途径。
虽然上面结合优选实施方式对本发明作了描述,但应当理解,可以对所述方法和器件进行各种变动和修改,只要不背离本发明的精神和范围,如以下权利要求书所述。
权利要求
1.一种仿生膜,它包含模拟天然生物膜和天然蛋白质环境的嵌段共聚物基质;和掺入所述基质形成膜/蛋白质复合物的膜蛋白。
2.权利要求1所述膜,其特征在于膜/蛋白质复合物组成器件,该器件具有掺入的膜蛋白质的功能。
3.权利要求2所述膜,其特征在于蛋白质的功能包括阀、通道、传感器、检测器、泵和换能器。
4.权利要求1所述膜,其特征在于选择的所述膜蛋白质只输运水分子,而所述仿生膜是滤水器。
5.权利要求4所述膜,其特征在于所述膜蛋白质选自蛋白质的水通道蛋白族。
6.权利要求5所述膜,其特征在于所述基质由三嵌段共聚物形成。
7.权利要求5所述膜,其特征在于所述基质不渗水,选择的所述膜蛋白允许水分子在压力下通过。
8.权利要求7所述膜,其特征在于所述基质固定在水净化器件中,将所述器件分隔成第一室和第二室,所述膜蛋白只允许水在所述室之间流动。
9.权利要求8所述膜,其特征在于所述膜蛋白是水通道蛋白。
10.权利要求9所述膜,其特征在于所述基质是生物相容性聚合物,选自聚(乙烯醇)、聚(丙烯酰胺)和溶胶。
11.权利要求1所述膜,其特征在于所述膜蛋白是天然生物蛋白。
12.权利要求11所述膜,其特征在于将两个不同膜蛋白掺入所述基质。
13.权利要求12所述膜,其特征在于所述膜蛋白是能量转换蛋白质。
14.权利要求1所述膜,其特征在于将所述基质掺入薄织物。
15.权利要求14所述膜,其特征在于所述膜蛋白包括包埋在所述基质中的细菌紫红质和细胞色素氧化酶,用于将光能转化为电能。
16.权利要求15所述膜,其特征在于所述基质是生物相容性聚合物,选自聚(乙烯醇)、聚(丙烯酰胺)和溶胶。
17.权利要求15所述膜,其特征在于还包括在所述织物的相反表面上的第一和第二电极,用于接收所述电能。
18.权利要求1所述膜,其特征在于所述基质接收定向的细菌紫红质和细胞色素氧化酶,产生生物太阳能电池。
19.权利要求18所述膜,其特征在于还包括在所述基质的相反侧面上的电极。
20.权利要求18所述膜,其特征在于所述基质是不能透过质子的生物相容性聚合物。
21.一种复合有机/无机电源,它包含共聚物基质;包埋在所述基质中的第一和第二不同的膜蛋白。
22.权利要求21所述电源,其特征在于还包括薄织物材料,所述基质包埋在所述织物中。
23.权利要求22所述电源,其特征在于所述膜蛋白是天然生物蛋白。
24.权利要求23所述电源,其特征在于所述蛋白质包含细菌紫红质和细胞色素氧化酶,用于将光能转化为电能。
25.权利要求24所述电源,其特征在于还包括在所述织物的相反表面上的电极,用于接收所述电能。
26.制备生物膜的方法,它包括制备嵌段共聚物基质;和在所述基质中插入天然或遗传工程膜蛋白。
27.权利要求26所述方法,其特征在于还包括使所述膜蛋白在所述基质中定向。
28.权利要求26所述方法,其特征在于还包括选择所述蛋白质产生相应的膜功能。
29.权利要求26所述方法,其特征在于还包括在所述基质中插入两种不同的膜蛋白。
30.权利要求29所述方法,其特征在于还包括将所述基质曝露于光,以产生穿过所述基质的电能。
全文摘要
将生物膜蛋白掺入共聚物基体中,以产生具有另种功能的膜。在本发明的一种实施方式中,复合膜掺入两种不同的蛋白质,它们协作从光产生电。在另一实施方式中,水转运蛋白包埋在膜中,可以使水净化。
文档编号B01D61/00GK1703268SQ03817994
公开日2005年11月30日 申请日期2003年7月28日 优先权日2002年7月29日
发明者C·D·蒙特马格诺, J·J·施米特, S·P·托齐 申请人:Mt技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1