有助于井下操作的系统和方法

文档序号:5405192阅读:105来源:国知局
专利名称:有助于井下操作的系统和方法
有助于井下操作的系统和方法 相关申请的交叉引用
本申请是2006年12月4日提交的美国申请No. 11/566,459的部
分继续申请。
才支术领域在各种完井操作中,包括筛管的井底组件被维护工具输送 并且被置于含经层上方。当放置好井底组件时,执行大量井操作,例 如将砾石充填置于地层和筛管之间的环状空间内。成功地完成这些操 作经常需要使得维护工具相对于井底组件多次运动以实现各种流动 路径。
背景技术
为了成功地执行维护工作,需要详细地理解维护工具/维护 柱与井底组件之间的井下相互作用。通过维护柱的运动来致动特定的 井下维护工具,其中维护柱的运动需要操作者具有关于井下维护工具 的基本知识并且能够想象维护工具的操作和状态。通常,操作者在地 表处给维护柱做记号从而跟踪维护工具和井下井底组件的相对位置。 当维护工具运动时,假定每个标记位置指示出了维护工具相对于井下 井底组件的具体位置。然而,这种方法依赖于操作者的大量知识和经 验并且由于例如维护柱的伸展和收缩而容易不准确。此外,在难以循 迹的高度偏斜的井筒内,由于柱的皱缩、压缩等等,在地表和井下部 位之间损失了很多的柱运动。在实现砾石充填的系统中,维护工具也 可以易于相对井下井底組件是胶粘的。

发明内容
大体而言,本发明提供有助于在井下部位使用维护工具的 技术。这个方法利用了基本不动的维护工具,当保持固定时,在维护 工具内的流动路径可以从一个操作模式到另一个操作模式被重新定 位从而在井下部位扭J于各种维护程序。


下文将参考附图描述本发明的某些实施例,其中同样的附 图标记指代同样的元件,并且图1是根据本发明一个实施例、在井筒中展开的维护柱的 一个实施例的示意图;图2是根据本发明一个实施例、维护工具的不同操作模式 下的阀位置的示意图;图3是根据本发明的一个实施例、在维护工具中使用的阀 系统的一个实施例的示意图;图4是根据本发明的一个实施例、带有用于控制位于维护 工具内的阀的控制系统的维护工具的示意图;图5是根据本发明的一个实施例、与可以被用于维护工具 的阀相结合的稳态控制系统的 一 个实施例的示意图;图6是根据本发明的一个实施例、达到压力阈值以上以致 动图5中所示阀的稳态压力的图解;图7是根椐本发明的一个实施例、与图5所示阀一同使用 的致动器的一个实施例的示意性横截面图;图8是根据本发明的一个实施例、图7中所示致动器在一 个不同操作构造下的示意性横截面图;图9是根据本发明的一个实施例、维护工具的一个实施例
的横截面图;图10是示范了根据本发明的一个实施例、当维护工具处
于图9所示操作模式下时通过维护工具的流体流动的示意图;图11是根据本发明的一个实施例、图9所示维护工具在 一个不同操作模式下的横截面图;图12是示范了根椐本发明的一个实施例、当维护工具处 于图11所示操作模式下时通过维护工具的流体流动的示意图;图13是根据本发明的一个实施例、图9所示维护工具在
一个不同操作模式下的横截面图;图14是示范了根据本发明的一个实施例、当维护工具处 于图13所示操作模式下时通过维护工具的流体流动的示意图;图15是根据本发明的一个实施例、图9所示维护工具在一个不同操作模式下的横截面图;图16是示范了根据本发明的一个实施例、当维护工具处 于图15所示操作模式下时通过维护工具的流体流动的示意图;图17是根据本发明的一个实施例、大体与维护工具的轴 线交叉地截取以便示出沿维护工具的流体流动通路的横截面图;图18根据本发明的另一个实施例、大体与维护工具的轴 线交叉地截取以便示出沿维护工具的流体流动通路的横截面图;以及图19是根据本发明的一个实施例、可被用于致动维护柱 内的部件的触发装置的一个实施例的示意图。
具体实施例方式在下述说明中,阐明了大量细节从而提供对于本发明的理 解。然而,本领域的普通技术人员可以认识到可以在脱离这些细节的 情况下实现本发明并且对于所述实施例的大量变型或改型是可能的。本发明涉及有助于维护柱在井下环境内操作的系统和方 法。维护柱包括可以井下运动从而进入井筒中到达所需地层部位的维 护工具。该维护工具与诸如井底组件的其它井下器械结合使用。该维 护工具可以在多种操作模式下运动,而不需使维护工具相对于井底组 件物理地滑动,即维护工具在井底组件内不会因维护柱的运动而产生 线性运动。大体参见图1,井系统30的一个实施例被图示为安装于井 筒32内。在这个实施例中,井系统30包括具有维护工具36的维护 柱34。维护工具36可以在井下运动进入井筒32从而与诸如井底组件 的井下器械38相互作用。在许多应用中,维护柱和井底组件在地表 被连接在一起并且作为单一单元向井下运送。在到达所需深度并且经 过初步操作之后,维护柱脱离井底组件。取决于使用维护柱34的井应用的类型和/或井环境,井筒 32可以是竖直的或者偏斜的。大体而言,将井筒32钻到含有例如石 油的理想生产流体的地质层40内。在至少一些应用中,井筒32嵌套 在井筒壳体42内。多个穿孔44形成通过井筒壳体42从而使得流体 能够在周围地层40和井筒32之间流动。或者,井筒可以是非嵌套的。 在这种情况中,在棵井段开始之前,井底组件的顶端位于壳体的下端内。在所示实施例中,井底组件38包括底部孔组件46。在一 些应用中,底部孔组件46延伸成与在先前井下起钻时安装的下封隔 器48相配合。在另一些应用中,例如棵眼井应用中,下封隔器48是 不必要的。底部孔组件46具有插座结构50,维护柱34的维护工具 36被插入到该插座50中以便执行各种程序。在底部孔组件46的一个 示例中,插座结构50包括流通外壳,该外壳具有一个或多个端口 51, 砾石经由维护工具放置通过所述端口 51。在这个实施例中,流通外壳 也可以包括闭合套管(未示出),在完成砾石沉积的过程之后该闭合 套管闭合。底部孔组件46也包括位于插座结构50和井筒32的壁之 间的砾石充填(GP)封隔器52。流通外壳和砾石充填封隔器52有效 地提供了与维护柱34配合工作的插座。作为示例,配合特征可以包 括在封隔器52的顶部用于接收维护工具的机械附件,并且抛光筒可 以位于流通端口 51的上方和下方从而确保砾石沉积仅被导引通过端 口 51。底部孔组件46还包括可以由一个或多个单个筛管形成的筛管 组件54。在一些应用中,维护柱34、维护工具36和底部孔组件46 配合使用从而执行砾石充填操作,其中砾石充填层56被置于井筒32 内大体围绕筛管54的区域内。维护工具36和井底组件38可以;故用于在例如砾石充填梯: 作的给定操作期间执行各种程序。此外,井系统30可以被夹在许多 程序之间而不需要移动维护柱34。换言之,维护柱34和维护工具36 相对于底部孔组件46 "保持不动,,而不是被连续地"上拉,,或"放松" 而《1起从一个程序到另 一个程序的变化。如图2示意性示出,维护工具36和底部孔组件46依赖阀 系统5 8来实现所需操作模式而不使维护工具3 6在GP封隔器5 2的内 部运动,即提升或下沉。作为示例,在砾石充填操作期间,阀系统58 可以被用于操作模式A-G中的任意操作模式。阀系统操作模式控制各 个井筒区域之间的流体流动,所述井筒区域例如是GP封隔器52上方 的管(T1 )、GP封隔器52下方的管(T2)、GP封隔器52上方的环(Al ) 和GP封隔器52下方的环(A2)。(同样参考图1 )。例如,当维护柱34在井内行进从而执行砾石充填操作期 间,阀系统58被置于构造A,这在井下运动期间能够实现流体从Tl 9到T2以及从A2到Al的开放流动。 一旦到达所需井筒位置,则通过 将阀系统58致动到构造B而实现对于封隔器52的设定,其中在所述 构造B时阻断Tl和T2之间的流体流动。当设定了封隔器52之后, 通过将阀系统58致动到构造C来执行环测试,其中在所述构造C时 阻断Al和A2之间的流动。通过将阀系统58致动到构造D从而实现 在砾石充填之前用于定位流体的操作模式,其中在所述构造D时流体 可以在Tl处顺维护柱向下流动并且在Al处经由环返回。在这个示例中,通过将阀系统58致动到构造E来发起实 际砾、石充填,其中在所述构造E时砾、石浆/人Tl流动到A2从而沿筛 管54的外部形成砾石充填层56。然后栽体流体流动到T2并且被导引 出维护工具36到达Al处的环从而返回地表。随后,阀系统58可以 被置于如构造F所示的逆向构造。在这个构造中,流体可以通过Al 向下流动并且在Tl处经由维护柱管返回。当从井筒32移除维护工具 36时,阀系统58也可以被调整成有助于断开或移除滤饼的断开构造 G。通过省去了物理地移动维护柱34以便调整阀构造的需要,从而避 免了滤饼的过早破坏。可以在许多操作构造之间致动阀系统58而不会有维护柱 34相对于封隔器52的运动。在操作构造之间的其他变化仅需要简单 的"上拉,,输入或"放松(slack off)"输入从而导致在GP封隔器52 之上的微小运动而不是使得维护工具36在插座结构50内运动。在维 护柱不运动或维护柱的运动被最小化的情况下从一个阀系统构造容 易转变到另一个阀系统构造的能力,可以相对于井系统的操作提供更 大的功能度。例如,可以重复或颠倒从构造B到构造D的相继阀构造 转变。此外,流通构造E和逆向构造F是易于可逆的并且可以重复。 因此,阀系统58提供显著的功能性从而实现所需井操作,例如砾石 充填操作,且不会造成粘附问题且不需常规系统的操作手段。大体参见图3,示出了阀系统58的一个实施例的示意性视 图。在这个实施例中,阀系统58包括,例如,套管阀60、下管阀62、 上管阀64以及套管阀66。下管阀62和上管阀64可以被设计成球阀, 不过也可以使用其他类型的阀。此外,阀62、 64和66可以被设置成 多个阀且通过阀控制系统68来控制每个单独的阀,所述阀控制系统 68能够在特定操作构造之间单独地致动阀62、 64和66而不使维护柱34相对于封隔器52运动。控制信号可以经由如下信号被传送到阀控制系统68,所述 信号例如是压力信号、环上的压力信号、负栽(例如张力)信号、流 速信号、井下传送的其他无线通信信号以及电磁信号。在一个实施例 中,阀控制系统68经由围绕维护柱34的环来接收被传送的压力信号, 并且响应于该压力信号适当地致动各个阀62、64和/或66中的一个或 多个。在这个示例中,环状阀60被用于控制环和维护柱之间的流动 并且利用柱重量在打开和闭合位置之间被致动。例如,维护柱34可 以针对具体指令序列被上拉(即被置于张紧状态),并且针对流通操 作放松柱重量(即被置于卸下负栽状态)。或者,阀可以被设计成当 维护柱被置于张紧状态时打开并且允许流通操作,并且当放松重量时 针对指令序列而关闭。阀60、 62、 64和66可以被单独致动从而实现 例如如图2所示的阀构造A-G中的任意构造。阀控制系统68也可以 包括能够将信号输出到地表以便确认各个阀的位置的上行遥测系统 70,其中所述信号例如是电信号、光信号、无线信号等。虽然可以使用其他类型的阀控制系统68,不过一个示例使 用可从Schlumberger Corporation获得的智能远程执行系统(IRIS )控 制技术。基于IRIS的控制系统68能够识别例如压力特征、流速特征 或张力特征形式的特征。如图4所示,基于IRIS的控制系统68的一 个实施例包括具有压力传感器74的控制模块72,该压力传感器74被 定位成感测低压、压力脉沖特征,例如图4所示的压力脉沖特征76。 压力传感器74被联接于具有微处理器的控制电子设备78,该微处理 器解码压力脉冲特征。该微处理器比较给定压力脉冲特征与工具库中 的指令。如果发现匹配,则控制电子设备78将适当信号输出到致动 器80,致动器80打开和/或关闭适当的阀。在这个实施例中,致动器 80包括流体静力腔和大气压腔,这两个腔能够通过在可用IRIS控制 系统内的流体静力和大气压之间改变操作压力来液压控制每个阀,例 如阀60、 62或64。经由电池82向控制电子设备78和致动器80提供 动力。也可以使用其他方法和机构来控制阀系统58中的一个或 多个阀。例如,下阀62可以被设计成对于穿过近端筒内的阻碍物的 球产生响应。该阻碍物可以是当球穿过时弯曲的套爪装置。控制器感 测弯曲并且导致下阀致动。穿过弯曲套爪的球可以是可溶解的从而在 其实现最初功能后不会造成阻塞。在这个实施例中,当球被溶解时再 次实现流动。下阀62也可以被设计成对预定流体流动产生响应的球 阀。例如,通过文氏管的流体流动可以被用于产生压降,该压降可以 直接被使用或与适当电子致动器结合使用从而将阀62致动到例如关 闭位置的所需位置处。流动致动的控制方法也可以被用作控制系统的 备用,该控制系统例如是参考图4所述的控制系统。在另一个实施例 中,阀62是由控制装置84控制的球阀,该控制装置84例如是图5 示意性示出的装置。控制装置84被设计成响应于例如稳态感测、流 动特征以及/或者使近端筒内的阻碍物弯曲的可溶解球以及其他输入。 如图6所示,控制装置84的一个示例被设计成响应于井筒内感测到 的稳态条件。控制下阀62的另一种方法是使得该阅响应于预定流动 特征。在后一实施例中,响应于对稳态条件的感测来执行对下球 阀62或其他井下装置的第一致动。通过例如压力和/或温度幅度不变 来探测到稳态条件。例如,控制装置84可以被设计成当压力P在时 间tn满足稳态条件时致动。满足稳态条件需要P(tn)-P(tn_0~0; P(tn-i)-P(V2)~0;等,其中t-预定的时间样本数。相同方法可以被用于 确定致动阀62所必须的稳态温度条件。如图6图示地示出,当^皮测参数(例如压力和/或温度) 在预定时间阶段104内到达稳态水平102并且在预定阈值106之上时 致动下球阀62或其他适当部件。如果目标参数超出程序设定阈值, 则用于确定适当稳态条件的过程开始。之后,以给定频率采样每个参数从而在预定时间阶段内获得n个样本。如果根据系统逻辑每个连续时间间隔的被测参数水平是可接受的小的,则满足稳态条件并且致动致动器96从而改变阀62或其他受控装置的操作位置。然而可以使用其他方法和^L构来实现对阀62的初始致动,例如上述可溶解球和其1也方法。再次参考图5,控制装置84的另一个实施例被设计成接收环上的压力特征、解码该压力特征并且将其与指令库做比较。如果发现匹配,则控制装置84致动螺线管,该螺线管允许流体静力压力致动正确的阀。在所示示例中,控制装置84包括接收压力和/或温度信号的转换器86。该转换器86将信号输出到处理信号的控制器板88。作为示例,控制器板88包括将信号数字化以供微处理器92使用的数字转换器90,其中微处理器92利用解码逻辑94来确定何时已感测到适当信号。当感测到预定信号时,控制器板88将适当控制信号输出到致动器96,经由流体静力压力源98供应的流体静力压力来为致动器96提供动力。致动器96将下阀62例如致动到关闭位置。控制器板88由电池100提供动力。应该理解的是,控制装置84可以被用于致动井系统30内或其他类型的井下器械内的各种其他装置。作为示例,致动器96可以包括与流体静力压力源98联接的机电装置108,如图7所示。机电装置108包括活塞110,该活塞110被选择性地移位成允许流体从流体静力压力源98流动到腔112内,其中初始时该腔112处于大气压力。可以通过各种机构移动活塞110,例如通过由电池100提供动力的螺线管或马达。如图8所示,施加到腔112内的流体静力压力使得能够做有用功,例如动力活塞114的平移。活塞114的平移被用于例如在下球阀62内旋转球或者实现井下部件内的其他所需致动。大体参考图9,更具体地示出了被插入到底部孔组件46内的维护工具36的一个具体实施例。在这个实施例中,环状阀60是可以在打开流动位置和关闭位置之间运动的滑阀。环状阀60包括当阀60处于打开位置时能够使流体在维护工具36的内环和围绕维护工具的井筒区域120 (例如环)之间流动的至少一个端口 116。因此,环状阀60能够使得流体在GP封隔器52之上T1和A1之间流动(当阀62和66关闭且阀64打开时)。作为参考,图9示出了处于闭合位
13
在图9所示实施例中,如前文所述,控制模块72响应于井下传输的压力特征来控制阀62、 64和66,其中该控制模块72可以是基于IRIS的控制模块。可以基于通过例如围绕维护柱34的环、在井下传输的特有压力信号来分别控制每个阀62、 64和66。压力信号经由端口 122被导向控制模块72,其中该端口 122被连接到导管或连通管124,该导管或连通管124延伸到控制模块72的传感器74 (也参见图4)。在这个实施例中,下阀62和上阀64均包括可在沿管内部118的打开流动位置与关闭位置之间运动的球阀。然而,这些阀中的一者或两者可以被设计成运动到选定的部分关闭位置,从而能够使用这些阀来控制沿管内部118的流体流速。端口主体阀66可以包括借助于控制模块72在打开流动位置和关闭位置之间选择性运动的滑阀。在打开位置,阀66与流动端口 126配合从而使得流体能够在维护工具36的管内部118和围绕底部孔组件及维护工具的井筒区域128(例如环)之间流动。作为参考,图9示出了处于关闭位置的端口主体阀66以及处于打开位置的球阀62、 64。图9所示的维护工具36和底部孔组件46可以被用于执行
在砾石i填操作的二个实施例中,维^柱、4在孔内行进到所需井筒部位。当维护柱34在孔内行进时,各种阀被置于如图9所示的位置。换言之,环状阀60关闭,端口主体阀66关闭,上阀64打开,并且下阀62打开。如图10进一步示意性所示,这允许流体沿管内部118如箭头129所示自由流动。换言之,在行进到井筒32内期间,冲洗路径保持打开。当维护工具36和底部孔组件46被合适地定位在井筒32内时,下球阀62被致动到关闭位置,如图11所示。可以通过各种方法来实现初始致动,所述方法包括使用诸如控制装置84的专用控制装置,或者使用其他致动技术。(在一个示例中,当相对于井筒内的压力和/或温度达到稳态条件时,下阀62可以运动到关闭位置从而将压力应用于管内部118内以便于压力操作。)在图11所示的关闭位置时,可以沿管内部118并且通过环状通道130施加压力从而设定GP封隔器52。如图12的箭头132所示来引导压力,然后压力被引导到环状通道130内。或者,压力特征可以沿箭头132所示路径传送到用于设定封隔器52的适当触发装置134。在一个实施例中,触发装置134是基于IRIS的触发系统,该触发系统被设计成类似于关于控制模块72所描述的系统,从而触发装置可以探测并处理特有压力特征。然后触发装置控制液压致动器,液压致动器膨胀并且设定封隔器52。随后,井筒环被加压以测试由GP封隔器52形成的密封。然后在拉动和放松重量之间操纵维护柱34从而有效地推动和拉动封隔器52,以测试封隔器的承重能力。如果合适地设定封隔器52,则维护工具36的松紧接头部分136被释放从而通过松紧接头部分136在底部孔组件46内相对于维护工具36的固定部分的运动而使得环状阀60打开和关闭。可以经由各种释放机构来释放松紧接头部分136。例如,诸如触发装置134的触发装置可以被用于移动擒纵器138,从而释放松紧接头部分136以便阀60在打开和关闭位置之间运动。其他释放机构,例如响应于环压力而与机械锁定件和其他剪切机构脱离的剪切销,也可以被用于在砾石充填操作的初始阶段期间临时将松紧接头部分136锁定于维护工具36的剩余部分。 —旦松紧接头部分136被释放,则维护柱34的重量被放松从而使环状阀60运动到打开位置,如图13所示。这个位置允许操作者定位流体使其通过打开的环状阀60进入周围环内。这个位置也称为能够使流体逆向流动(如图14所示的箭头140所示)的逆向位置或逆向流动4立置。之后,维护柱34被上拉以便关闭环状阀60。当环状阀60处于关闭位置时,压力特征被井下传送并且传递给控制模块72。响应于压力特征,控制模块72致动三通阀并且使下阀62运动到打开位置、使上阀64运动到关闭位置并且使端口主体阀66运动到打开位置。之后释放维护柱34上的张力从而再次打开环状阀60,如图15所示。在这个构造中,砾、石充填浆沿管内部118 ^皮泵压向下并且通过端口 126泵出到环中。之后砾石围绕筛管54沉积,并且载体流体通过沖洗管从底部孔组件46的下端向上行进。栽体流体通过下阀62围绕上阀64经由端口 130向上流动并且通过环状阀60的端口 116流出并进入环内。在图16中由箭头142示意性示出了砾石充填操作的流动路径。在这个实施例中,砾石浆向下运动到下环128内,并且干净的回流沿控制模块的内侧向上运动。随着砾石充填层56绕筛管54的形成(参见图1),维护柱34会稍微上提从而移动浮动顶部部分136并且再次关闭环状阀60。之后适当的压力特征被井下传送到控制模块72。基于这个压力特征,控制模块72关闭下阀62、打开上阀64并且关闭端口主体阀66。之后放松维护柱34上的拉力从而再次打开环状阀60,这将使得维护工具36被置于图13所示的逆向流通构造中。在这个逆向流通构造中,流体可以顺环向下流动并且未使用的砾石充填浆可以通过管内部U8被上推到地表。当完成逆向流通时,维护柱34再次稍微上提从而移动浮动顶部部分136并且关闭环状阀60。之后,适当压力特征被井下传送到控制模块72,控制模块72打开下阔62。此时,维护工具36也脱离GP封隔器52和底部孔组件46从而将维护工具置于"断开"位置。在这个位置,维护工具被构造成具有通孔的管子,从而流体可以径直向下流通从而移除沿井筒聚积的滤饼。可以经由各种释放机构使得维护工具36从封隔器52释放。在一个实施例中,例如触发装置134的触发装置被用于致动释放装置,释放装置使得维护工具36脱离封隔器52和底部孔组件46。例如套爪、液压致动闩机构、机械致动闩机构或其他闩机构的其他释放机构也可以被用于使得维护工具能够接合底部孔组件以及脱离底部孔组件。可以通过沿维护工具36的主体144产生流动路径来实现某些端口 (例如端口 130和端口 116)之间的流体流动。作为示例,可以通过产生多个旁路钻孔148来形成流动路径146,其中所述旁路钻孔148大体纵向延伸通过主体144,如图17的横截面图所示。也可以产生替代类型的流动路径。例如,可以通过将中心阀主体150放置在周围护罩或外壳152内来形成主体144,如图18所示。因此可以在中心阀主体150和周围护罩152的中间产生流动路径146。如上所述, 一个或多个触发装置134可以包括基于IRIS的控制系统,例如可从Schlumberger Corporation获得的控制系统。一个或多个触发装置134可以被用于例如实现单次致动,例如释放浮动顶部部分136、使维护工具36从封隔器52释放以及/或者设定GP封隔器52。单独装置可以被用于每个具体动作,或.者单个触发装置134可以被设计成具有多个致动器154,如图19所示。如关于控制模块72的描述,当触发装置电子设备156发出适当输出时,每个触发装置134控制一个或多个致动器154的致动。装置电子设备156包括处理器158,该处理器158被编程以便识别具体特征,例如由压力传感器160接收到的压力特征。触发装置134也可以包括内部电池162以便为装置电子设备156和致动器154提供动力。如以上参考控制模块72和稳态致动装置84的描述,致动器154可以被设计成利用来自环境或特定液压源的液压来执行所需工作。在一些应用中,理想地是,确认维护工具36的操作构造。跟踪管内和/或环内的压力改变可以确认操作构造的具体改变。例如,通过跟踪管内部118内的压力改变可以确认将阀构造从如图13所示的逆向构造改变成如图15所示的流通构造。类似地,也可以确认阀构造从流通构造到逆向构造的转变。在第一示例中,通过维持管内部118内的压力来确认从逆向构造到流通构造的转变。当下阀62打开时,观察到压力损失。在此阶段,沿管内部118维持小流速。当上阀64关闭时,观察到管内部118内的压力完善性,并且维持管内部118内的压力。当端口主体阀66打开时,再次观察到压力损失。压力损失和压力完善性的具体序列使得能够确认阀位置已经从逆向构造转变成流通构造。端口 116关闭以便有助于这个观察。在另一个示例中,通过提供通过环的小流动来确认从流通构造到逆向构造的转变。当下阀62关闭时,观察到环内的压力完善性。在此阶段,维持环上的压力。当上阀64打开时,观察到沿管内部118的回流,并且维持沿环的小流动。当端口主体阀关闭时,通过跨接端口 126没有附加损失产生。通过跟踪事件的具体序列,可以确认从流通构造到逆向构造的适当转变。此外,所述流动从端口主体阀66上清除了砾石,从而增加了端口主体阀的操作可靠性。可以取决于使用系统的实际井应用来改变用于井系统30的具体部件。类似地,对于不同维护应用而言,用于形成维护柱34和井底组件38的具体部件可以是不同的。例如,可以选择不同类型和构造的阀致动器,同时仍然能够从 一 种阀构造转变到另 一 阀构造而不需使维护工具36在井底组件38的插座内运动。
因此,虽然在上面仅详细描述了本发明的几个实施例,但是本领域的技术人员将显而易见到,在不实质性脱离本发明教导的情况下可以具有多种变型。这些变型意于被包含在权利要求所限定的本发明的范围内。
权利要求
1.一种在井筒内执行操作的方法,包括在井筒内所需部位处放置与井底组件联接的维护工具;以及在所述维护工具在所述井底组件内不相对运动的情况下,在第一流动构造和第二流动构造之间调节所述维护工具内的多个阀。
2. 根据权利要求1所述的方法,还包括当感测到所述井筒内的 稳态条件时致动所述多个阀中的至少 一 个阀。
3. 根据权利要求1所述的方法,其中调节包括经由响应于井下 传输的特有控制特征的控制模块来调节至少三个阀。
4. 根据权利要求1所述的方法,其中调节包括经由响应于井下 传输的无线信号的控制模块来调节至少三个阀。
5. 根据权利要求1所述的方法,其中调节包括经由响应于井下 传输的压力特征的控制模块来调节至少三个阀。
6. 根据权利要求1所述的方法,其中调节包括经由响应于环上压力信号的控制模块来调节至少三个阀。
7. 根据权利要求1所述的方法,其中调节包括经由响应于工作 柱上的负栽特征的控制模块来调节至少三个阀,其中所述工作柱联接 于所述维护工具。
8. 根据权利要求1所述的方法,其中调节包括经由响应于井下 传输的电磁特征的控制模块来调节至少三个阀。
9. 根据权利要求1所述的方法,还包括当调节所述多个阀时确 认所述流动构造的转变。
10. 根据权利要求1所述的方法,其中调节包括在预定砾石充填 构造之间致动所述多个阀。
11. 根据权利要求6所迷的方法,其中致动包括在砾石充填操作 期间在所迷第一流动构造和所述第二流动构造之间致动所述多个阀, 其中所述第 一流动构造包括砾石流通构造,所述第二流动构造包括逆 向构造。
12. —种形成砾石充填层的方法,包括 使维护工具联接于具有GP封隔器和筛管的底部孔组件; 经由被置于所述维护工具的主体内的多个阀将流体流动引导通过所述维护工具;以及调节所述多个阀的构造从而实现第一流动构造和第二流动构造 且不需所述维护工具相对于所述底部孔组件运动。
13. 根据权利要求12所述的方法,还包括与所述多个阀配合地 使用环状阀从而在所述GP封隔器上方的位置处选择性地打开在所述 维护工具的内部和周围环之间的端口 。
14. 根据权利要求12所述的方法,还包括与所述多个阀配合地 使用环状阀从而产生沿所述维护工具的内部的流动路径,该维护工具 具有通向周围环的开口。
15. 根据权利要求12所述的方法,还包括与所述多个阀配合地 使用环状阀从而产生从所述GP封隔器之上的维护柱的内部到所述GP 封隔器之下的环状区域的流动路径。
16. 根据权利要求12所述的方法,还包括与所述多个阀配合地 使用环状阀从而选择性地在多个区域之间产生流动路径,其中所述多 个区域包括所述GP封隔器上方的管区域、所述GP封隔器下方的管区 域、所述G P封隔器上方的环区域以及所述G P封隔器下方的环区域。
17. 根据权利要求12所述的方法,还包括井下输送预定脉沖特 征到控制模块,该控制模块通过调节所述多个阀的构造来响应所述预 定脉冲特征。
18. 根据权利要求12所述的方法,还包括井下输送低压特征到 控制模块,该控制模块通过调节所述多个阀的构造来响应所述低压特 征。
19. 根据权利要求12所述的方法,还包括井下输送负载特征到 控制模块,该控制模块通过调节所述多个阀的构造来响应所述负载特 征。
20. 根据权利要求12所述的方法,还包括井下输送无线特征到 控制模块,该控制模块通过调节所述多个阀的构造来响应所述无线特 征。
21. 根据权利要求12所述的方法,还包括井下输送电磁特征到 控制模块,该控制模块通过调节所述多个阀的构造来响应所述电磁特征。
22. 根据权利要求12所述的方法,其中将所述多个阀调节为所述第 一 流动构造包括将所述多个阀调节成流通构造从而允许砾石充 填层环绕所述筛管沉积。
23. 根据权利要求22所述的方法,其中将多个阀调节为所述第 二流动构造包括将所迷多个阀调节成逆向构造。
24. 根据权利要求23所述的方法,还包括在所述维护工具在所 述底部孔组件内不滑动的情况下将所述多个阀调节为断开构造。
25. 根据权利要求12所述的方法,还包括通过施加井下高压来 将所述多个阀驱动到临时位置。
26. 根据权利要求25所述的方法,其中将所述多个阀驱动到所 述临时位置包括使下阀运动到打开位置、使中阀运动到关闭位置以及 使上阀运动到打开位置。
27. —种系统,包括与井底组件配合使用以便在井筒内执行操作的维护工具,所述维 护工具包括多个阀,在所述维护工具不需线性运动的情况下所述多个 阀能够在所述井底组件内被单独地致动。
28. 根据权利要求27所述的系统,其中所述多个阀包括被所述 维护工具内的控制模块单独地控制的三个阀。
29. 根据权利要求28所述的系统,还包括位于所述井底组件之 上的第四阀,所述第四阀可操作在打开位置和关闭位置之间,所述关 闭位置提供耐压密封井筒环且能够使得压力指令通过该耐压密封井 筒环,所述打开位置能够实现环流体流动。
30. 根据权利要求29所述的系统,其中所述第四阀经由承栽所 述维护工具的维护柱上的张力而运动到所述关闭位置,并且当所述维 护柱上存在卸下负载时所述第四阀运动到所述打开位置。
31. 根据权利要求29所述的系统,其中所述第四阀经由承栽所 述维护工具的维护柱上的卸下负载而运动到所述关闭位置,并且经由所述维护柱上的张力而运动到所述打开位置。
32. 根据权利要求28所述的系统,其中所述控制模块包括感 测井下传输的参数特征的传感器;以及,电子设备,该电子设备用于 处理所述参数特征并且将其与相应于特定阀致动的程序设定特征相 比较。
33. 根据权利要求32所述的系统,其中所述参数特征包括压力 特征。
34. 根据权利要求32所述的系统,其中所述参数特征包括电磁 特征。
35. 根据权利要求32所述的系统,还包括环状阀,该环状阀能 够分别针对基于流动的程序和基于压力的程序而选择性地打开和关 闭。
36. 根据权利要求35所述的系统,其中所述多个阀能够被致动 到多个砾石充填构造,从而能够使得所述维护工具在砾石充填流通构 造和逆向构造之间转变。
37. 根据权利要求27所述的系统,还包括稳态致动装置,当达 到所述井筒内的预定稳态条件时,所述稳态致动装置自动致动所述多 个阀中的至少一个阀。
38. —种用于在井筒内形成砾石充填层的系统,包括 具有插座结构的底部孔组件;以及被接收在所述插座结构内的维护工具,当所述维护工具在所述插 座结构内保持固定时能够在砾石充填模式之间调节所述维护工具。
39. 根据权利要求38所述的系统,其中所述维护工具包括被控 制模块致动的多个阀。
40. 根据权利要求39所述的系统,其中当形成所述砾石充填层 时所述控制模块被置于浆流动和干净的流体回流之间。
41. 根据权利要求38所述的系统,其中所述维护工具包括下管 阀,在所述维护工具进入之后 一旦在所述井筒内探测到预定稳态条件 则自动关闭所述下管阀。
42. 根据权利要求39所述的系统,其中所述维护工具包括在所 述多个阀之上的环状阀,通过松紧接头部分的运动来选择性地打开和 关闭该环状阀。
全文摘要
提供一种有助于在井下部位使用维护工具的技术。该维护工具具有不同操作构造,其中在维护柱不运动的情况下可以选择并使用所述不同操作构造。
文档编号E21B33/12GK101595274SQ200780050728
公开日2009年12月2日 申请日期2007年10月10日 优先权日2006年12月4日
发明者D·R·帕特尔, G·L·吕特列夫斯基, J·K·乔纳斯, J·R·怀特西特 申请人:普拉德研究及开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1