一种测量一氧化碳透过率的装置的制作方法

文档序号:11197187阅读:678来源:国知局
一种测量一氧化碳透过率的装置的制造方法

本发明涉及气体透过率测试领域,特别是一种使用氩气来校准质谱、能够在测试中对质谱原位校准的一种测量一氧化碳透过率的装置。



背景技术:

测量气体透过率(gaspermeability)的现有方法中,如使用质谱测量气体透过率的方法,其缺陷是,对一氧化碳透过率的测量值并不可靠,因为质谱的输出信号是离子电流,需要进行校准,而现有技术中使用的质谱通常是用如氮气、氩气、氦气等惰性气体校准的,质谱对一氧化碳的灵敏度的数据不足,导致数据精度下降。另外,现有技术中通常使用的是质量流量计来测量通入气体的量,精确度较低,在对于某些气体透过率非常低的样品的情况,比如一氧化碳气体在某些工业用有机保护膜的透过情况,测试通常需要较长时间,因此会造成较大误差,又由于一氧化碳分子的动态体积通常不同于化学性质较为稳定的氦气、氮气等气体,这导致了质量流量计的测量有更大误差,也导致数据精度下降,所述一种测量一氧化碳透过率的装置能解决问题。



技术实现要素:

为了解决上述问题,本发明通过一个流导单元作为参考流导(referenceconductance),并使用氩气来校准质谱,增加了测量的可靠性,能够在测试中对质谱原位校准。

本发明所采用的技术方案是:

所述一种测量一氧化碳透过率的装置,主要包括储气罐i、储气罐ii、气压计、阀i、阀ii、流导单元、传样腔、传样杆、气动阀、高压区域、样品、样品架、测试区域、质谱、测试腔、真空泵及气管,所述高压区域、样品、样品架、测试区域均位于所述测试腔内,所述样品架安装到测试腔时能够将所述测试腔隔开为所述高压区域和所述测试区域,所述样品架中心具有贯穿的开口,当样品架安装到测试腔时,所述开口为所述高压区域和所述测试区域之间唯一的气路,所述测试区域外端安装有所述质谱,所述质谱入口在所述测试区域内,所述样品用真空胶粘于所述样品架上位于所述高压区域的一面,完全覆盖所述样品架中心的开口,所述传样腔通过所述气动阀连接所述测试腔,所述传样腔具有所述传样杆、且能够将所述样品架在所述传样腔和测试腔之间传输,所述测试腔连接有所述真空泵;所述储气罐i中储存了高纯氩气,所述储气罐ii中储存了一氧化碳,所述储气罐i和储气罐ii出口处均具有阀门,所述储气罐i和储气罐ii通过气管相连、且该段气管相连处具有所述气压计,然后经气管分别连接气路i和气路ii,再气管连接于所述测试腔的所述高压区域,所述气路i上依次连有所述阀ii、流导单元,所述气路ii上具有所述阀i,所述质谱的输出信号即离子电流对于氩气的校准数据是已知的。

所述流导单元内部为具有多孔材料,在特定的温度条件下某种气体在通过所述流导单元时都有特定的分子流导,通过所述流导单元的分子流具有的特性是,分子流导在不同的气压条件下保持不变,分子流导与气体分子质量的开方的倒数成正比,分子流导与温度的开方成正比,所述高压区域和所述测试区域内均安装有残余气体分析仪,用于测量气体分压。

所述流导单元内部的多孔材料的孔径0.5微米至1微米,所述质谱入口到样品的距离为10毫米至50毫米;所述质谱入口为毛细管形状、且长度5毫米至30毫米,内径0.3毫米至1毫米;所述样品架中心的开口形状是直径1毫米至5毫米的圆形、也可以是边长1毫米至4毫米的正方形;所述样品的厚度为200微米至2毫米;所述样品架与测试腔的密封结构是橡胶圈密封、也可以是铜圈密封。

利用所述一种测量一氧化碳透过率的装置进行测量的方法步骤为:

一.开启所述气动阀,用所述传样杆将所述样品架取至所述传样腔,开启所述阀i和阀ii,开启所述真空泵对装置抽真空;

二.关闭所述气动阀,关闭阀i,打开储气罐i,使氩气流经过流导单元后进入测试腔,开启质谱,开始校准过程;

三.校准流导单元在不同温度下对于氩气的分子流导car2:通过逐步改变氩气的温度以逐步改变其通过流导单元的摩尔流量qar2,并同时记录相应的质谱的离子电流,然后根据已知的质谱的对于氩气的校准数据,来确定摩尔流量qar2与质谱数据中氩气对应的峰值增量的关系曲线;

四.关闭储气罐i,开启储气罐ii,保持阀ii开启状态,保持阀i关闭状态,使一氧化碳经过所述流导单元后进入测试腔并最终进入所述质谱,通过逐步改变一氧化碳的温度以逐步改变一氧化碳的摩尔流量qco,并同时记录相应的质谱的离子电流,从而得到一氧化碳的摩尔流量qco与质谱的离子电流之间的关系曲线;

五.由步骤三中得到的摩尔流量qar2与质谱数据中氩气对应的峰值增量的关系曲线,计算得到一氧化碳通过所述流导单元的摩尔流量其中car2是流导单元中氩气分子流导,mar2和mco是氩气和一氧化碳的分子量,pr是储气罐ii中的气压,r是气体常数,t是步骤四中储气罐ii中的温度,t0是步骤三中储气罐i中的温度;

六.比较步骤四中测量得到的一氧化碳的摩尔流量qco与质谱的离子电流之间的关系曲线,将步骤四得到的测量值和步骤五得到的一氧化碳通过所述流导单元的摩尔流量计算值qco比较,得到不同温度条件下测量值和计算值之间的比例关系,至此校准过程结束;

七.一氧化碳在样品中的透过率测试,用所述传样杆将所述样品架取至所述测试腔,并将所述测试腔隔开为所述高压区域和所述测试区域,关闭气动阀,开启所述储气罐ii,开启所述阀i,记录相应的质谱的离子电流,并按照步骤六中得到的测量值和计算值之间的比例关系,对一氧化碳通过所述流导单元的摩尔流量进行校准,得到校准后的所述流导单元的摩尔流量;

八.根据步骤七中得到的校准后的所述流导单元的摩尔流量计算一氧化碳的透过率其中a为样品在气路中部分的面积。

本发明的有益效果是:

本发明通过一个流导单元作为参考流导(referenceconductance),并使用氩气来校准质谱,增加了测量的可靠性,能够在测试中对质谱原位校准,使用氩气来校准质谱、能够在测试中对质谱原位校准。

附图说明

下面结合本发明的图形进一步说明:

图1是本发明示意图。

图中,1.储气罐i,2.储气罐ii,3.气压计,4.阀i,5.阀ii,6.流导单元,7.传样腔,8.传样杆,9.气动阀,10.高压区域,11.样品,12.样品架,13.测试区域,14.质谱,15.测试腔,16.真空泵。

具体实施方式

如图1是本发明示意图,主要包括储气罐i1、储气罐ii2、气压计3、阀i4、阀ii5、流导单元6、传样腔7、传样杆8、气动阀9、高压区域10、样品11、样品架12、测试区域13、质谱14、测试腔15、真空泵16及气管,所述高压区域10、样品11、样品架12、测试区域13均位于所述测试腔15内,所述样品架12安装到测试腔15时能够将所述测试腔15隔开为所述高压区域10和所述测试区域13,所述样品架12中心具有贯穿的开口,当样品架12安装到测试腔15时,所述开口为所述高压区域10和所述测试区域13之间唯一的气路,所述测试区域13外端安装有所述质谱14,所述质谱14入口在所述测试区域13内,所述样品11用真空胶粘于所述样品架12上位于所述高压区域10的一面,完全覆盖所述样品架12中心的开口,所述传样腔7通过所述气动阀9连接所述测试腔15,所述传样腔7具有所述传样杆8、且能够将所述样品架12在所述传样腔7和测试腔15之间传输,所述测试腔15连接有所述真空泵16;所述储气罐i1中储存了高纯氩气,所述储气罐ii2中储存了一氧化碳,所述储气罐i1和储气罐ii2出口处均具有阀门,所述储气罐i1和储气罐ii2通过气管相连、且该段气管相连处具有所述气压计3,然后经气管分别连接气路i和气路ii,再气管连接于所述测试腔15的所述高压区域10,所述气路i上依次连有所述阀ii5、流导单元6,所述气路ii上具有所述阀i4,所述质谱14的输出信号即离子电流对于氩气的校准数据是已知的。

所述流导单元6内部为具有多孔材料,在特定的温度条件下某种气体在通过所述流导单元时都有特定的分子流导,通过所述流导单元6的分子流具有的特性是,分子流导在不同的气压条件下保持不变,分子流导与气体分子质量的开方的倒数成正比,分子流导与温度的开方成正比,所述高压区域10和所述测试区域13内均安装有残余气体分析仪,用于测量气体分压。

所述流导单元6内部的多孔材料的孔径0.5微米至1微米,所述质谱14入口到样品11的距离为10毫米至50毫米;所述质谱14入口为毛细管形状、且长度5毫米至30毫米,内径0.3毫米至1毫米;所述样品架12中心的开口形状是直径1毫米至5毫米的圆形、也可以是边长1毫米至4毫米的正方形;所述样品11的厚度为200微米至2毫米;所述样品架12与测试腔15的密封结构是橡胶圈密封、也可以是铜圈密封。

本发明使用一个流导单元通过变温来调节氩气摩尔流量的方法来校准质谱,能够对质谱原位校准,提高了校准的精度,并使得一氧化碳透过率测量能够一次性完成,既节省了时间又减少了干扰因素从而增加了一氧化碳透过率测量的可靠性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1