确定空档输入加速和离合器同步性能优先次序的方法和装置的制作方法

文档序号:5801468阅读:118来源:国知局

专利名称::确定空档输入加速和离合器同步性能优先次序的方法和装置的制作方法
技术领域
:本申请属于电动机械变速器的控制系统领域。
背景技术
:本部分的描述仅仅提供涉及本申请的背景信息,并不构成现有技术。现有的传动系的结构包括扭矩产生装置、内燃机和电机,该扭矩产生^S通过传动装置将扭矩传递给输出部件。示例的传动系包括一个双模式、结合分离、电动机械变速器,该变速器用输入部件来接受从最好为内燃机的最终动力源传ilil来的扭矩,和输出部件。输出部件可以可操作地连接到一个机动车辆的动力传动系统来往那里传递牵引扭矩。电机,可实施地作为电动机或者发电机,产生输入变速器的扭矩,与从内燃机输入的扭矩相独立。电机可以将从车辆动力传动系统传递过来的车辆动能转变成可以存储在电能存储装置里面的电能。控制系统监控着来自车辆和操作者的各种输入,为传动系提供操作控制,包括控制变速器操作范围状态和齿轮移动,控制扭矩产生装置,调节电能在电能存储装置和电机之间的相互交换,来控制变速器的输出,包括扭矩和转速。混合动力传动系中的变速器,如上文所述,为了给输出部#$1供扭矩通过传递与操纵扭矩提供了许多功能。为了实现需要的特殊功能,变速器在许多操作范围状态或者定义ilil变速器的扭矩传递的变速器内部配置之间进行选择。己知的变速器使用包括固定齿轮状态或者有定义的传动比的状态在内的操作范围状态。例如,变速器可以利用四个连续安排的固定齿轮状态并允许在四个齿轮状态之间选择,Mil宽范围的输出部件速度提供输出扭矩。附加地或者可选择地,已知的变速器也考虑到连续可变操作范围状态或者模式状态,例如通过行星齿轮装置的使用来实现,其中器的传动比可以在一个范围内变化以调整特定输入带来的输出扭矩和输出速度。另外,变速器可以在空档状态下运转,终止所有从魏劉专递过来的扭矩。另外,变速器可以在相反模式下运转,接受正常前进操作中使用的特别转向的输入扭矩,将输出部件的转向倒转。通过不同操作范围状态的选择,变速器可以为一个给定的输入提供一系列的输出。混合动力传动车辆的上述装置的操作要求管理许多代表上述发动机、电机和动力传动系统之间连接的扭矩承受轴或装置。发动机和电机的输入扭矩可以独立也可以联合应用来提供输出扭矩。然而,例如取决于操作者踏板的位置的改变或者取决于操作范围状态的改变的变速器要求的输出扭矩的变化,必须平滑处理。尤其难于控制的是同时应用到变速器的对一个控制输入有不同反应时间的输入扭矩。在信号控制输入的基础上,各种装置可以在不同的时间改变各自的输入扭矩,以致于增加了通过变速器应用的所有的扭矩的突然变化。应用到变速器上的各种输入扭矩的突然的或者不协调的变化可以导致加速的明显变化或者车辆的颠簸,这会对车辆驾驶性能产生不利的影响。各种控制方案和前边提到的混合动力驱动系统各种元件之间的操作性连接是已知的,控制系统必须育巨够与变速器的各种元件结合或者分离离以执行混合动力传动系统的功能。已经知道在变速器中可以ffliii^择性地应用可操作的离合器来实现结合与分离。离合器是包括管理轴间的转速和扭矩差异的轴的结合与分离领域的熟知的装置。结合或者锁定,分离或者解锁,结合或者锁定操作,分离或者解锁操作都是为了车辆合适顺畅的运转必须管理的离合器状态。在各种设计和控制模式中离合器是已知的。一种已知类型的离合器是通过分离或者结合两个连接表面,例如离合器盘操作的机械式离合器,当结合时,在连接面之间产生摩擦扭矩。一种操作这样的机械式离合器的控制方法包括应用液压控制系统,该液压控制系统利用通过液压管路传递的流体压力在两个连接表面之间施加或者释放夹紧力。这样地操作,离合器不是以二元的方式运转的,而是可以执行一系列的结合状态,从完全分离到同步但是非结合到最小夹紧力结合到最大夹紧力结合。应用到离合器上的夹紧力决定了在离合器滑动之前离合器可以承受多大的反抗扭矩。通过夹紧力调节的离合器可变控制考虑到在锁定和解锁的状态下的转变,迸一步考虑到在锁定传动中控制打滑。另外,通过液压管路可以应用的最大夹紧力也可以随着车辆操作状态改变,可以在控制策略的基础上调整。一些离合器是异步操作的,这样设计是为了适应锁定和解锁状态之间传递中某一水平的滑动。另外一些离合器是同步操作的,这样设计是为了在连接表面夹到一起之前匹配连接表面的速度或同步。本发明主要涉及同步离合器。当离合器的连接表面即将同步或者锁定时,只要应用到离合器上的反抗扭矩超出应用的夹紧力创造的实际上的扭矩容量,在离合器连接表面之间的滑动或者说相对旋转运动就会发生。变速器中的滑动会导致不希望的变速器内的扭矩控制损失,导致由器中的反扭矩的突然改变引起的发动机速度控制和电丰;i3i度控制损失,导致车辆加速度的突然改变,对驾驶性能产生不利的影响。离合器中的滑动用滑动速度测量。滑动速度可以M滑动速度改变率或者滑动加速度追踪。如上文所述,变速器可以在空档操作范围状态下运转,不使用任何离合器,终止m变速器传递的所有扭矩。空档操作范围状态可以在停车转变情况下发生,其中变速器输出轴的速度等于或者接近于零。交替地,空档操作范围状态可以在行驶情况下发生,其中变速器输出轴的速度可以在--个完全的操作范围中存在。空档状态可以是一个稳定的操作状态,或者空档状态可以是两个操作范围状态之间的短暂性的状态。在空档状态下,扭矩产生,产生的扭矩不引起输出扭矩,但是影响变速器中的部件的转速。当传动系保持在空档状态时,如果变速器中的部件的旋转没有对驾驶性能产生即时的影响,部件的转速必须保持在某个范围之内以避免对部件及其相关的元件产生不利的影响。例如,可以定义一个输入速度来描述进入变速器中物理地与发动机连接的部件的速度。控制输入速度对发动机运转有直接的含意。另外,必须控制滑动速度来避免跳出空档操作范围状态的转变过于困难。变速器可以在用单一离合器在多个输入和一个输出之间传递反抗扭矩的情况下运转。变速器可以在用多个离合器在多个输入和一个输出之间传递反抗扭矩的情况下运转。对于操作范围状态的选择依赖于可选的离合器的结合,不同的可允许的i^会导致不同的操作范围状态。空档操作范围状态下的传动系的操作包括对变速器中的输入速度和滑动速度的控制。输入速度和滑动速度都有j腿的最优的速度范围。然而,在空档操作状态下的任何离合器的输入速度和滑动速度的变化都是相关的属性,可以作为竞争的优先权存在。另外,不同离合器的滑动速度在任何时候都是不同的,受控制的离合器可以改变。在空档操作状态下允许同步控制输A3I度和滑动速度的控制传动系的方法是有益的。
发明内容传动系包括机械地可操作地与内燃机和电机连接的适于可选择地给输出部件传递机械动力的电动机械变速器。控制传动系的方法包括在空档操作范围状态下操作变速器,监控影响输入速度的命令,监控受追踪的离合器滑动速度,确定基于上述命令的输入加速度的约束,确定基于输入加速度约束的离合器滑动加速度曲线,确定基于离合器滑动加速度曲线的输入加速度曲线,在离合器滑动加速度曲线和输入加逸度曲线的基础上控制传动系。下翻^M51举例的方式描述一个或者更多的实施例,参考如下附图图1是根据本发明的一个示例的包括一个可操作地与一个发动机和第一和第二电机连接的双模式、结合分离、电动机械混合动力变速器的传动系的示意图2是根据本发明的示例的分类的控制模块系统的方框示意图3根据本发明用图表的形式描述了示例的混合动力传动系元件对扭矩要求变化的反应时间;图4根据本发明显示了示例的混合动力传动系变速器的齿轮传动关系,尤其如图1和表1的示例的实施例中的描述;图5—7根据本发明描述了实现示例的魏器魏的齢的示例程序;图5是根据本发明的ffi31^例的传递解锁状态与离合器连接的扭矩项的图形表示;图6是根据本发明的在示例的过渡的锁定状态与离合器连接的扭矩项的图形表示;图7是根据本发明的描述示例的器的惯性速度阶段的项的图形表示;图8是根据本发明的暂时不考虑控制信号设置的最大最小值给即时控制信号施加一个系统性限制的场合的图形表示;图9根据本发明显示了用示例的2维查询表的表格形式确定惯性速度阶段时间;图10根据本发明图形地显示了示例的舰变速器变速的示例传动系操作,包括对与定义变速成本相关的时间跨度的显示;7图11根据本发明图形地描述了离合器滑动速度和离合器滑动加速度项,包括弓l导和即时控制信号;图12根据本发明图形地显示了对选择输入加速度曲线和离合器滑动加速度曲线有用的输入加速度约束的确定;图13根据本发明图形地描述了离合器滑动速度和离合器滑动加速度相对时间;图14A和14B根据本发明描述了一个信息流,将与离合器相关的信号从离合器一的领:^专移至!腐合器X的领域。;图15根据本发明图形地显示了离合器超宗中的示例的变速;图16根据本发明显示了示例的为控制和管理有着多个扭矩产生装置的传动系统中的扭矩和动力流动的示例的控制系统结构,该结构在于用可执行的算法和校准的形式存在的控制模块;图17A和17B是根据本发明的通过变速执行的示例的数据流的示意图,更细地描述了图16中的控制系统结构的更多细节性的示例的执行;图18A和18B是根据本发明的通过空档状态的示例的流的示意图,描述了管理此处所述的输A3I度和离合器滑动速度的示例方法。具体实施例方式现在参照附图,其中的表示是为了说明某些具体的实施方式而不是作为限制,图1和图2描述了一种示例的电动机械混合动力传动系。图1中描述了与本发明一致的作为示例的电动机械混合动力传动系,其包括一个可操作地与一个发动机14连接在一起的双模式、结合分离、电动机械变速器IO,包括第一和第二电机('MG-A')56禾口('MG-B')72。发动机14与第一和第二电机56和72能够各自产生传递向变速器10的机械动力。发动机14与第一和第二电机56和72产生的、传递到魏器10的动力从输入扭矩的角度分别用力、TA和Te相应的表示,从车键的角度分别用N!、Na和Nb相皮的表示。示例的发动机14包括一个多缸内燃机,在某些情况下有选择地可操纵:tfeM过输入杆12向,器10传递扭矩,既可以是点燃式内燃机也可以是压燃式内燃机。发动机14包括一个可操纵地与^I器10的输入杆12配合的机轴(未示出)。一个转速传麟11监鄉入杆12的繊。从发动机14输出的动力,包括转速与输出扭矩,可能与变速器10输入的转速^和输入的扭矩T!不同,由于在发动机14以及器10之间的输入杆12安置了扭矩消耗元件,例如液压泵(未示出)禾口/或扭矩控制装置(未示出)。示例的变速器10包括三个行星齿轮装置24、26和28,四个可选择安装配合的扭矩传递装置,比如离合器C170,C262,C373和C475。在这里使用的离合器设计到任何种类的摩擦式扭矩传递装置,例如包括单盘或者复合盘离合器或者多盘离合器,带式离合器或者制动器。一个液压控制回路42,最好用传动控制模±央17(下文用TCM表示)控制,可操纵的来控制离合器状态。离合器C262和C475最^抱括应用液力旋转摩擦离合器。离合器Cl70和C373最好包括液压控制固定装置,可以选择安装在传动箱68的底部。每一个离合器Cl70,C262,C373和C475最好使用液压装置,可选择iiWl液压控制回路42接受加压的液压液体。第一和第二电机56和72最々抱括三相交流电机,每一个都包括一个定子(未示出)和一个转子(未示出),和相应的分相器80和82。每一个电机的电动机定子安装在传动箱68的夕卜侧部分的底部,并且包括一个从那里延伸的绕有线圈的定子铁芯。第一电机56的转子被支撑在一个毂衬齿轮上,该齿f&M)i第二行星齿轮系统26可操纵地安装在轴60上。第二电机72的转子固定安装在套轴毂66上。每一,算仪分相器80和82最好包括一个可变磁阻装置,包括一个分相器定子(未示出)和--个分相器转子(未示出)。将分相器80和82合适地定位和装配在各自的第一和第二电机56和72上。分相器80和82相应的定子可操纵地与第一和第二电机56和72的定子连接。分相器的转子可操作地与相应的第一和第二电机56和72的转子连接。每一,率算仪分相器80和82显著地可操纵地与魏器功率变换器控制模块(下文用TPM表示)19连接,并获取信号,每一个都传感监控分相器转子相对于分相器定子的旋转位置,由ltbl^控第一和第二电机56和72相应的转子相对于定子的旋转位置。另外,从分相器80和82输出的信号被编译出来,用来提供第一和第二电机56和72的转速,也就是相应的NA和NB。器10包括输出部分64,比如是一^由,与的动力传动系统90(未示出)可操作地连接在一起,来为例如93提供输出动力,其中一个在图l中显示。输出动力可以从输出转速No和输出扭矩To的角度描述。一个变9速器的输出$^1传84可以用来监控输出部分64的车tm与转向。每一个车轮93最好装配一个适合监控,速度Vss—wHL的传感器94,该传感器94的输出可以《:分配控制模块系统的控制模±央来监控,在图13中有显示,为制动控制、牵弓腔制和加速控制确定糊速度和车轮的乡树与相对驗。发动机14和第一和第二电机56和72产生的输入扭矩(分别为TVTa和Tb)是从燃料或者从存储在电能存储装置(下文用ESD表示)74中的电能发生能量转化而产生。ESD74是高压直流电源,fflil直流变换传导器27与TPIM19配合。直流变换传导器27包括传导器开关38。当传导器开关38闭合的时候,在正常运车針青况下,电流可以在ESD74和TPIM19中流动。当传导器开关38打开的时候,在ESD74和TPM19之间的电流中断。TPIM19可以fflil变换传导器29向第一电机56传送或者接受电能,同样地,TPM19可以mil变衡专导器31向第二电机72传送或者接受电能,来响应第一和第二电机56和72对扭矩的要求以实现输入扭矩TA和TB。电流是流向还是流出ESD74与ESD74是充电还是放电状态一致。TPM19包括一对逆变器(未示出)和各自的电动机控制模块(未示出),设定成接受扭矩要求与控制逆变器状态的形式,来提供电动机是处于驱动还是发电功能的状态,以满足电动机扭矩TA和TB的要求。逆变器包括已知的补充性的三相动力电子装置,每一个三相动力电子装置包括许多绝缘栅双极晶体管(图中未显示),来将从ESD74的直流电转变成交流电,)1高频转换的方式驱动第一和第二电机56和72的相应个体。绝缘栅双极晶体管M接受控制指令形成一个开关模式的动力供应。典型地,对每一个三相电机的每一阶段有一对绝缘栅双极晶体管。控制绝缘栅双极晶体管的状态来为电动机提供是产生机械动力还是产生电能的信号。三相逆变器fflM直流变换传导器27来接受或者提供直流电能,将直流电能转变成三相交流电或者相反,将该交流电传送给第一和第二电机56和72或者从第一和第二电机56和72获得该交流电,第一和第二电机56和72各自ffi31变换传导器29和31作为电动机或者是发动机运转。图2是分类的控制模块系统的示意性的块状图。在下文中描述的元件包括所有控制结构的子集,提供一种和在图1中描述的示例的传动系协同控制系统。分类控制模块系统综合了相关的信息,输入执行运算法则来控制各种触发器以满足包括与燃油经济性、排放、操纵性、动力性和对包括ESD74的电池组与第一和第二电机56和72在内的硬件的保护相关的控制目标。分类控制模块系统包括发动机控制模块(下文用ECM表示),23,TCM17,电池组控制模块(下文用BPCM表示)21和TPM19。混合动力控制模块5(下文用HCP表示)提供管理控制并与ECM23、TCM17、BPCM21和TPM19协同。ffl操作者可以通过与很多装置可操作的连接起来的用户界面(UI)13控制或指令电机混合动力传动系的运行。这些,包括确定操作者运行扭矩要求的加速踏板113(AP),操作者串恸踏板112(BP),魏器档位选择器114(PRNDL)和车辆速度巡航控制器(未示出)。变速器档位选择器114可以有一些离散的操作者可选择的档位,包括输出部件64的旋转方向来允许前进和相反方向的操作。之鹏至啲控制模块与其他控制模±央、传感器和致动器之间舰局域网(下文用LAN表示)总线6相互通信。局域网总线6允许在各种控制模±央之间进行执行参数状态和致动器命令信号的结构化通信。所使用的专用的协议是应用专用的。局域网总线6与合适的协议为之前提到的控制模块和其他比如防抱死制动、牵弓腔制和车辆稳定性等功能性控制模块之间提供鲁棒通信和多控制模块交互手段。多重通信总线可以用来提高通信速度和提供一些信号冗余和完整水平。个别控制模块之间的通信也可以4顿直接连接的方式施以影响,比如一系列的串行外设接口(SPI)总线(未示出)。HCP5为混合动力传动系提供管理控制,与ECM23,TCM17,TPM19和BPCM21的运转协同。在从用户界面13和包括ESD74的传动系传iH31来的各种输入信号的基础上,HCP5产生各种命令,包括操作者扭矩要求(T0_req)、动力传动系统90的受命令的输出扭矩(TcMD)、发动机输入扭矩要求、变速器IO中应用的扭矩传递离合器C170,C262,C373和C475的离合器扭矩和第一和第二电机56和72的扭矩要求。TCM17与液压控制回路42可操作的连接起来,提供包括监控各种压力感应装置(未示出)和为各种螺线管(未示出)产生和传输控制信号从而控制压力开关和控制液压控制回路42中包括的阀门在内的各种功能。ECM23与发动机14之间可操作的连接,从传感器获取数据并通过一些离散线路来控制发动机14的致动器,作为集成双向接口电缆35的简要表示。ECM23接收来自HCP5的发动机输入扭矩要求。ECM23与HCP5之间通信,在,控的发动机^I与载荷的基础上及时确定实时的提供给^3I器10的发动ii机输入扭矩t。ECM23监控从车键传自11传i!31来的输入信号来确定从发动机输入给输入轴12的转速,该转速转变成传动输入转速NpECM23监控从传感器(未示出)传递过来的输入信号来确定其他包括比如进气压力、发动机冷却液温度、环境气温和环境压力在内的发动机运转参数的状态。发动机载荷可以iM进气压力或者可选择iWil监控操作者对加速F射及113的输入来确定。ECM23产生荆专输指令信号来控制发动机致动器,包括燃料喷射器、点火模块、节气门控制模块(图中均未显示)。TCM17与变速器10之间可操作的连接,监控从传(未示出)传递过来的输入信号来确定传动运转参数的状态。TCM17产生并传输指令信号来控制变速器IO,包括控制液压控制回路42。从TCM17和HCP5的输入信号包括每一个离合器C170,C262,C373和C475的估计的离合器扭矩与输出部件64的输出转速No其他的传感器和致动器可以为控制目的提供从TCM17到HCP5的附加信息。TCM17监控从压力开关(未示出)传递过来的输入信号并可选择地触发压力控制螺线管(未示出)并转换液压控制回路42的螺线管(未示出)的状态来可选择地触发各种离合器C170,C262,C373和C475来实现各种如下文所述的传动操作范围状态。BPCM21与传感器(未示出)信号连接,监控ESD74,包括电流电压参数状态,来为HCP5提供关于ESD74电池的参数状态的指示信息。所述电池参数状态最好包括电池充电状态、电池电压、电池,和用区间(Pbat—画,Pbat—max)表示的可用电池能量。每一个控制模块ECM23、TCM17、TPIM19和BPCM21最好是通常目的的包括微处理器或者中央处理器、包括只读存储器(ROM)的存储媒介、随机存储器(RAM)、可编程只读存储器(EPROM)、高速时钟、模数(A/D)和数模(D/A)的转变电路、输入输出电路和装置(I/O)和合适的信号调理和缓冲电路的数字计算机。每一个控制模块有一套控制运算法则,包括存储在其中一个存储媒介中且通过执行来为每个计算机提供各自功能的驻留指令和校准程序。在各控制模块之间的信息传递最好用LAN总线6和SPI总线来实现。控制运算法则在预先设定的循环周期中执行以确保每一个控制运算法则至少在每一个循环周期中执行一次。使用预先设定的校准禾M^通过其中一个中央处理器来执行在非可变存储装置中存储的运算法则,用来监控从传感装置传递过来的输入信号并执行控制与诊断程序来控制致动器的操作。在传动系持续的操作期间,循环周期在规则的时间间隔例如每一3.125,6.25,12.5,25和100毫秒执行。可选择地,运算法则可以根据某些情况的发生来执行。示例的传动系可选择地在一些可以从包括发动机开动状态(ON)和发动机停止状态(OFF)等在内的发动机状态和包括一些固定齿轮和连续可变操作模式在内的传动状态的角度描述的操作范围状态之一操作,参考下表l加以描述。表l<table>tableseeoriginaldocumentpage13</column></row><table>表中描述了每一个传动操作范围状态,并且指出了每一个传动操作范围状态应用具体的离合器Cl70,C262,C373和C475中的哪一些。第一连续可变模式,比如无极M模式模式1或者M1,通过应用离合器C170被选择,只是为了将第三行星齿轮组28的外部齿轮部件接地。发动机状态可以是ON(Ml—Eng一On)或者OFF(Ml一Eng一Off)之一。第二连续可变模式,比如无级变速模式模式2,通过应用离合器C262被选择,只是为了将轴60与第三行星齿轮组28的架子连接起来。发动机状态可以是ON(M2—Eng—On)或者OFF(M2—Eng一Off)之一。这样描述的目的,当发动机状态是OFF的时候,发动机的输入车键是零转每併中(RPM),比如发动机机轴不转。固定齿轮操作为变速器10提供了一个固定的输入输出速度比,例如实现了Nz/No。第一固定齿轮操作(Gl)ilil应用离合器C170和C475被选择。第二固定齿轮操作(G2)ffiil应用离合器Cl70和C262被选择。第三固定齿轮操作(G3)ffiil应用离合器C262和C475被选择。第四固定齿轮操作(G4)通过应用离合器C262和C373被选择。固定的输入输出M比随着固定齿轮操作的增加而增加,由于行星齿轮24、26和28传动比的降低。第一和第二电机56和72的转速na和nb相应地依赖于由离合装置定义的机械装置的内部旋转并与在输入轴12测得的输A5I度成比例。响应从用户界面13获取的加速踏板113和制动踏板112操作者输入,HCP5与一个或者多个其他控制模块确定受命令的输出扭矩TCMD,为了满足操作者扭矩要求To一req,在输出部件64执行并传递给动力传动系统90。最终,加速可以被其他比如路面负荷、路面等级和车辆重量等因素影响。通过传动系的各种操作特征来确定变速器10的操作范围状态。包括前边描述过的从加速踏板113和制动踏板112传递给用户界面13的操作者扭矩要求。操作范围状态可以用一个指令弓l起的传动系,敏E命令预测,以在电能产生模式或者扭矩产生模式下操作第一和第二电机56和72。操作范围状态可以由最优化运算法则或者程序来确定,主要是例如由在操作者要求的育^量、电池充电状态和发动机14与第一和第二电机56和72的能量效率的基础上确定最优系统效率的HCP5中的混合动力战略控制模块中开始。在最优化程序执行结果的基础上控制系统管理发动机14与第一和第二电机56和72的扭矩输入并且将系统效率最优化,来管理燃油经济性和电池充电。进一步,在元件或者系统中操作可以在缺省值的基础上确定。HCP5监控着扭矩产生装置,确定要求实现希望的扭矩输出以满足操作者扭矩要求的变速器10的动力输出。因Mii上文的描述,ESD74与第一和第二电机56和72为动力传递电气地可操作地配合是显而易见的了。进一步,发动机14与第一和第二电机56和72以及机电变速器10是电气地可操作地配合来传递动力来为输出部件64生产动力流。如上文讨论,在控制混合动力传动系时为保持驾驶性能管理输出扭矩是伏:先的。响应通过变速器应用的输出扭矩要求的变化产生的任何扭矩变化导致应用到动力传动系统的输出扭矩的变化,由此导致车辆驱动力的变化和车辆加速度的变化。扭矩要求的变化可以来自操作者输入,与操作者扭矩要求相关的踏板位置,车辆的自动控制变化,诸如巡航控制或者其他的控制策略,或者发动机对环境状况的响应的变化,诸如处于上山或者下山阶段的车辆。通过控制混合动力传动系中应用到变速器的各种输入扭矩的变化,就可以控制和减小车辆加速中的突然的变化,降低对驾驶性能的不利的影响。本领域普通技术人员知道,任何控制系统包括一个反应时间。传动系操作点的改变,包括通过各种元fH专递传动系的要求实现希望的车辆操作的速度和扭矩,通过控制信号的改变驱动。这些控制信号的改变在传动系的各种元件上发生,并根据它们各自的反应时间产生反应。应用到混合动力传动系中,指示新的扭矩要求的控制信号的任何改变,例如操作者扭矩要求的改变带来的或者执行变速器变速要求带来的改变,在^^受影响的扭矩产生装置产生反应来执行对各自输入扭矩要求的改变。发动机提供的输入扭矩的改变通过设置发动机产生的扭矩的发动机扭矩要求来控制,例如ililECM来控制。发动机中对发动机扭矩要求的改变的反应时间受许多本领域公知的因素的影响,发动机操作的改变的细节非常依赖于使用的发动机和燃烧模式的细节。在许多情况下,发动t几对发动机扭矩要求改变的反应时间是混合动力驱动系统中各元件的最长的反应时间。电纟M扭矩要求改变的反应时间包括触发各种必要的幵关、继电器或者其他控制的时间,当应用的电能改变时加强或者停止电机的时间。图3据本发明用图表的形式描述了示例的混合动力传动系元件对扭矩要求变化的反应时间。举例说明了示例的包括一个发动机和两个电机的混合动力传动系统的元件。显示了每个扭矩产生装置产生的扭矩要求和导致的输入扭矩的改变。如上文所述,数据表明电机fflil响应扭矩要求的变化,然而发动机对扭矩要求的变化的响应慢得多。揭示了一种方法,其中混合动力传动系中的发动机和电机的反应时间被用来并行控制控制发动机的引导即时扭矩要求和控制电机的即时扭矩要求,通过各自的反应时间将扭矩要求协同起来以实质地影响输入扭矩的同步改变。如上文所述,由于己知发动机的输入扭矩的变化比电机的输入扭矩变化需要更长的反应时间,本发明方法的一个例子可以执行发动机和电机扭矩要求的改变,如上所述并行执行,包括反应较快的^S电机的引导期。此引导期可以试验地、完全根据经验地、预测地确定、通过建模或者其他足以精确预测发动机和电机操作的技术确定,很多的引导期可以被同样的混合动力传动系使用,取决于不同的发动机设置、状况、操作和范围以及车辆状况。可以根据本发明用如下示例的方程与测试或者装置反应时间的估计值一起来计算弓1导期丁L^ad—丁LeadReaclion-TlnmiediateReaction卩J其中的丁L^与此处所述的方法中j顿的弓l导期相同。这个方程假定应用了两个扭矩产生装置。TL^Re^^表示反应时间较长的装置的反应时间,T^e^H^on表示反应时间较短的装置的反应时间。如果使用了不同的系统,例如包括引导期较长的发动机、弓l导期适中的第一电机和弓l导期较短的第二电机,弓l导期可以通过比较各扭矩产生装置来确定。在这个示例的系统中,如果所有三个扭矩产生装置都使用了,可以使用两个引导期来同步每个装置的响应,其中一个用来比较发动机与每个电机。在不同时间的同一系统可以在发动机熄火状态和发动机与变速器分离状态下运行,可以利用比较第一电机和第二电机的引导时期来同步两个电机的响应。用这种方式,可以确定在各种扭矩产生装置间调整反应时间的引导时期。示例的利用引导时期来对不同的扭矩产生装置执行并列的扭矩要求以实质影响同步的响应操作者扭矩要求变化的输出扭矩的变化的方法包括及时实质地传达发动机扭矩即时要求的变化,在发动机中弓胞新的发动机输出扭矩的改变。所述新的发动机输出扭矩,与电机操作状态一道,仍然ililHCP管理来提供需要来驱动车辆的变速器的总输入扭矩的一部分。从发动机扭矩即时要求发生改变这点开始,引导时期终止,如上文所述,考虑到发动机和电机之间反应时间的差异。在引导时期之后,执行HCP管理的以完成操作者扭矩要求一部分的传达给电机的扭矩要求的改变,电机改变电机操作状态,如上所述,发动机和电机提供的输入扭矩的变化也同步实质性地改变了。如上文批露的方法所述,发动机扭矩即时要求和电机扭矩要求是并列使用的,以控制对操作者扭矩要求的变化的反应时间不同的扭矩产生装置。操作者扭矩要求的改变包括特别的变速器操作范围状态下希望的输出扭矩的简单改变,或者可以要求操作者扭矩变化可以在不同的操作范围状态间与变速器变速关联。与变速器变速关联的操作者扭矩要求的变化比单一操作范围状态下的变化更复杂,因为必须管理各种混合动力传动系元件的扭矩与轴速以非滑动地在第一离合器和前面没有应用的第二离合器之间传递扭矩,如上所述。诸如示例的图1中的,器的,,通常包括卸载第一离合器,逝i惯性速度阶段状态的转换,并随后加载第二离合器。在只使用发动机的常规动力车辆的变速器中,变速器中的从一个固定齿轮状态到另一个固定齿轮状态的改变通常包括卸奉媒一离合器,允许群两空载滑行,然后再加载第二离合器。然而,如上文图1和表1中所述,混合动力传动系变速器中的离合器通常成对或者成组的使用,当在换挡的过程中维持第三离合器的接合时,变速器中的换挡可能包括只卸载正在使用的离合器中的一个然后加载另一个离合器。图4显示了示例的尤其是根据本发明的如图1和表1中的示例描述的混合动力传动系的^!器的齿轮变换关系。相对于No做出^的图象。在任何固定齿轮状态下,No沿着固定齿轮状态图由相应的M决定。在无级变速模式模式1或者无级变速模式模式2下的操作,其中应用可连续变化的传动比来从某一个固定的输入皿传递动力,可以替代图中显示的相应的区间。离合^l犬态,Cl-C4,如图l中的示例所述,在表1中描述。例如,在第二固定齿轮状态下的操作需要应用或者卸载离合器Cl和C2且不应用或者卸载离合器C3和C4。图4描述了图1中显示的示例的传动系中可能的齿轮变换,本领域普通技术人员应该赞同齿轮变换的这样一种描述对任何混合动力传动系的变速器都是可能的,本发明不应该限制在此处描述的具体的例子上。图4可以描述在固定齿轮状态或者无级变速模式模式下示例的系统的操作,如上文描述,也可以用来描述在各种器操作范围状态间的变换。图上的区域和曲线描述了通过变换的操作范围状态的操作。例如,在无级变速模式模式区域中的固定齿轮状态之间的变换要求在无级变速模式模式下在固定齿轮状态之间短暂的操作。對以地,从无级变速模式模式1到无级变速模式模式2的变换要过介于两个模式边界的第二固定齿轮状态的变换。根据图l、图4和表1,进一步描述了示例的^I器从第三固定齿轮状态到第四固定齿轮状态的变速。参照图4,起始的和希望的操作范围状态都在无级变速模式模式2的区域中存在。因此,从第三齿轮状态至悌四齿轮状态的变换需要首先将第三固定齿轮状态变换到无级变速模式模式2中,然后将无级变速模式模式2变换到第四固定齿轮状态。参照表l,混合动力传动系变速器,起始于第三固定齿轮状态,需要应用离合器C2和C4。表1进一步描述了无级^3I模式模式2的操作,第一次变换的目标,包括应用的离合器C2。因此,从第三固定齿轮状态到无级变速模式模式2的变换需要将离合器C4从应用状态转变到非应用状态,而离合器C2保持应用状态。另外,表l描述了第四固定齿轮模式下的操作,第二次变换的目标,其中应用了离合器C2和C3。因此,从无级变速模式模式2到第四固定齿轮状态的变换要求将离合器C3应用并加载,将离合器C2保持应用状态。因此,离合器C3和C4Mil/示例的变速变换了状态,而离合器C2保持应用状态,在#变皿程中都为动力传动系统传递扭矩。应用到此处批露的方法,通过基于各种元件反应时间调整给各种扭矩产生装置的信号命令的方式可以调节通过,器变速的输入扭矩的改变来降低对驾驶性能的负面影响。如上文所述,许多变速器变速可以分解成三个阶段第一扭矩阶段,其间初始应用的离合器从扭矩承受、锁定和同步的离合器状态转变到解锁和非同步离合态;惯性速度阶段,其间受影响的离合器被锁定并处于过渡期状态;第二扭矩阶段,其间一个前边没有使用的第二个离合器从解锁和非同步离合器状态转变扭矩承受、锁定和同步的离合器状态。如前边提到的,在整个变速器变速过程中最好避免离合器滑动以避免对驾驶性能的不利影响,当离合器的反抗扭矩m实际的离合器扭矩承受能力时就会发生离合器滑动。因此,在变速器变速过程中,必须根据当前使用的离合器的实际扭矩承受能力管理输入扭矩,以保证变速器变速可以实现且不产生离合器滑动。当可以利用程序来依次执行离合器加载或者卸载过程中的各个必要的步骤,保持离合器扭矩承受能力超过反抗扭矩时,解锁变换所需要的时间对于驾驶性能也很重要。因此,当仍然需要防止滑动时,并列执行联合的扭矩要求和离合器扭矩承受能力要求是有利的。这样的意欲影响与变速器变速相关的离合器状态变化的控制变化的并列执行最好在尽可能短的时间跨度内发生。因此,如上述示例的描述,根据发动机和电机的离合器扭矩要求调整变速器变速中相关的离合器的扭矩承受能力,在变速器变速过程中对于保持驾驶性能也是很重要的。图5—7根据本发明描述了示例的联合实现示例魏器变速的,骄。图5是根据本发明在示例的过渡期解锁状态与离合器相关的扭矩术语的图形表示。图形左端显示的线条描述了在锁定状态下的离合器操作。该图形通过离合器控制系统和作为结果的估计的扭矩承受能力描述了离合器命令扭矩。源于命令扭矩的离合器扭矩承受能力是许多因素的结果,这些因素包括可用的夹紧力,离合器的设计和状况因素,在离合器控制系统中离合器对各种改变的反应时间。如图形中示例的在初始锁定区域的数据所示,对锁定离合器要求一个超出离合器扭矩承受能力的扭矩以及允许其他影响离合器的因素决定作为结果的离合器扭矩承受能力是已知的。同样在描述了在锁定状态下的离合器操作的图形左端,描述了由发动机和电机输入扭矩产生的应用到离合器上的估计的反作用扭矩。在标为"初始非锁定状态"的时刻,决定了需要将离合器从锁定状态变换至排锁定状态的离合器控制系统或者TCM中的逻辑,将命令扭矩改变到低于扭矩承受能力但仍然高于当前应用到离合器的反抗扭矩的水平。在这点,离合器控制系统中的机构,例如示例的液压离合器控制系统中的可变压力控制螺线管,改变设置以调整离合器中的夹紧力。因^:,离合器的扭矩承受能力因为应用到离合器上的夹紧力的改变而开始改变。如上所述,在反应时间内离合器对命令扭矩的改变产生反应,特定离合器的反应时间依赖于应用的细节。在图5示例的图形中,扭矩承受能力对命令扭矩的减小产生反应,开始相应的减小。如上文所述,在同样的解锁状态下,源于输入扭矩和电机扭矩的反抗扭矩必须也从离合器卸载。在整个解锁状态中,如果反抗扭矩不保持在扭矩承受能力的水平之下,不希望的滑动就会发生。在解锁状态的初始时期,在图5中的同--点,在该点降低扭矩承受能力以启动解锁状态,对发动机和电机的输入扭矩产生并施加限制来实现将二者逐渐降低到零。如此处批露的方法和上述的示例中描述的那样,在协同过程中执行包括发动机扭矩即时要求和即时扭矩要求柳艮制的改变,执行根据各种扭矩产生装置的反应时间校准的引导时期,以实质地同步降低各傾置的作为结果的输入扭矩。图5显示了舰给以限制发动机扭矩即时要求的离合器反抗扭矩弓l导即时最小/最大值和限制电机扭矩即时要求的离合器反抗扭矩即时最小慮大值的形式的扭矩要求施加限制*^扭矩要求执行上述协同改变的方法。这些最大反抗扭矩值表示了允许从各扭矩产生装置要求的最大的扭矩值实际的发动机扭矩即时要求和实际的即时扭矩要求可以比最大反抗扭矩值小,但是当最大扭矩值降低时,实际的扭矩要求值最终也会降低。从发动机和电机产生的输入扭矩,每一个都取决于定义了的最大值,共同提供所WlJ入扭矩的一部分,而每一部分都由HCP控制。由于校准的引导时肌离合器反抗扭矩弓l导即时最小/最大值和离合器反抗扭矩即时最小/最大值都充分地同时地降低对应用至l漓合器的反抗扭矩,如图5显示导致实际的离合器反抗扭矩的降低。本领域普通技术人员应该赞同,需要使用其他安全措施来确保扭矩承受能力在整个卸载过程中保持超过反抗扭矩。许多这样的方法是预期的,在图5中描述了示例的可能用到的术语项s组。例如,可以用一个校准了的补偿项以确保设置离合器扭矩承受能力的命令保持超过实际的离合器反抗扭矩!到实际的扭矩低于某个阈值。图5中定义了-一个为此目的的示例的阈ftt作为反抗扭矩的校准了的阈值。保持扭矩承受能力要求大于实际的离合器反抗扭矩,记住包括离合器夹紧机构在内的所有的装置对要求变化都有响应时间,响应离合器要求变化与此补偿项的扭矩承受能力改变的延迟保持扭矩承受能力超过实际的离合器反抗扭矩。另外,另一个阈值,扭矩估计的校准的阈值,可以用来定义扭矩P介段的结束。例如,如果如算法建模离合器操作确定的离合器扭矩承受能力的估计值在校准期间低于这个阈值,那么可以确定该离合器处于解锁状态。图6是根据本发明的在示例的过渡的锁定状态与离合器连接的扭矩项的图形表示。如上文所述,在许多变速器〃过程中,第二离合器是同步的和锁定的,并在该离合器上应用了扭矩。图形左端显示的线描述了解锁状态下的离合器操作。锁定状态的开始要求一系列的将离合器从解锁状态变换到锁定状态必须的从属命令。如上文所述,与在变速器变速中至U第二扭矩阶段的变换相关,包括与即将使用的扭矩输入的轴连接的和与输出部件连接的离合器必须是同步的。一旦离合器的与这些轴连接的连接表面削弱了并且以同样的转速转动,夹紧力可以开始应用到离合器以将离合器变换到锁定状态,开始增加离合器的扭矩承受能力。如上所述,考虑到在扭矩阶段中避免滑动,离合器扭矩承受能力必须在离合器的反抗扭矩可以增加之前增加。为了使离合器反抗扭矩带来的输入扭矩的应用尽可能地快,可以按预想地要求增加离合器扭矩承受能力来实现离合器扭矩承受能力的初始的增加,配合离合器达到锁定状态。反抗扭矩,用此处批露的方法通过禾,弓l导时期考虑反应时间,可以即时地延迟很短地收到命令以跟上增加的离合器扭矩承受能力。本方法的一个示例,如图5描述地与施加给扭矩要求的限制表现相反,根据校准的选择用来避免滑动的输出功率速颇传达给发动机和电机的扭矩要求施加限制。如图6所述,作为对电机扭矩要斜艮制的离合器反抗扭矩的即时最小/最大值在校准的弓l导时期之后从增长的作为发动机扭矩要求限制的离合器反抗扭矩引导即时最小/最大值的初始值被增加。根据此处所述的方法,通过利用引导时期,发动机和电机的输入扭矩的增长充分地同步地增大了应用到离合器的反抗扭矩。因为根据校准的应用到各个限制上的输出功率速度施加在扭矩产生装置上的限制被解除了,HCP可以命令发动机和电机完成离合器要求的反抗扭矩的一部分,都取决于各自的最大值。用这种方法,协同发动机和电机的扭矩要求来补偿反应时间以在^I过程中充分地同时地增加从各自的输入扭矩。应用到上述示例的变速器变速中的校准的输出功率速度是一个选定值,该值可以迅速将输入扭矩水平调节到希望的范围,但也低于离合器扭矩承受能力以避免滑动。该输出功率速度可以通过试验、完全根据经验、预测、通过建模或者其他足以精确预测发动机和电机操作的技术确定,有很多输出功率速度可以被同样的混合动力传动系使用,取决于不同的发动机设置、状况、操作范围和触发离合器扭矩承受能力的控制系统的行为。用来在解锁过程中降低输入扭矩的输出功率速度可以但是不一定是在锁定过程中增加输入扭矩的输出功率速度的倒数。类似地,用于协同输入扭矩的引导时期可以但是不一定等于用于变速器过渡状态的时间跨度值,可以根据车辆及其元件的特定的行为改变。如上所述,在变速器变速中,例如,在如上述示例定义的的变速器两个固定齿轮状态之间,变速器经过在第一扭矩阶段和第二扭矩阶段之间的惯性速度阶段。在此惯性速度阶段,原本应用的和即将应用的离合器处于解锁状:态,输入是初始地转动,该转动的转速在变成非同步之前,被第一离合器分配。为了实现将要在第二扭矩阶段应用和加载的第二离合器的同步,即将连接至'腐二离合器的输入必须改变N:以匹配附于变速器的动力传动系统到一个新的传动比。在本领域已知许多方法可以实现这种同步。然而,在混合动力传动系变速器的变速中,变速通常发生在操作范围状态,这种状态下至少一个离合器仍然在应用而另一个离合器处于惯性速度阶段。这意味着要求用来产生第二离合器的输入速度和输出速度同步的各种扭矩产生装置的变化仍然通过仍在使用的离合器在惯性速度阶段影响性能。因此,此处所述的用引导时期来充分地同步地影响输入扭矩变化的方法可以额外带舰驾驶性能的好处,可以在整个惯性速度阶段继续利用。图7根据本发明描述了示例的在变速器变速的惯性M阶段实现这种同步的方法。变^31程中变速器变两个描述的项s项的影响在两个有共同时间范围的区域显示。顶部的区域描述Ni,初始地与第一个初始应用的离合器相连。更上方的虚线表示当第一离合器处于锁定状态时在变速开始之前的N!速度曲线。底部的虚线表示必须实现滞二离合器的输入和输出速度的同步的N!速度曲线。在两条虚线之间的变换表示对实现变速必须的输入速度的变化。图7底部的区域描述了输入加速度(Nt一dot),或者M关于时间的派生量。在这种情况下H一DOT被描述成当即时输入加速度或者电机驱动的相关的较快反应时间的加速度曲线,此项很接i^也i!5宗了实际的^一dot。即时输入加速度显示了为将^从第一离合器的同步状态下的初始的N屑变到在第二离合器同步状态下的目标输入速度必须实现的速率的改变。初始的平直的部分描述了在变速开始之前增加输AiI度的加速度,这个常数反映了图7顶部区域左边部分的输入速度的斜率。在变速开始的时刻,在诸如踏板位置和变速器控制系统的算法的操作者输入,包括确定希望的操作范围状态的基础上,决定可以根据要求用以实现同步的目标输A3I度和要求用以实现变速的目标输入加速度曲线。计算出来用以支持变速完成后的目标加速度的输入加速度,可以被称为预测的输入加速度引导,描述需要在惯性速度阶段完成之后存在的dot。即时输入加逸度引导通过把操作者要求的扭矩、希望转换到的操作范围状态和其他相关变量作为考虑因素的算法来预测。如图7顶部的描述,因为^必须逝i惯'M度阶段改^实现^it且因为N^dot描述了的变化率,在惯性皿P介段受控制的装置的Nyx)t必须反映在惯性速度阶段实现的输AiI度的改变。在图7显示的示例的数据中,其中的输入速度需要降低以实现魏器变速,装置的Nu:ot必须变成负值棘示Nj的改变。一旦N被降低至何以转变到需要用来同步输入与输出速度的目标输A3I度的7乂平,NLDOT改变以匹配预测的输入加速度引导。用这种方式,可以在惯性速度阶段控制N,dot以匹配对实现平滑变速器变速必须的目标输A3!度和目标输入加速度。如上所述,混合动力传动系变速器的变速要求在两个操作范围状态之间变换,当至少一个离合器仍然从扭矩产生體向动力传动系统传递扭矩时,其中惯性速度状态如上文所述必须实现。由对各种扭矩产生装置的扭矩要求驱动的输入扭矩的改变,必须实现所要求的^和Ny3OT改变并在惯性ilj^阶段保持驾驶性能。因此,此处所述的示例的禾l」用一个引导时期来充分地同步地影响输入扭矩的改变的方法可以在惯性速度阶段用来影响对各种扭矩产生装置的扭矩要求的改变以充分地同步地影响输入扭矩的改变。图7显示了协同的扭矩产生装置的反应时间,与反应时间相关的差异的校准的引导时期,以在变速器变速中改善驾驶性能。如上所述,在扭矩产生装置中发动机包括更长的反应时间。为了尽可能快地调整N,Nu)ot来为变速实现目标速度和加速度值,M31算法预测一个即时输入加速度弓I导。即时输入加速度弓1导包括发动机对扭矩要求变化的响应时间,做出在引导装置中Nj卩NIJX)T的最快改变的可实现以达到目标值的曲线。N!的快速改变必须包括前面提至啲发动丰/M扭矩要求改变的响应时间和发动tU131即时输入加繊弓l导加速或者鹏的时间。如图7所示,即时输入加速度引导,在对,的预料中,可以在对惯性速度阶段的预料中启动对发动机必须的要求,因为由于发动机相应的响应时间较长,作为结果的发动机的输入扭矩直至U—段时间之后才开始降低。一旦即时输入加速度弓l导确定了,一个即时输入加速度,fflil—个引导时期伴随着即时输入加速度引导,根据上述反应时间校准后,可以用来控制电机以同时匹配H和N!—dot的改变作为发动机的响应。通过这种方式,通过影响目标输入速度和目标加速度充分同步发动机和电机。上述方法将扭矩管理过程描述成绝对值的比较。本领域普通技术人员应该赞同离合器扭矩被描述成正负扭矩,表示在一个转动的方向或者另一个方向的应用的扭矩。上述方法既可以用在正的也可以用在负的扭矩应用中,在扭矩应用中扭矩的大小通过这样一种方式调整,对一个特定的离合器应用的反抗扭矩的大小不M:其扭矩承受能力的大小。图8图形地显示了一种情况,这种情况下已经衝i惯'性速度阶段为发动机控制确定了即时输入加速度引导,此外,已经通过惯性速度阶段为电机控制确定了相应的即时输入加速度。在负的dot或者减速在惯'M度阶段正在发生的情况下,这种状况是最普通的允许发动机通过发动机内部的摩擦和抽吸力慢下来的情况。然而,当电机减速时,这种状况最普遍地在电机还处于动力状态或者相反地在发电模式下运转情况下实现。因为电机仍然在系统控制下运转并与其他车辆系统相连,例如,可用以驱动电动机的电池动力。图8将这种系统性限制用于最小的输入加速度限制中。当这样柳蹄'j与即时输入加速度发生干涉时,电机控制系统中的程序就会修改即时输入加速度来适应这种限制。一旦这种限制不再限制即时输入加鹏中的电t腿转,算法运行以恢复Hjx)t来影响对N的希望的改变。在加速踏板位置和初始输入速度差值的基础上设置总的希望的速度阶段时间的示例的方法包括f顿校准了的2维查询表。图9根据本发明用表格形式显示了示例的用以确定惯性速度阶段时间的2维查询表的使用。加速踏板位置和初始的M差值允许^需要的改变的推算,如上所述,作为转变,允许估计惯性速度阶段时间。基于给定的输入,估计的惯性速度阶段时间可以被估计。査询表中的初始M差值可以跨越正值和负值,考虑至账据调高速挡和调低速挡的不同的校准。一旦确定了初始的惯性速度阶段的N!的行为、基于希望的操作范围状态的目标M的行为和总的希望的M阶段时间,就可以描^151即时输入加速度曲线描述的变换。应该同意,基于任何对Ni值和时间的比较,其中不同的操作范围状态有不同的基于No的^的预测,如图7中^部分的虚线的描述,惯性速度阶段M曲线很可能是S形,过渡的子阶段变换到初始的和目标的N!和Nyx)T值以及与子阶段联系的中心子阶段或者从后者变换而来。通过将惯性速度阶段分割成三个子阶段,就可以描述即时输入加速度曲线的必要的变换。图io根据本发明描述了分成三个子阶段的示例的惯性速度阶段。子阶段1描述了从初始Nt和NLDOT值的变换。子阶段l或者第一阶段的时刻T!可以M如下公式计算*总的希望的速度阶段时间[2]其中,&是介于0和1之间的描述希望的M行为的校准。K!可以是一个由描述要求的变速属性的传动系操作前后关系的指令设定变量,也可以是一个固定的校准的值。子阶段3描述了到目标^和H一DOT值的变换。子阶段3或者第三阶段的时刻T3可以通过如下公式计算7>&*总的希望的速度阶段时间[3]其中,K3是介于0和1之间的描述希望的M行为的校准,可以由类似于K,的方法设定。子阶段2描述了在子阶段1和子阶段3之间的变换。在定义了Tj和丁3之后,定义时刻T2或者第二阶段作为总的希望的速度阶段时间的乘除的部分,可以ilil如下公式计算7>总的希望的速度阶段时间-7>7}[4]在图10示例的数据中子阶段2被描绘成一条直线。应该清楚可以在子P介段2的区域中定义一个依赖于总的希望的速度阶段时间和示例的传动系的表现的曲线的变换。然而,所描述的直线是更合适的。子阶段2中的N:曲线的斜率描述了必须达到以在总的希望的速度阶段时间内实现希望的惯性速度阶段的速度阶段输入加速度的峰值。在示例的子阶段2中的N^dot是常数的模式中,!it31度阶段输入加速度的峰值可以M:如下公式计算峰值速度阶段输入加速度=f:,-:r:—jl:、)+^[习总的希望的速度阶段时间"1*问22fflil描述惯性速度阶段进程中需要的NIJ3OT的表现,可以在惯性速度阶段定义即时输入加邀芰曲线来操作N的变化。如上所述,发动机对控制命令的响应时间往往慢于传动系中其他元件的反应时间。因此,传达给发动机的同时传达给即时输入加速度曲线的发动机命令包括作为结果的^的变化的延迟。作为替代,另外公开一种方法,其中在描述发动机反应时间的弓l导时期的基础上定义了即时输入加速度引导曲线。这样的引导时期可以与,公式1中计算出来的弓l导时期相同,或者可以在惯性速度阶段中发动机的特定的行为的基础上制虫计算出来。例如,因为在N!—dot中没有直接的电机操作的牵连,即时输入加速度引导曲线的引导时期可以包括一个电机因素帮助改变Nu)or,使得1\dot的变化比发动机斜虫作用的时候更快。图7中描述的即时输入加速度弓I导曲线在惯性速度阶段开始之前包括弓I导曲线的一部分。在从固定齿轮状态变速的情况下,其中在变速开始之后,结束运行的离合器的解锁活动必须发生,解锁活动的时期提供了可以在希望的N!的改变之前将命令传达给发动机的时期。根据,决定,这种在惯性速度阶段之前的引导对于在总的希望的速度阶段时间内保持惯性速度阶段是有益的。在没有引导时期或者引导时期不足以用来允许即时输入加速度引导曲线根据即时输入加速度曲线影响发动机变化的情况下,可以对惯性速度阶段做出调整来补偿发动机的反应时间和作为结果的M的变化的延迟。没有引导可用的情况包括从示例的只有一个离合器是初始就接合的、惯性速度阶段根据命令可以即刻启动的无级变速模式模式开始的变速。在这种情况下,惯性速度阶段的开始可以根据确定了的弓l导时间延迟到命令传达给发动机之后。上述方法描述了变速器在离合器接合且从至少一个输入扭矩到输出扭矩或者扭矩产生装置之间应用扭矩的情况下操作的例子。然而,空档操作范围状态是变速器控制策略的一部分,其中所有离合器被解锁,不通过变速器应用任何扭矩。非空档操作范围状态下传动系的输入与输出可以M:以下公式表示乙『。DOTj丑J/—爿CTDOT问本领域普通技术人员应该赞同,由于各种原因,可以在空档状态下将发动机或者电机设置成闲置或者运转状态,与行驶装置相连的变速器的部分可以继续旋转。在这样的空档操作状态下,这种变速器的部分几乎不对旋转装置产生反抗力,可以fflil加速到一个高转速。在空档操作范围状态下,由于各离合器分离且To为零,从发动机或者电机产生的输入导致了输入加速度作为输出。高速旋转的变速器的部分可以弓l发各种后果,包括噪声和震动后果,对旋转部分的损伤,或者如果随后通过离合器连接的高速旋转的存储动能的部分可以在变速器引起明显的抖动。如上所述,离合器上部件的速度定义了离合器的滑动速度。对于任意给定的输Ail度,各种离合器的滑动速度是同时的依赖于变速器中定义的关系的不同值。传动系的输入和作为结果的输AiI度输出与第一离合器的离合器滑动加速度(NC1dot)可以通过以下公式表示<formula>formulaseeoriginaldocumentpage27</formula>其他离合器的离合器滑动速度可以在特定的变速器的基础上作为第一离合器滑动速度(NC1)的函数来确定。变速器中的同步的变速,如上所述,要求在离合器接合之前把即将使用的离合器的滑动降低到零。特定离合器的滑动的大小是直接影响需要多少时间将滑动降低到零的因素。零滑动或者小滑动的离合器可以很快同步,而滑动比较大的离合器在离合器同步接合之前需要时间来削弱输入与输出部分,将滑动降低到零。各种离合器的输入速度和滑动速度不是独立的,而是由于任何离合器输入部件的速度受输入速度的影响,使得输入速度是影响滑动速度的因素。将输入速度控制到一个希望的值或者范围可能与将离合器滑动速度控制一个希望的值或者范围相冲突。公开了一种为空档操作范围状态下的变速器确定输入速度控制和滑动速度控制优先次序的方法。监控传动系的部分且将引导与即时的控制信号传达给扭矩产生装置以保持对传动系中各种部分扭矩和速度的控制的上述方法,可以用在空档操作范围状态中通过预测离合器滑动加速度弓I导顿则曲线,ilil在作为即时离合器滑动加速度引导曲线的弓l导控制信号和作为即时离合器滑动加速度曲线的即时控制信号中施加对离合器滑动加速度的限制来管理各种元件的速度。在非空档操作范围状态的正常运转中,根据此处所述的方法,产生许多控制信号来控制输入加速度与用作闭环输入速度控制的参考速度的输入速度曲线。这些控制信号包括弓l导控制信号和用以协同发动机和电机产生的扭矩的即时控制信号,如上所述包括一个引导时期。类似地,可以产生引导控制信号与即时控制信号来控制滑动加速度与用作闭环滑动速度控制的参考速度的滑动速度曲线。图11根据本发明图形地描述了离合器滑动鹏和离合器滑动加鹏项项s,包括引导和即时控制信号。离合器滑动速度和离合器滑动加速度相应地沿着一个共同的时间轴在顶部和底部区域显示。离合器滑动速度在某个非零值开始。确定了希望的滑动速度为零的某点。确定发动机中命令改变的引导控制信号以支持离合器滑动速度变化到目标滑动速度,在引导控制信号之后在可校准的弓l导时期确定电机中命令改变的即时控制信号。如图11所述,即时离合器滑动加速度引导曲线和即时离合器滑动加速度曲线描述了被弓l导时期和命令的在发动机和电机响应时间的基础上被同时影响的发动机和电机的过渡期的变化分离的命令,以将离合器滑动速度从一个初始值改变到希望的值。离合器滑动加速度弓l导预测曲线描述了一旦达到了目标滑动速度时所要保持的想要的离合器滑动加速度。在这个特定的示例的数据中,离合器滑动加速度引导预测曲线为零。公开了示例的禾拥所述的控制信号来影响根据提及的控制信号产生的离合器滑动速度的变化的方法。可以用许多方法影响发动机控制。己知的影响发动机中相对较快的响应的方法包括调整发动机控制参数来改变发动机效率,从而暂时地改变发动机输出。示例的方法包括延迟点火或者喷油时间。尽管这样的方法对于长期或者永久的对发动机输出的希望的改变来讲不是可取的,但对于短期的过渡期的操作是可取的。已知的在有更大的或者持续不变的发动机效率但在发动机设置之间有更长的过渡时期的发动机中影响响应的方法包括抑制改变。这样的改变要求发动机中的很多改变且包括更长的对命令的响应时间。如上所述,电机响应时间相对于发动机响应时间来讲更快。即时离合器滑动加速度引导曲线和即时离合器滑动加速度曲线之间的校准的引导时期可以根据示例的诸如改变点火时间快速的发动机控制方法的响应时间和电机的响应时间的不同来设置。即时离合器滑动加速度弓I导曲线可以用来命令发动机点火时间的变化,即时离合器滑动加速度曲线可以用来命令电机点火时间的变化。离合器滑动加速度引导预测曲线可以用来在达到了目标滑动速度后根据计划的非过渡期状态命令对发动机变化的抑制。如上所述,在空档操作范围状态下操作时,必须同时控制输入加速度和离合器滑动加速度,但是两个加速度是联系的。控制输入加速度和离合器滑动加速度的一个方法包括利用同步约束、定义允许的操作范围、在输入加速度和离合器滑动加速度之上、允许一个偏好的加速度项优先、但是在非偏好的加速度项的某个操作范围中保留影响偏好项的齊性。例如,管理输入加速度对于避免对传动系元件的损伤是重要的。管理滑动速度加速度来保持对预期变速的快速执行能力是重要的,但是基于变速时间稍长的顾客满意度没有对发动机、电机或者变速器的部件的潜在的损失关键。可以逻辑的使用一种方法来实现相对于滑动速度加速度控制对输入加速度控制的偏好,但是使用由施加的影响滑动速度的控制的约束定义的可接受的输入加驗的齢。图12根据本发明图形地显示了tt择输入加速度曲线和离合器滑动加速度曲线中有用的输入加速度约束的确定。图12描述的方法估计发生在命令的输入速度的变化以估计要求用以追踪命令的输入速度的输入速度加速度的大小。预想了许多方法来追踪命令的或者希望的输入速度,为定义可接受的输入加速度的范围估计即将发生的输AiI度的变化。图12的示例包括图形的三部分,描述了对于共同时间范围的各种项。图形的顶部描述了输入速度对时间的变化。des,在想要的传动系操作中由战略控制模i央选择的最适宜的输Ail度,作为输入被监控。输入速度曲线是过滤了的和延迟了的Ni—des的形式。在这个上下文中,可以将输入速度曲线当成要实现的目标曲线。这个目标曲线可以尽可能接近地与为输入加速度定义的约束的边界匹配,但是可以在约束中潜在地允许从这个目标曲线的偏离以虑及受限的离合器滑动加速度控制。图形的中间部分描述了NIDES和顶部区域的输A3I度曲线的差异随时间的变化。这个差异项对于描述输入加速度必须影响以追踪1^—DEs的速度差异是有用的。这^Jt差异,当它比较小的时候,可以被小的输入加速度值影响。速度差异,当比駄的时候要求大的输入加速度的值来确定控制输A^度到比较接近Nldes的值。将des和输AiI度曲线的差异程度数量化的方法有多种。如图12描述的示例的方法,描述了用可校准的延迟作用的阈值来定义需要用以控制输入速度的输入加速度的值。追踪NlDEs和输AiI度曲线的差异并将其与上述阈值比较。当差异项为0或者是一个很小的值,那么需要的输入加速度的值可以保持在的零附近很小的范围内,包括零或者以零为中心。当差异项越过了选择的阈值时,可以做出批准大的输入加速度值的决定。可校准的延迟作用的阈值包括正方向和负方向的值。正方向和负方向的值可以但是不需要相等,但是标记相反数。可校准的延迟作用的阈值可以是正方向和负方向的单一值,ffl51差异项和单值l竭值的关系决定的小的和大的输入加速度的值。可校准的延迟作用的阈值,在可供选择之中,可以是阶梯阈值。如图12所述,可以利用内边界阈值和外边界阈值。在图12的示例中,只要差异项保持在外边界阈值的范围内,可以确定差异项来要求一个小的输入加速度值。一旦越过外边界阈值,可以确定差异项来要求一个大的输入加速度值。可以利用内边界阈值来强调控制输入加速度项的优先级,以致于一旦做出要求一个大的输入加3IiS^娜俞A3M更,魏Nu^的决定,只有当输Am返回到内边界阈值定义的范围时,输入加皿值才可以返回到较小的值。图形的底部描述了在差异项基础上允许的确定了的希望的输入加速度范围随时间的变化。如上所述,可以在需要小的输入加皿值M大的输入加iMtt控制输AiM的基础上定义这个范围。在图12的示例中,定义了三个范围,一个以零为中心,第二个范围从^KefUf始延伸到一个更大的最大值,第三个范围是第二范围在负值区间上的镜像。这些在一个时间跨度内应用的范围可以用来定^t选择的输入加鹏的约束,往往产生输入加鹏值以在允许对其他诸如离合器滑动加速度的相关项有弹性地控制的情况下优先控制输入M。图13根据发明图形地描述了离合器滑动速度和离合器滑动加3M随时间的变化。如上所述,优先考虑输入加速度并将其限制在某个范围内,只要输入加速度保持在限定的范围内,保留允许控制其他诸如离合器滑动加速度的变量的弹性。如公式9的描述,dot和Nd一dot通过ThTA、Tb和No一dot的操作相朕系。在受约束的输入加速度值的基石出上,最小和最大的输入加速度值可以用来确定最小和最大的离合器滑动加速度值。一旦受到约束,可以在用以控制传动系的目标滑动速度的基础上生成离合器滑动加速度曲线,包括即时离合器滑动加速度弓1导曲线、即时离合器滑动加速度曲线和离合器滑动加速度弓I导预测曲线。例如,在图13中,在离合器滑动M从初始的非零值变换到目标的零值的基础上可以做出离合器滑动加速度的曲线。这样的变换包括需要用过离合器滑动加速度曲线达到目标的滑动速度离合器滑动加速度。如上所述,用离合器滑动加速度最小和最大值形式的约束来定型作为结果的离合器滑动加速度曲线。图13在底部的中间,图形的离合器滑动加鹏部分,显示了强加的影响希望的即时离合器滑动加速度曲线的最小离合器滑动加速度约束。因此,根据上述约束降低离合器滑动加速度,图形顶部中间的作为结果的离合器滑动速度显示了由于约束作为结果的离合器滑动速度变化的暂停。这样的约束与即时输入加速度曲线干涉或者撞击的地方,控制系统中的程序会通过超过曲线的平直部分修正即时离合器滑动加速度曲线来适应约束。即时离合器滑动加速度引导曲线通过强加最小离合器滑动加速度约束保持不变。一旦确定了离合器滑动加速度曲线,在离合器滑动加速度和输入加速度的关系的基础上,可以为输入速度的控制确定输入加速度曲线。用这种方式,可以在空档操作范围状态确定离合器滑动加速度曲线和输入加速度曲线,优先确定输入加速度但是允许控制离合器滑动速度到目标滑动速度的弹性。用基本的低通过滤器应用可校准的变化速率的阈iK执行离合器滑动速度的追踪。在即时离合器滑动加速度曲线的情况下,作为结果的加速度项通过计算出的离合器滑动加速度阈值被进一斜艮制。通过比较,即时离合器滑动加速度引导曲线没有被离合器滑动加鹏阈働艮制。可以为传动系中的任一离合器选择一个为零的目标离合器滑动速度。如与方程9联合的描述,可以对一个选定的离合器做出决定,在方程9的示例的式子中的离合器C1,系统中其他离合器的离合器滑动可以在对选定离合器做出的决定的基础上做决定。对一个离合器归纳出离合器滑动计算方法,将上述计算方法转换到其他离合器的领域包括许多好处。归纳计算离合器滑动加速度曲线和输入加速度曲线的变速执行模块和模块的顾客之间的信号降低顾客模块的计算负担因为不必对正在追踪哪一个离合器做成决定。进一步,归纳单个离合器的信号降低领域间众多转换带来的混淆现象。当归纳了的信号转换到另一个离合器的领域,通过执行到新的领域的线性变换就可以产生新的离合器领域内的信号。上述变换可以返回到第一离合器的领域或者如果需要的话可以变换到另一个第三离合器的领域。图14根据本发明描述了一个信息流,将与离合器相关的信号从离合器一的领域转移到离合器X的领域。信息流600包括在一个模块组中做出的一系列决定。信息流监控在离合器一的领域内与滑动速度相关的信息,将信息转移到离合器X的领域,在离合器X的领域中做出滑动速度和加速度的曲线,然后根据本发明的描述将Jd述曲线转移回至l腐合器一的领域以供使用。离合器X可以是受管理和追踪的任何离合器。优先于将信息转移回离合器一的领域的在离合器X的领域内转移与描述信息允许离合器X的特定的信息用在信息描述中。例如,如果离合器X有最大速度阈值,这个阈值可以在信息描述中直接应用,斷氐复杂度和估值错误,而不是在离合器一的领域中使用对结果的阈值。一旦在离合器X的领域内生成了曲线,就可以执行回到离合器"^页域的转移以供顾客模块〈顿。在图14的示例的信息流中,模±央602监控离合器一的领域内许多与离合器滑动加iM信号相关的输入。模块602的输入包括在信息流600之外决定的输A3I度和输入加速度曲线、在信息流600之外决定的顿器输出速度和加速度、从模块610的离合器一的最大最小加速度约束和从模块608的离合器一的最小的和最大的速率阈值的梯度限制。做出控制在领域之间变换的速率的校准弹性的梯度限制。ffiil模块604、606、608来产生梯度限制。模块604为目标离合器区域决定希望的速率限制为模块606确定输出的最小的最大的速率限制。模块606输入从模块604的最小的最大的速率限制,另外监,AiI度和输入加速度曲线,传递输出速度和加速度。模块606将速率限制从模块604变换到离合器一的区域并将变换后的限制进一步转送到对变换后的限制应用梯度限制的模±央606,将梯度限制离合器一的最小的和最大的速率限制输出给模块602。模块602的输入信号从离合器一的区域转换到离合器X的区域并输出给模土央612。模块612对模块616应用对输入和输出离合器X最小和最大的加速度的约束。模块616监控这些输入与在模块614中决定的离合器X的目标滑动速度、离合器X的区域内的输出离合器滑动加速度曲线和离合器滑动速度曲线。模块618监控在模块616中产生的曲线并将这些信号转换至U离合器一的区域内。用这种方式,可以在离合器X的区域内执行曲线,并在离合器一的区域内将其作为离合器滑动和加邀变曲线输出。图15根据本发明图形地显示了离合器i!5宗中的示例的,。图形有两部分,相对于共同的时间范围,顶部描述了离合器一的滑动速度,底部描述了离合器一的滑动加速度。在图形的开始,离合器1被追踪并包括零滑动皿和零滑动加速度。在某个点追踪变换到离合器二。尽管对离合器二的追踪目标是离合器二的滑动速度为零,由于上述原因,输出给顾客模块的追踪信息保留在离合器一的区域内。在离合器二中产生希望的结果的目标的离合器一的滑动速度,可以由如下函数决定即时输A^曲线,iV0)[10]在从离合器一的初始滑动速度到离合器一的目标的滑动速度的变换的基础上,生成即时离合器一的滑动加速度曲线并将其保持在根据此处所述方法产生的限制之内。另外,图15显示了可校准的应用到基于从离合器二的区域传^来的信息的离合器一的区域曲线的梯度限制的应用。与即时离合器滑动加速度曲线的综合直接相关的即时离合器滑动速度曲线,相对于由输出和发动机扭矩决定模块执行的闭环控制来讲,以更低的速率被计算出来。为了满足对于更快速率的要求,迸一步平滑参考信号,原始的即时离合器滑动速度曲线要经过一个运动的平均过滤器。这个程序与闭环控制器以同样的速率运行。然后将作为结果的平滑了的即时离合器滑动速度曲线进一步延迟,产生平滑了的延迟的离合器滑动速度曲线。校准运动的平均过滤器弓l入的延迟和上述的附加延迟的联合来匹配预料的发动机对即时离合器滑动加速度曲线的响应的延迟。图16显示了在有多个扭矩产生装置的传动系统中控制管理扭矩和动力流的控制系统结构,在下文参考图1和2中所示的混合动力传动系统来描述,存在于前面提到的以可执行的算法和校准形式存在的控制模块。该控制系统结构可以用于任何有多个扭矩产生装置的传动系统,包括有单个电机的混合动力传动系统、有多个电机的混合动力传动系统和非混合动力传动系统。图16的控制系统结构描述了舰控制模块的相刘言号的流动。在操作中,监控操作者对加速足對及113的输AI卩对制动踏板112的输入来决定操作者扭矩要求(T0—req)。监控发动机14和器10的运转以确定输AJI度(N!)和输出速度(No)。战略的最优化控制方案(StrategicControl)310在输出速度和操作者扭矩要求的基础上决定在其他包括电池动力限制和发动机14、变速器10与第一和第二电机56和72的响应限制的混合动力传动系的操作参数的基础上被优化的希望的输AiI度(Nu)Es)和希望的发动机状态与变速器操作范围状态(HybridRangeStateDes)。战略的最优化控制方案310最好在每一个100毫秒循环周期和每一个25毫秒循环周期被HCP5执行。战略的最优化控制方案310的输出被用在变速执行和发动机启动/停止控制方案(ShiftExecutionAndEngineStart/Stop)320中以命令变速器操作中(TransmissionCommands)包括改鄉作范围状态的改变。这包括舰命令利用一个还是多个离合器Cl70,C262,C373和C475的改变和其他变速器命令来命令执行操作范围状态的改变,如果希望的操作范围状态不同于当前操作范围状态的话。可以确定当前的操纵范围状态(HybridRangeStateActual)和输入速度曲线(NIPROF)。输A3I度曲线是即将到来的输入速度的估计值,最好包括即将到来的循环周期的目标输入速度的标量参数值。在变速器操作范围状态的变换中,发动机操作命令和操作者扭矩要求是基于输入曲线的。战术控制方案(TacticalControlAndOperation)330在一个控制循环周期中重复执行来确定发动机命令(enginecommands)来操作发动机,包括基于输出速度、输入速度、操作者扭矩要求和当前变速器的操作范围状态的希望的从发动机14传给变速器10的输入扭矩。发动机命令也包括包括全体汽缸运转状态和部分发动机汽缸非活动不供给燃料的汽缸惰性操作状态之一的发动机状态和包括供给it料状态和切断燃料状态之一的发动机状态。在TCM17中为每一个离合器估计离合器扭矩(TcL),包括当前应用的离合器和不在使用中的离合器,在ECM23中决定作用于输入部件12的当前发动机输入扭矩(T》。执行电动机扭矩控制方案(OutputAndMotorTorqueDetermination)340来确定希望的传动系的输出扭矩(T0—CMD),包括用以控制这个例子中第一和第二电机56和72的发动机扭矩要求(TA,TB)。希望的输出扭矩基于对4Th离合器估计的离合器扭矩,当前的从发动机14的输入扭矩,当前的操作范围状态,输入驗,操作者扭矩要求和输Ail^曲线。通过TPIM19控制第一和第二电机56和72来满足基于希望的输出扭矩的希望的发动机扭矩命令。电动机扭矩控制方案340包括在6.25毫秒和115毫秒循环周期内规则地执行以确定希望的发动机扭矩命令的算法代码。图17是根据本发明的Mil变速执行的示例的数据流的示意图,更细地描述了例如图16中的控制系统结构的更多细节性的示例的执行。传动系控制系统400被显示包括若干混合动力驱动元件,包括发动机410、电机420和液压离合器430。显示了战略控制模块310、变速执行模块450、离合器扭矩承受能力控制模块460、战术控制与操作模块330、输出和电动机扭矩确定模块340禾嘀合器控制模块490,处理信息并对发动机410、电机420和液压离合器430传达控制命令。这些控制模块可以物理地分离,可以集群连接在许多不同的控制装置中,或者可以在单个物理控制装置中完全执行。模块310,战略控制模块,执行如图16描述的关于希望的传动系操作点与希望的操作范围状态的决定。模块450,魏执行模块,从战略控制模块310与其他关于变速开始的信息来源接收输入。模块450处理关于当前应用与离合器的反抗扭矩的输A^n将要变换到的希望的操作范围状态。然后模块450执行一个算法,为变速的执行确定参数,包括描述扭矩产生装置要求的输入扭矩的平衡的混合范围状态参数,关于预测的要求来执行至U希望的操作范围状态的转变的目标输AJI度和输入加速度弓l导的细节,如前所述的即时输入加速度弓l导和即时离合器反抗扭矩弓l导最小慮大值和即时离合器反抗扭矩最小/最大值。从模块450,离合器反抗扭矩参数和混合范围状劍言息被反馈至'J离合器扭矩承受能力控制模块460,弓l导控制参数和信号被反馈到战略控制和操作模块330,即时控制参数和信号被反馈到输出和电动机扭矩决定模块340。离合器扭矩承受能力控制模块460处理反抗扭矩和混合范围状态信息和产生描述使得发动机控制肖滩fflil模块330的离合器反抗扭矩限制的逻辑,fflil模块340的电机控制和M31模块490的离合器控制,根据此处所述的方法。战术控制和操作模块330包括传达扭矩要求和执行对从发动机410应用的输入扭矩柳蹄'j和反馈,另外的描述/媒动机至帳块340应用的用在控制电机420中的输入扭矩的方法。输出和电动机扭矩确定模块340同样地接收和处理信息来将电机扭矩要求传达给电机420。另外,模块340产生被离合器控制模块490利用的离合器反抗扭矩命令。模块490处理从模块460和340传递过来的信息并传达液压命令以达到用以操作变速器的要求的离合器扭矩容量。这^f寺别的关于数据流动的例子显示了一个可能的示例的根据此处所述的方法控制车辆的扭矩产生装置和相关的离合器程序。本领域普通技术人员应当赞同采用的特定的程序可以改变,本发明不应该局限在此处描述的特别的示例中。图18是根据本发明的M空档状态的示例的M流的示意图,描述了示例的管理此处所述的输入速度和离合器滑动速度的方法。数据流451包括战略控制模块310、执行模块450、战术控制和操作模块330、输出和电动机扭矩确定模块340、发动机410和电机420。这些示例的模块如上文与图16和图17相关的描述那样运行。变速执行模块450更细节地被显示,模块450包括输入加速度优先次序决定模块453、离合器滑动加速度限制模块454、离合器滑动速度曲线模块455、输入加速度限制模块456和输Ail度曲线模块457。输入加速度优先次序决定模块453监控从模块310的H—DEs和反馈即时输入加速度曲线。如此处公开的方法所述,该模块确立以最大的希望的输入加速度和最小的希望的输入加速度为形式的输入加鹏约束。离合器滑动加速度限制模块454输入从模±央453的约束并监控发动机扭矩。模块454使用这些以最大的离合器一滑动加速度和最小的离合器一滑动加速度为形式的输入和输出离合器滑动加速度约束。然后根据此处所述的方法在离合器滑动速度曲线模块455中利用这些离合器滑动加速度约束产生离合器一滑动加速度和滑动速度曲线。模块455中确定的引导曲线被直接发送到战术控制和操作模块330用来根据确定的曲线控制TI。输入加速度限制模块456从模块455输入离合器一即时滑动加速度曲线并输入发动机扭矩。模块456确定最小的和最大的输入加速度约束,输Ai!J^曲线模块457根据此处所述的方法使用这些输入加速度约束与NIDES来产生输入加速度和输AiI度曲线。战术控制和操作模块3304顿从变速执行模块450的输入了传达发动机扭矩命令。输出和电动机扭矩确定模块340使用从变速执行模块的输入并输入相关的发动机扭矩来控制电机420。Mil这种方式,可以执行此处所述的管理输A3I度和离合器滑动的方法。应当理解允许在本发明的范围内对本发明做出修改。已经以特定的伏选实施例及其变形对本发明作了说明。通过阅读及理解说明书可以产生其他进一步的修改及改变。希望包括所有此种修改和变形,只要他们包含在本发明的范围内。权利要求1.一种在空档操作范围状态下控制传动系的方法,包括机械地可操作地与内燃机和电机连接的适于可选择地给输出部件传递机械动力的电动机械变速器,该方法包括在空档操作范围状态下操作所述的变速器;监控影响输入速度的命令;监控受追踪的离合器滑动速度;在所述命令的基础上确定输入加速度的约束;在所述的对所述输入加速度的约束的基础上确定离合器滑动加速度曲线;在所述离合器滑动加速度曲线的基础上确定输入加速度曲线;在所述离合器滑动加速度曲线和所述的输入加速度曲线的基础上控制所述传动系。2.如权禾腰求l所述的方法,其特征在于,所述的离合器滑动加速度曲线包括引导信号和即时信号,以及其中所述的即时信号从所述的弓l导信号延迟一个弓l导时期,所述引导时期按照传动系扭矩产生装置反应时间的差异来校准。3.如权利要求l所述的方法,其特征在于,还包括在所述的对所述输入加速度的约束的基础上确定对离合器滑动加速度的约束;且其中所述的确定所述离合器滑动加速度曲线取决于所述的对所述离合器滑动加速度约束。4.如权利要求l所述的方法,其特征在于,对影响所述输AiI度的命令的监控包括监控希望的输入速度;以及确定所述希望的输AiI度的变化。5.如权利要求l所述的方法,其特征在于,还包括监控受ii5宗的离合器目标滑动速度,其中所述的确定所述离合器滑动加速度曲线进一步取决于在所述的^i!5宗的离合器目标滑动速度。6.如t又利要求5所述的方法,其特征在于,所述的确定所述离合器滑动加速度曲线是在第一离合器领域内执行的,以及其中在所述的离合器滑动加速度曲线的基础上控制所述传动系包括将所述第一离合器的领域内执行的所述离合器滑动加速度曲线变换到在受追踪的离合器的领域内执行的离合器滑动加速度曲线。7.如权利要求6所述的方法,其特征在于,所述的第一离合器的领域内执行的所述离合器滑动加速度曲线取决于所述受追踪的离合器的领域内确定且随后变换到所述第一离合器的领域内的计算。8.如权利要求1所述的方法,其特征在于,确定所述输入加速度的约束包括使用滞后阈值,以便基于所述滞后阈值确定允许的输入加速度值的范围。9.如权禾腰求8所述的方法,其特征在于,4顿所述滞后阈值包括i顿多边界阈值。10.如权禾腰求8所述的方法,其特征在于,f顿所述滞后阈值包括对所述的影响所述输A3I度的命令的改变的每一个方向使用双边界阈值。全文摘要本发明涉及确定空档输入加速和离合器同步性能优先次序的方法和装置,其中控制传动系的方法包括在空档操作范围状态下操作变速器、监控影响输入速度的命令、监控受追踪的离合器滑动速度、在所述命令的基础上确定输入加速度的约束、在所述输入加速度的约束的基础上确定离合器滑动加速度曲线、在所述离合器滑动加速度曲线的基础上确定输入加速度曲线和在所述离合器滑动加速度曲线和所述的输入加速度曲线的基础上控制所述传动系。文档编号F16H61/04GK101457835SQ20081019113公开日2009年6月17日申请日期2008年11月4日优先权日2007年11月4日发明者A·H·希普,J·-J·F·萨,K·L·戴,L·A·卡明斯基申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1