非分离烟气中二氧化碳的直接矿化隔离方法

文档序号:4976070阅读:445来源:国知局
专利名称:非分离烟气中二氧化碳的直接矿化隔离方法
技术领域
本发明属于能源与环境技术领域,具体涉及对燃煤电厂烟气中的二氧 化碳进行直接矿物碳酸化隔离,以减少二氧化碳排放的一种方法。
背景技术
煤炭是我国能源的基石,我国能源供给约70%来自煤炭。煤炭燃烧产 生的大量S02、 NOx、 C02、粉尘等有害物质造成了严重的环境污染;其中, 燃煤电厂排放烟气中的二氧化碳更是大气中二氧化碳的主要来源之一 。
控制二氧化碳排放的措施主要有(一)提高燃料的利用效率;(二) 改善能源结构,开发低碳或无碳能源,提高可再生能源在能源结构中的比 例;(三)将现有设备产生的二氧化碳捕集、吸收并封存起来,尽量减少排 入大气的二氧化碳的量。当前最为现实、直接的对策是捕集、吸收、隔离、 封存现有装置产生的二氧化碳。
目前采用的二氧化碳隔离方案主要有海洋埋存、地质埋存、植物固 碳和矿物储存等。海洋埋存明显受地域限制,地质埋存存在气体泄漏问题, 需长期监测,植物固碳又需要较长的时间才能显示出效果,矿物储存显然 不存在以上问题,且矿物储存可使一部分二氧化碳转移到固体矿物中,能 够实现二氧化碳的永久埋存。有研究者经计算得出co2的能态比碳的低 400kJ/mol,而碳酸盐的能态比C02的还要低60-180 kJ/mol,认为碳原子的最终稳定状态不是存在于C02中,而是存在于碳酸盐中。在众多的二氧化 碳减排技术中,矿物碳酸化储存二氧化碳具有永久储存、能耗低、容量大、 产物可资源化利用等优点显示较好的应用前景。
现有的二氧化碳减排技术大部分是以吸收分离co2,再将收集得到的
纯净C02进行处理为主,如申请号为00108881.5的中国专利文件提出一种
利用硅酸锂作为吸附剂来吸收二氧化碳的方法。在该方法中,硅酸锂用通 式"^//^来表示,其中x, y, z满足x+4y-2z=0要求的整数,通式中锂的
含量x最好是至少为4,但是利用硅酸锂吸收二氧化碳本质上属于二氧化碳 的分离,分离后收集得到的纯净的C02如何处理是一个很大的问题,将收
集得到的纯净的C02加压注入海底或者地底深处是处理方法之一,但是由
于C02的注入对生态环境的影响无法估量,且担心泄露等问题,需要长期 监察维护,这些都无形中增加了二氧化碳减排的成本。而且这些二氧化碳 减排技术还存在吸收剂制备问题,如日本学者的专利中使用的硅酸锂在自 然界中不存在,需要经过特殊而且复杂的工艺来制备,具有较高的制备成 本和周期,且吸收剂吸收C02时还存在吸收效率及循环利用等问题,这些 都大大增加了二氧化碳减排的成本和操作难度。如何在低成本和简单操作 的基础上将二氧化碳根本固定隔离起来,减少C02排放已经成为目前二氧 化碳减排技术急需解决的问题。

发明内容
本发明的目的在于克服现有技术的不足,提供一种非分离烟气中二氧
化碳的直接矿化隔离方法,实现对烟气中C02的永久隔离,操作简单,成本低。
非分离烟气中二氧化碳的直接矿化隔离方法,具体为将韩或镁硅酸 盐矿物粉末置于填充有水的反应器,向反应器内充入烟气,保持反应器中
的压力为1.0 6.0MPa,温度为80'C 20(TC,烟气中的(302与硅酸盐矿物 在水溶液中反应得到碳酸盐。
作为改进,将钙或镁硅酸盐矿物粉末活化处理或者加工成型制成多孔 蜂窝状材料后再置于反应器中。
活化处理方式为对钙或镁硅酸盐矿物粉末作热处理,热处理温度 300 650°C,热处理时间1 3小时。
另一种活化处理方式为将钙或镁硅酸盐矿物粉末放入质量百分比为 2 10%的酸溶液2 6小时,取出,清洗,烘干。
本发明的技术效果体现在
1. 本发明中直接对电厂烟气中的C02进行矿物碳酸化固定,无须对 C02进行分离提纯,大大降低了固碳成本。同时,可以利用电厂余热和现有 设备实现矿化反应条件,减少了固碳所需的额外能量供应。
2. 本发明中的固碳原料天然钙、镁硅酸盐矿物在自然界中储量丰富, 成本低廉。同时,矿物碳酸化产物为稳定的碳酸盐,无环境污染而且能够 永久的封存二氧化碳,无须后续成本投入。
3. 本发明所采用的设备简单,操作容易,对电厂适应性强,改造实现 容易,投资成本低,且固碳产物可以回收利用,在不影响电厂正常运行的情况下可实现co2的大规模减排,具有很大的商业化应用潜力。


图1为实现本发明的装置结构示意图。
具体实施例方式
实例1 将钙的质量百分比含量为26%的硅灰石10克破碎研磨至 200目的粉末,然后与40ml蒸馏水混合均匀成浆后置于矿物碳酸化反应器 内,充入高压模拟烟气,模拟烟气的主要成分为82%N2、3%02、 15%C02、 少量的S02和氮氧化物N0。反应温度为8(TC,反应压力为l.OMPa;保持 温度和压力不变反应60分钟后,停止加热。待系统冷却后,收集反应后气 体及反应器内的固体产物。利用气相色谱仪对反应后气体成分及含量进行 测试,得到反应后<:02含量为4.5%。固体产物于105'C温度下烘干,烘干 后的固体产物送入马弗炉煅烧,煅烧温度为S0(TC。对比煅烧前后固体产物
质量变化,经计算得到矿物碳酸化反应转化率
40x(M,-M2)xl00%=193%。 44x0.26xM2
实例2 将镁的质量百分比含量为20%的蛇纹石矿样10克破碎研磨 至200目的粉末,并将矿样于65(TC恒温焙烧2小时,再将焙烧后的矿样和 蒸馏水40ml混合均匀成浆后置于矿物碳酸化反应器内,充入高压模拟烟气, 反应温度为120°C,反应压力为2.1MPa;保持温度和压力不变反应60分钟 后,停止加热。待系统冷却后,收集反应后气体及反应器内的固体产物。 利用气相色谱仪对反应后气体成分及含量进行测试,得到反应后co2含量为4.3%。固体产物于105"C温度下烘干,烘干后的固体产物送入马弗炉煅 烧,煅烧温度为700。C。对比煅烧前后固体产物质量变化,经计算得到矿物
碳酸化反应转化率7 = 21, —,2) x 100% =22.8% 。
实例3 将镁的质量百分比含量为20%的蛇纹石矿样10克破碎研磨 至200目的粉末,并将矿样于10%左右稀盐酸2小时处理,处理后的矿样 清洗烘干,与蒸馏水40ml混合均匀成浆后置于矿物碳酸化反应器内,充入 高压模拟烟气,反应温度为200°C,反应压力为6.0MPa;保持温度和压力 不变反应60分钟后,停止加热。待系统冷却后,收集反应后气体及反应器 内的固体产物。利用气相色谱仪对反应后气体成分及含量进行测试,得到 反应后C02含量为3.5%。固体产物于105"C温度下烘干,烘干后的固体产 物送入马弗炉煅烧,煅烧温度为700'C。对比煅烧前后固体产物质量变化,
经计算得到矿物碳酸化反应转化率/7 = ^^^><訓%=28.9%。
44 x 0.2 x M2
实例4 将钙的质量百分比含量为26%的硅灰石矿样10克破碎研磨 至200目的粉末,并将矿样加工制成多孔蜂窝状材料置于矿物碳酸化反应 器内,充入高压模拟烟气,反应温度为15(TC,反应压力为4.0MPa;保持 温度和压力不变反应60分钟后,停止加热。待系统冷却后,收集反应后气 体及反应器内的固体产物。利用气相色谱仪对反应后气体成分及含量进行 测试,得到反应后(^02含量为4.0%。固体产物于105'C温度下烘干,烘干 后的固体产物粉碎后送入马弗炉煅烧,煅烧温度为800°C。对比煅烧前后固
体产物质量变化,经计算得到矿物碳酸化反应转化率
24x(M,-M2)xl00%=25 2%。 44x0.2xM,本发明利用钙、镁硅酸盐矿物与烟气中的co2的碳酸化反应进行矿物
碳酸化固定,其反应方程通式如下
同时,烟气中少量的S02和NO适度增加溶液中的酸度,促进f5、镁 硅酸盐矿石在水中的溶解,提高矿物碳酸化固碳效率。电厂烟气的粉尘中 还含有少量的钙、镁氧化物,有利于对烟气中的C02进行固定。
将本发明应用于实际电场中,可采用如图1所示的的装置,由风机、 水泵及二氧化碳矿化反应器等组成。经过静电除尘器除尘后的电厂烟气由 风机引入二氧化碳矿化反应器中,在水溶液条件下与成型的钙、镁硅酸盐 矿物材料进行反应,烟气压力由风机和汽轮机蒸汽压力维持在1.0 6.0MPa。反应器中的水由电厂中的烟气余热或者汽轮机抽气加热至8(TC 200°C,用水泵泵入反应器中,同时利用水泵供水时产生的水流波动使反应 器中的物料处于均匀分布状态。电厂烟气由风机引入反应器中,在80°C 20(TC左右的水溶液中与钙、镁硅酸盐进行反应,同时烟气中少量的S02和 NO可以调节溶液的酸性,促进碳酸化反应的进行,而静电除尘未除尽的少 量粉尘中的钙、镁氧化物也可以额外隔离固定少量的co2,从而实现对电
厂烟气中C02的矿物隔离,减少电厂向大气中的C02排放。8
权利要求
1、非分离烟气中二氧化碳的直接矿化隔离方法,具体为将钙或镁硅酸盐矿物粉末置于填充有水的反应器,向反应器内充入烟气,保持反应器中的压力为1.0~6.0MPa,温度为80℃~200℃,烟气中的CO2与硅酸盐矿物在水溶液中反应得到碳酸盐。
2、 根据权利要求1所述的非分离烟气中二氧化碳的直接矿化隔离方 法,其特征在于,将钙或镁硅酸盐矿物粉末作活化处理或者加工成型制成 多孔蜂窝状材料后再置于反应器中。
3、 根据权利要求2所述的非分离烟气中的二氧化碳直接矿化隔离方 法,其特征在于,活化处理方式为对钙或镁硅酸盐矿物粉末作热处理, 热处理温度300 650。C,热处理时间1 3小时。
4、 根据权利要求2所述的非分离烟气中二氧化碳的直接矿化隔离方 法,其特征在于,活化处理方式为将钙或镁硅酸盐矿物粉末放入质量百 分比为2 10%的酸溶液2 6小时,取出,清洗,烘干。
全文摘要
本发明公开了一种非分离烟气中二氧化碳的直接矿化隔离方法,具体为将钙或镁硅酸盐矿物粉末置于填充有水的反应器中,向反应器内通入烟气,保持反应器中的压力为1.0~6.0MPa,温度为80℃~200℃,烟气中的CO<sub>2</sub>与硅酸盐矿物在水溶液中反应得到碳酸盐。本发明无需对CO<sub>2</sub>分离提纯,采用直接对电厂烟气中的CO<sub>2</sub>进行矿物碳酸化固定的方式实现CO<sub>2</sub>的永久隔离。
文档编号B01D53/62GK101596397SQ20091006307
公开日2009年12月9日 申请日期2009年7月7日 优先权日2009年7月7日
发明者张军营, 恒 晏, 汪文哲, 冲 田, 赵永椿, 郑楚光 申请人:华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1