基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法与流程

文档序号:17132138发布日期:2019-03-16 01:25阅读:179来源:国知局
基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法与流程
本发明涉及鱿鱼资源丰度预测
技术领域
,特别是涉及一种基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法。
背景技术
:太平洋褶柔鱼todarodespacificus(也称日本鱿鱼)是世界上重要的经济头足类资源,仅分布在太平洋西北海域和东太平洋的阿拉斯加湾。主要分布在西太平洋的21°-50°n海域,即日本海、日本太平洋沿岸以及我国的黄海、东海。它为暖温带大洋性浅海种,栖息于表层至500m水层,适温范围广。根据太平洋褶柔鱼的产卵季节、生长类型及洄游路径,可将其分为冬生群、秋生群和夏生群三个种群。它们有着不同的生活周期,却有相同的生活习性。秋生群主要分布于日本海中部,该群体在20世纪70年代以后取代了秋生群,成为日本鱿钓船的主捕对象。其成熟个体是三个种群中最大的。其产卵场从东海北部延伸到日本海的西南部,产卵期在9-11月。该种群春夏季沿日本海东西两侧北上索饵,秋季南下产卵洄游。太平洋褶柔鱼是世界上头足类最早被大规模开发利用的种类之一。20世纪70年代以前,其产量占日本国内头足类总产量的70-80%。据fao统计,1968年太平洋褶柔鱼的总产量达到历史最高水平,超过75万吨。但由于捕捞强度的增加,以后产量逐年下降。1986年达到自1950年以来的最低产量,只有12多万吨。之后出现持续增加,一直到1996年,年产量达到近70万吨。之后又出现下降,目前太平洋褶柔鱼的总产量稳定在32-42万吨。太平洋褶柔鱼秋生群的主要渔获来自日本海,主渔汛为5~10月。日本和韩国是主要捕捞国家,其它还有朝鲜和中国,也有少量捕捞。在沿岸海域主要是小型的鱿钓船(30吨未满),渔获物为生鲜。在外海则为中型的鱿钓船(30~185吨),渔获物为冷冻。另外除了鱿钓外,还有定置网作业和底拖网作业。日本在70年代后期的产量达到30万吨,之后减少,1986年只有5万吨左右,以后出现增加,90年代稳定在7-18万吨。近年来,日本和韩国的累计渔获量在10-20万吨。太平洋褶柔鱼资源易受海洋环境因子的影响。胡飞飞等(2015)根据日本对太平洋褶柔鱼秋生群体的资源评估报告,以及产卵场海表温度(sst)、叶绿素a质量浓度(chl-a),计算分析太平洋褶柔鱼在产卵期产卵场各月最适表温范围占总面积的比例(ps)、表征产卵场环境的tsst、chl-a等多种环境因子与单位捕捞努力量的渔获量(cpue)的相关性,建立多种基于主要环境因子的资源补充量预报模型。上述研究表明,目前国内外各学者对日本秋生群鱿鱼产卵场环境影响其资源补充量进行了很好的研究,并建立了相应的资源量预测模型,但在如何运用气候因子来提前预测其资源量则是空白。技术实现要素:本发明针对现有技术存在的问题和不足,提供一种基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法。本发明是通过下述技术方案来解决上述技术问题的:本发明提供一种基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法,其特点在于,其包括以下步骤:s1、获取前n年日本秋生群鱿鱼分布的日本海海域的每月的太平洋震荡指数pdo值;s2、利用时间序列分析方法,对日本秋生群鱿鱼资源丰度cpue与前n年每月的pdo值进行相关性分析,获取在统计上相关的p<0.05的月pdo值,该些月pdo值作为影响日本秋生群鱿鱼资源丰度的气候因子;s3、利用多元线性方程建立多个日本秋生群鱿鱼资源丰度预测模型并计算统计上p值,其公式为:cpue=a+b1*x1+b2*x2+b3*x3+……+bn*xn式中,cpue为日本中小型鱿钓船日产量,作为日本秋生群鱿鱼资源丰度衡量指标,a为常数,b1、b2、b3、……、bn为方程的系数;x1、x2、x3、……、xn为影响资源丰度的月pdo值;s4、在上述多个日本秋生群资源丰度预测模型中,选择统计上p值最小的模型作为最优模型。在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。本发明的积极进步效果在于:(1)利用太平洋震荡指数pdo进行日本海秋生群鱿鱼资源丰度的预测;(2)选择前2年的10月pdo值、前1年10月pdo值作为气候预测因子;(3)日本海秋生群鱿鱼资源丰度预测模型为:cpue=2.3463-0.1674*pdot-2,10-0.1977*pdot-1,10,pdot-2,10、pdot-1,10分别是前2年和前1年的10月pdo值。附图说明图1为基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法的流程图。图2为1990-2016年日本秋生群鱿鱼资源丰度cpue年间变化图。图3为1990-2016年日本海秋生群鱿鱼资源丰度cpue实际值与预测值变化分布图。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。如图1所示,本实施例提供一种基于太平洋震荡指数的日本秋生群鱿鱼资源丰度预测方法,其包括以下步骤:步骤101、获取前n年日本秋生群鱿鱼分布的日本海海域的每月的太平洋震荡指数pdo值;步骤102、利用时间序列分析方法,对日本秋生群鱿鱼资源丰度cpue与前n年每月的pdo值进行相关性分析,获取在统计上相关的p<0.05的月pdo值,该些月pdo值作为影响日本秋生群鱿鱼资源丰度的气候因子;步骤103、利用多元线性方程建立多个日本秋生群鱿鱼资源丰度预测模型并计算统计上p值,其公式为:cpue=a+b1*x1+b2*x2+b3*x3+……+bn*xn式中,cpue为日本中小型鱿钓船日产量,作为日本秋生群鱿鱼资源丰度衡量指标,a为常数,b1、b2、b3、……、bn为方程的系数;x1、x2、x3、……、xn为影响资源丰度的月pdo值;步骤104、在上述多个日本秋生群资源丰度预测模型中,选择统计上p值最小的模型作为最优模型。下面举一具体的例子来说明本发明,以使得本领域的技术人员能够更好地理解本发明的技术方案。1、材料和方法(1)数据来源日本秋生群鱿鱼广泛分布在日本海周边海域,主要作业渔场分布在日本海,其产卵场和索饵场的环境状况容易受到太平洋震荡指数(pacificdecadaloscillation,pdo)的影响。太平洋震荡指数是一种以10年周期尺度变化的太平洋气候变化现象。变换周期通常为20~30年。pdo的特征为太平洋北纬20度以北区域表层海水温度异常偏暖或偏冷。在太平洋十年涛动“暖相位”(或“正相位”)期间西太平洋偏冷而东太平洋偏暖,在“冷相位”(或“负相位”)期间西太平洋偏暖而东太平洋偏冷。pdo来自美国华盛顿大学网站(http://research.jisao.washington.edu/pdo/pdo.latest.txt),其时间段为1988年1月至2017年12月(表1)。日本秋生群鱿鱼资源丰度指数cpue(单位为吨/船)来自日本中小型鱿钓船的产量,时间为1990年-2016年(表2)。表11990年1月-2017年12月太平洋震荡指数月统计表年份1月2月3月4月5月6月7月8月9月10月11月12月19880.931.241.420.941.20.740.640.19-0.37-0.1-0.02-0.431989-0.95-1.02-0.83-0.320.470.360.830.090.05-0.12-0.5-0.211990-0.3-0.65-0.620.270.440.440.270.110.38-0.69-1.69-2.231991-2.02-1.19-0.74-1.01-0.51-1.47-0.10.360.650.490.420.0919920.050.310.670.751.541.261.91.440.830.930.930.5319930.050.190.761.212.132.342.352.691.561.411.241.0719941.210.590.81.051.230.460.06-0.79-1.36-1.32-1.96-1.791995-0.490.460.750.831.461.271.710.211.160.47-0.280.1619960.590.751.011.462.181.10.77-0.140.24-0.330.09-0.0319970.230.280.651.051.832.762.352.792.191.611.120.6719980.831.562.011.270.70.4-0.04-0.22-1.21-1.39-0.52-0.441999-0.32-0.66-0.33-0.41-0.68-1.3-0.66-0.96-1.53-2.23-2.05-1.632000-2-0.830.290.35-0.05-0.44-0.66-1.19-1.24-1.3-0.530.5220010.60.290.45-0.31-0.3-0.47-1.31-0.77-1.37-1.37-1.26-0.9320020.27-0.64-0.43-0.32-0.63-0.35-0.310.60.430.421.512.120032.091.751.511.180.890.680.960.880.010.830.520.3320040.430.480.610.570.880.040.440.850.75-0.11-0.63-0.1720050.440.811.361.031.861.170.660.25-0.46-1.32-1.50.220061.030.660.050.40.481.040.35-0.65-0.94-0.05-0.220.1420070.010.04-0.360.16-0.10.090.780.5-0.36-1.45-1.08-0.582008-1-0.77-0.71-1.52-1.37-1.34-1.67-1.7-1.55-1.76-1.25-0.872009-1.4-1.55-1.59-1.65-0.88-0.31-0.530.090.520.27-0.40.0820100.830.820.440.780.62-0.22-1.05-1.27-1.61-1.06-0.82-1.212011-0.92-0.83-0.69-0.42-0.37-0.69-1.86-1.74-1.79-1.34-2.33-1.792012-1.38-0.85-1.05-0.27-1.26-0.87-1.52-1.93-2.21-0.79-0.59-0.482013-0.13-0.43-0.63-0.160.08-0.78-1.25-1.04-0.48-0.87-0.11-0.4120140.30.380.971.131.80.820.70.671.081.491.722.5120152.452.321.441.21.541.841.561.941.470.861.0120161.531.752.42.622.352.031.250.520.450.561.881.1720170.770.70.741.120.880.790.10.090.320.050.150.5表219990-2016年日本中小型鱿钓船日产量(2)研究方法与步骤以日本中小型鱿钓船日产量cpue为日本秋生群鱿鱼资源丰度为指标,利用时间序列分析方法,对cpue值与1988-2016年1-12月的pdo值进行相关性分析,获取在统计上相关的月pdo值(统计上p<0.05),这些月的pdo值作为影响日本秋生群鱿鱼资源丰度的气候因子。利用多元线性方程建立多个日本秋生群鱿鱼资源丰度预测模型,其公式为:cpue=a+b1*x1+b2*x2+b3*x3+……+bn*xn。式中,cpue为单船日产量,a为常数,b1、b2、b3、……、bn为方程的系数;x1、x2、x3、……、xn为影响资源丰度的月pdo值。在上述多个鱿鱼资源丰度预测模型中,选择统计上p值最小的模型作为最优模型。2、研究结果(1)年间资源丰度cpue变化由图2可知,日本秋生群鱿鱼资源丰度cpue呈现显著的年间变化,1990-1992、2001-2002年、2004-2005年、2015-2016年处在低的资源量水平;而2001-2003年、2008-2009年则处在高的资源量水平。(2)影响资源丰度cpue的pdo值资源丰度cpue与前2年各月的pdo值的相关性分析认为,其资源丰度cpue与前2年的10月pdo值相关性显著,且呈现负相关,其相关系数分别为-0.390(p<0.05)。资源丰度cpue与前1年各月pdo值的相关性分析认为,其资源丰度cpue与前1年的10月pdo值相关性显著,且呈现负相关,其相关系数分别为-0.4486(p<0.05)。资源丰度cpue与同年的各月pdo值的相关性分析认为,其资源丰度cpue与同年的1-12月pdo值相关性无显著。(3)建立资源丰度预测的模型1)预测模型之一以前2年的10月pdo值(pdot-2,10)、上一年10月pdo值(pdot-1,10)作为预测因子,建立日本海秋生群鱿鱼资源丰度预测模型为:cpue=2.3463-0.1674*pdot-2,10-0.1977*pdot-1,10其f值为4.9268(p=0.0161<0.05)。其实际值与预测值的统计表如表3。表3日本海秋生群鱿鱼资源丰度实际值与预测值及其残差2)预测模型之二以前2年的10月pdo值(pdot-2,10)作为预测因子,建立日本海秋生群鱿鱼资源丰度预测模型为:cpue=2.3894-0.2127*pdot-2,10其f值为4.4922(p=0.0442<0.05)。其实际值与预测值的统计表如表4。表4日本海秋生群鱿鱼资源丰度实际值与预测值及其残差3)预测模型之三以上一年10月pdo值(pdot-1,10)作为预测因子,建立日本海秋生群鱿鱼资源丰度预测模型为:cpue=2.3958-0.2323*pdot-1,10其f值为6.2984(p=0.0189<0.05)。其实际值与预测值的统计表如表5。表5日本海秋生群鱿鱼资源丰度实际值与预测值及其残差由上述三个模型比较分析可以得出,本研究选择前2年的10月pdo值(pdot-2,10)、上一年10月pdo值(pdot-1,10)作为气候预测因子,建立日本海秋生群鱿鱼资源丰度预测模型为:cpue=2.3463-0.1674*pdot-2,10-0.1977*pdot-1,10。其实际值与预测值的资源丰度变化趋势如图3所示。虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1