无线探地雷达系统的制作方法

文档序号:6730356阅读:168来源:国知局
专利名称:无线探地雷达系统的制作方法
技术领域
本实用新型涉及一种带无线数据采集和自动待机功能的探地雷达(GPR)系统。
背景技术
探地雷达(Ground Penetrating Radar, GPR)系统是一种地球物理勘探系统,主要 用于浅层探测,其是目前包括高速公路结构检测在内的,用于地下无损检测的很好的仪器, 应用领域包括空洞检测、道路路面或地下破损检测、桥梁甲板分层定位、地下管道检测、桥 梁冲刷引起的河床附近桥基侵蚀检测,以及其它领域如地球物理探测地质沉积物以及地质 结构、确定基岩和地下水位的深度、考古时在挖掘之前用于定位地下文物的结构(防止意 外损坏)、生命探测以及探测地雷等。传统的探地雷达系统如图1所示,其包括探地雷达天线盒100、探地雷达控制盒 120和数据处理单元130。所述探地雷达控制盒120通过电缆106 (包括电源线、信号控制 线和模拟信号线)与所述探地雷达天线盒100连接,所述数据处理单元130通过一个便携 式介质(如闪存驱动器)或电缆(如USB,并口电缆或串行电缆)126与所述探地雷达控制 盒120连接。所述探地雷达天线盒100包括发射机103、与所述发射机103连接的发射天线 101、接收天线102、与所述接收天线102连接的接收机104、以及与所述发射机103、接收机 104连接的时序系统105。所述时序系统105通过所述电缆106接收所述探地雷达控制盒 120的命令,并控制所述发射机103、发射天线101发送电磁信号,所述接收天线102、接收 机104在所述时序系统105的控制下接收所述电磁信号,所述时序系统105将接收到的电 磁信号通过电缆106发送至探地雷达控制盒120。所述探地雷达控制盒120包括电池127、与所述电池127以及通过电缆106与所述 时序系统105连接的电源121、与所述电源121以及通过电缆106与所述时序系统105连接 的模数转换器122、与所述模数转换器122连接的数字信号处理器125、与所述数字信号处 理器125以及通过电缆106与所述时序系统105连接的数字控制器123、均与所述数字信号 处理器125连接的显示器129以及数据保存单元124。所述模数转换器122通过所述电缆 106接收所述探地雷达天线盒100发送的电磁信号信号并将所述电磁信号进行模数转换, 所述数字信号处理器125对所述模数转换后的电磁信号进行处理,得到地面布局信息,所 述显示器129显示所述数字信号处理器125处理的结果,所述数据保存单元124存储所述 数字信号处理器125处理的结果。电池127为探地雷达控制盒120和探地雷达天线盒100 提供工作电源,电源121将电池127提供的电压转换为探地雷达控制盒120和探地雷达天 线盒100需要的各种规格的电压。数字控制器123控制数字信号处理器125进行信号处理 以及控制时序系统105工作。探地雷达控制盒120通过控制时序系统105使探地雷达天线 盒100工作并将接收到的电压信号发送至模数转换器122,模数转换器122将该电压信号处 理后,数字信号处理器125将模数转换器122处理后的信号进行计算,得到地面布局信息。所述数据处理单元130与所述探地雷达控制盒120的数字信号处理器125连接。所述数据处理单元130通常是一个PC(计算机)或相当于PC的处理器。所述数据处理单 元130将所述数字信号处理器125处理后的信号再次进行后处理,这种后处理主要通过软 件实现。然而,上述传统的探地雷达系统的各部分(探地雷达天线盒100、探地雷达控制盒 120和数据处理单元130)必须一起移动来完成对被测区域扫描进而实现被测区域的路面 分布。另外,探地雷达天线盒100与探地雷达控制盒120之间、探地雷达控制盒120与数 据处理单元130之间的连接均为有线连接,这种有线连接限制了探地雷达系统使用的方便 性和可操作性,而且有线连接因为频繁的插拔增加了仪器的不可靠性。此外,探地雷达控制盒120和数据处理单元130重量大、体积大,因而移动较为困 难,更加大了探地雷达系统完成扫描操作的难度。再者,探地雷达控制盒120和数据处理单元130耗电量大,电池127只能提供不到 4小时的能量,因此4小时后探地雷达系统将不能正常工作,需要更换电池。最后,探地雷达控制盒120的各组成单元和数据处理单元130 —般只能使用固定 的器件,造成使用的局限性。因此,有必要提供一种改进的探地雷达系统来克服现有技术的缺陷。 发明内容本实用新型的目的是提供一种无线探地雷达系统,无需移动系统的每个部分,并 且实现扫描地面和确定路面分布过程不受连接以及重量、体积的限制,耗电小、使用不受器 件的局限。为了实现上述目的,本实用新型提供了一种无线探地雷达系统,包括无线数据采 集子系统和探地雷达前端子系统,所述无线数据采集子系统包括采集存储显示单元;所述 探地雷达前端子系统包括电池、电源稳压器、以及依次连接的以太网控制器、ARM控制器、数 字信号处理器、模数转换器、数字控制器、时序系统、发射机、发射天线、接收天线和接收机, 所述电源稳压器与所述探地雷达前端子系统内的其它部件连接,所述接收机还与所述时序 系统以及所述模数转换器连接,所述数字控制器还与所述ARM控制器连接,其中,所述采集 存储显示单元与所述以太网控制器无线连接。在本实用新型的一个实施例中,所述无线数据采集子系统还包括与所述采集存储 显示单元连接的第一无线发射接收天线,所述探地雷达前端子系统还包括与所述第一无线 发射接收天线以及所述电源稳压器连接的第二无线发射接收天线、与所述第二无线发射接 收天线、所述以太网控制器以及所述电源稳压器连接的无线集线器。在本实用新型的另一实施例中,所述第一无线发射接收天线和所述第二无线发射 接收天线为同一天线。在本实用新型的再一实施例中,所述采集存储显示单元通过无线局域网协议、蓝 牙无线通信协议,ZigBee无线通信协议或点对点无线通信协议与所述以太网控制器无线连接。在本实用新型的又一实施例中,所述探地雷达前端子系统为多个,所述多个探地 雷达前端子系统与一个无线数据采集子系统无线连接。[0019]在本实用新型的再一实施例中,所述采集存储显示单元还与所述以太网控制器有 线连接。在本实用新型的又一实施例中,所述采集存储显示单元通过电缆与所述以太网控 制器有线连接。与现有技术相比,本实用新型无线探地雷达系统的无线数据采集子系统与探地雷 达前端子系统无线连接,因此在实现扫描地面和确定路面分布过程中,只需移动探地雷达 前端子系统,无线数据采集子系统无需移动,这种无线连接便利了探地雷达系统的使用。另外,本实用新型无线探地雷达系统的无线数据采集子系统可以为任何具有内置 无线局域网或其它无线网的设备(如带无线网卡功能的笔记本电脑或者其它设备),因此 系统不受器件的局限,并且在实现扫描地面和确定路面分布过程无需移动无线数据采集子 系统,系统的功能实现不受重量、体积的限制。此外,当探地雷达前端子系统没有进行数据采集或探地雷达前端子系统没有接收 到无线数据采集子系统发送的数据采集命令时,探地雷达前端子系统将处于睡眠模式,系 统功耗得到降低。再者,本实用新型无线探地雷达系统的无线数据采集子系统的无线数据采集子系 统与探地雷达前端子系统也可以无线连接。通过以下的描述并结合附图,本实用新型将变得更加清晰,这些附图用于解释本 实用新型的实施例。

图1为传统的探地雷达系统的结构框图。图2为本实用新型无线探地雷达系统第一实施例的结构框图。图3为本实用新型无线探地雷达系统第二实施例的结构框图。
具体实施方式
现在参考附图描述本实用新型的实施例,附图中类似的元件标号代表类似的元 件。图2为本实用新型无线探地雷达系统第一实施例的结构框图,所述探地雷达系统 包括无线数据采集子系统300和探地雷达前端子系统200。所述无线数据采集子系统300 与所述探地雷达前端子系统200无线连接。下面具体说明。所述无线数据采集子系统300包括采集存储显示单元310以及与所述采集存储显 示单元310连接的第一无线发射接收天线301。所述探地雷达前端子系统200包括电池、电源稳压器、依次连接的第二无线发射 接收天线214、无线集线器213、以太网控制器212、ARM控制器211、数字信号处理器210、模 数转换器206、数字控制器207、时序系统205、发射机203、发射天线201、接收天线202和接 收机204,所述电源稳压器与所述探地雷达前端子系统内的其它部件连接,所述接收机还与 所述时序系统以及所述模数转换器连接,所述数字控制器还与所述ARM控制器连接,其中, 所述采集存储显示单元310通过所述第一无线发射接收天线301、所述第二无线发射接收 天线214、以及所述无线集线器213与所述以太网控制器212无线连接.[0033]下面阐述本实施例无线探地雷达系统的工作原理。所述无线数据采集子系统300的采集存储显示单元310产生对特定地面进行数据 采集的数据采集命令;所述第一无线发射接收天线301发送所述采集存储显示单元310产 生的数据采集命令;所述探地雷达前端子系统200的第二无线发射接收天线214接收所述 第一无线发射接收天线301发送的数据采集命令;所述无线集线器213将所述第二无线发 射接收天线214接收的数据采集命令转换成数字信号(包括相关参数信号和控制命令信 号);所述以太网控制器212将所述无线集线器213转换的数字信号发送至所述ARM控制器 211 ;所述ARM控制器211将所述数字信号中的控制命令信号发送至所述数字控制器207, 将所述数字信号中的相关参数信号发送至所述数字信号处理器210 ;所述时序系统205在 所述数字控制器207的控制命令信号的控制下产生脉冲序列;所述发射机203在所述时序 系统205产生的脉冲序列的触发下产生发射信号,其中所述发射信号为高速高电压窄脉冲 信号;所述发射天线201发送所述发射机203产生的发射信号(所述发射信号通过媒介在 所述特定地面发生反射)。所述接收天线202接收所述发射天线201发送的发射信号经所述特定地面反射 后的信号,其中所述接收信号也是高速高电压窄脉冲信号;所述接收机204用于在所述时 序系统205产生的脉冲序列的触发下对所述接收天线202接收的信号进行等效采样、实时 采样、或随机采样,并将所述采样后的信号转化为低速低电压的脉冲信号;所述模数转换器 206在所述数字控制器207的控制命令信号的控制下将所述接收机204处理后的低速低电 压的脉冲信号进行模数转换;所述数字信号处理器210在所述相关参数信号的控制下对所 述模数转换器206转换后的数字信号进行计算,得到采集的地表布局信息数据。所述ARM 控制器211将所述数字信号处理器210计算得到的地表布局信息数据进行打包;所述以太 网控制器212工作于OSI模式的最底层,其将所述ARM控制器211打包的地表布局信息数 据转换成电脉冲信号;所述无线集线器213将所述以太网控制器212转换的电脉冲信号进 行调制;所述第二无线发射接收天线214发送所述无线集线器213调制后的信号;所述无 线数据采集子系统300的第一无线发射接收天线301接收所述第二无线发射接收天线214 发送的信号,所述采集存储显示单元310以时域波形和伪彩色图的方式显示所述第一无线 发射接收天线301接收的信号中的地面布局信息数据,操作人员根据波形图以及伪彩色波 形图来判断地下到埋藏物体的形状,埋深及材料信息。其中,所述电池209提供电压给所述电源稳压器208 ;所述电源稳压器208将所述 电池209的电压经过相关的变换后,向所述第二无线发射接收天线214、无线集线器213、以 太网控制器212、ARM控制器器211、数字控制器207、时序系统205、发射机203、发射天线 201、接收天线202、接收机204、模数转换器206、数字信号处理器210提供电源供电源。由上述技术方案可知,本实用新型无线探地雷达系统在实现扫描地面和确定路面 分布过程中,只需移动探地雷达前端子系统200,而无线数据采集子系统300无需移动。另外,无线数据采集子系统300与探地雷达前端子系统200为无线连接,这种无线 连接便利了探地雷达系统的使用,一方面克服了现有有线连接导致的探地雷达系统方便性 和可操作性的限制,另一方面避免了现有有线连接引起的频繁插拔导致探地雷达系统不可 靠性不好的问题。本实用新型探地雷达系统在扫描时只需移动探地雷达前端子系统200,其 中移动范围为距离无线数据采集子系统300 —百米以内的圆周内。[0039]其中,所述无线数据采集子系统300的采集存储显示单元310通过无线局域网协 议、蓝牙,ZigBee、点对点等其它无线通信协议经由所述天线301、天线214发送命令到子系 统200的无线集线器213。由于无线数据采集子系统300与探地雷达前端子系统200间的 连接为通用网络,多个探地雷达前端子系统200可以使用同一个无线数据采集子系统300, 从而实现由一个无线数据采集子系统300控制多个探地雷达前端子系统200的目的,进而 实现网络化的数据采集模式。本实施例无线探地雷达系统允许无线数据采集子系统300通过数据采集命令来 使能探地雷达前端子系统200。当探地雷达前端子系统200没有进行数据采集或探地雷达 前端子系统200的以太网控制器212没有接收到无线数据采集子系统300的采集存储显示 单元310发送的数据采集命令时,所述无线数据采集子系统300与所述探地雷达前端子系 统200之间的探地雷达通信线路将一直工作,而探地雷达前端子系统200的所有器件将处 于睡眠模式,系统功耗得到降低。当探地雷达前端子系统200进行数据采集或探地雷达前 端子系统200的以太网控制器212接收到无线数据采集子系统300的采集存储显示单元 310发送的数据采集命令时,雷达通信线路将继续工作,探地雷达前端子系统200的所有器 件将会被唤醒,此时探地雷达系统处于正常运作模式。当多个探地雷达前端子系统200与 一个无线数据采集子系统300连接时,该功能起到重要作用。其中,所述第二无线发射接收天线214与所述第一无线发射接收天线301为同一 天线,即单稳态天线(一个天线既发射也可接收)。可选地,所述发射天线201与所述接收 天线204为不同天线,即双稳态天线(发射天线和接收天线分开)。其中,任何具有内置无线局域网或其它无线网的设备(如带无线网卡功能的笔记 本电脑或者其它设备)都可以作为无线数据采集子系统300,都能实现远程数据的存储和 显示、以及数据的接收和命令的收发,前提是这些设备都要安装相应的数据采集软件。另 外,所述无线数据采集子系统300在地面探测过程中无需移动,因此本无线探地雷达系统 的功能实现不受重量和体积的限制。无线数据采集子系统300可根据应用需要由用户选 定,使得本实用新型探地雷达系统实用性更强。图3为本实用新型无线探地雷达系统第二实施例的结构框图,所述探底雷达系统 包括无线数据采集子系统500和探地雷达前端子系统400。所述无线数据采集子系统500包括第一无线发射接收天线301、采集存储显示单 元 310。所述探地雷达前端子系统400包括第二无线发射接收天线241、无线集线器213、 以太网控制器212、ARM控制器211、数字控制器207、时序系统205、发射机203、发射天线 201、接收天线202、接收机204、模数转换器206、数字信号处理器210、电池209、电源稳压器 208。与图2所示实施例一相比,本实施例无线探地雷达系统中无线数据采集子系统 500的各组成部分之间的连接关系及各自的作用与与图2所示探地雷达系统中无线数据采 集子系统300中对应器件相同;探地雷达前端子系统400的各组成部分之间的连接关系及 各自的作用与与图2所示探地雷达系统中探地雷达前端子系统200中对应器件相同;所述 无线数据采集子系统500与所述探地雷达前端子系统400之间的连接关系也相同。不同的 是,本实施例探地雷达系统中,探地雷达前端子系统400的以太网控制器212还通过通过电缆413与无线数据采集子系统500的采集存储显示单元310连接。由上述技术方案可知,当无线连接良好时,由于以太网控制器212通过无线集线 器213、第二无线发射接收天线214、第一无线发射接收天线301与采集存储显示单元310 连接,因此本实施例探地雷达系统能实现对被测区域的扫描进而确定被测区域的路面分 布;当无线连接受到干扰而中断时,由于以太网控制器212还通过电缆413与采集存储显示 单元310连接,因此本实施例探地雷达系统能继续实现对被测区域的扫描进而确定被测区 域的路面分布。这种通过一根电缆413取代无线连接的方式,使得本无线探地雷达系统无 需改变任何软件或硬件就能实现被测区域的扫描,并且使用便携。另外,在无线连接良好时,本实施例可以选择性采用有线连接(电缆413)实现对 被测区域的扫描,在此种情形下,无线路由器电源被关闭,使得探地雷达系统功耗大大降 低,电池209的使用时间也被延长。以上结合最佳实施例对本实用新型进行了描述,但本实用新型并不局限于以上揭 示的实施例,而应当涵盖各种根据本实用新型的本质进行的修改、等效组合。
权利要求一种无线探地雷达系统,其特征在于,包括无线数据采集子系统和探地雷达前端子系统,所述无线数据采集子系统包括采集存储显示单元;所述探地雷达前端子系统包括电池、电源稳压器、以及依次连接的以太网控制器、ARM控制器、数字信号处理器、模数转换器、数字控制器、时序系统、发射机、发射天线、接收天线和接收机,所述电源稳压器与所述探地雷达前端子系统内的其它部件连接,所述接收机还与所述时序系统以及所述模数转换器连接,所述数字控制器还与所述ARM控制器连接,其中,所述采集存储显示单元与所述以太网控制器无线连接。
2.如权利要求1所述的无线探地雷达系统,其特征在于,所述无线数据采集子系统还 包括与所述采集存储显示单元连接的第一无线发射接收天线,所述探地雷达前端子系统还 包括与所述第一无线发射接收天线以及所述电源稳压器连接的第二无线发射接收天线、与 所述第二无线发射接收天线、所述以太网控制器以及所述电源稳压器连接的无线集线器。
3.如权利要求2所述的无线探地雷达系统,其特征在于,所述第一无线发射接收天线 和所述第二无线发射接收天线为同一天线。
4.如权利要求1所述的无线探地雷达系统,其特征在于,所述采集存储显示单元通过 无线局域网协议、蓝牙无线通信协议、ZigBee无线通信协议或点对点无线通信协议与所述 以太网控制器无线连接。
5.如权利要求1所述的无线探地雷达系统,其特征在于,所述探地雷达前端子系统为 多个,所述多个探地雷达前端子系统与一个无线数据采集子系统无线连接。
6.如权利要求1所述的无线探地雷达系统,其特征在于,所述采集存储显示单元还与 所述以太网控制器有线连接。
7.如权利要求6所述的无线探地雷达系统,其特征在于,所述采集存储显示单元通过 电缆与所述以太网控制器有线连接。
专利摘要本实用新型涉及一种无线探地雷达系统,包括无线数据采集子系统和探地雷达前端子系统,所述无线数据采集子系统包括采集存储显示单元;所述探地雷达前端子系统包括电池、电源稳压器、以太网控制器、ARM控制器、数字信号处理器、模数转换器、数字控制器、时序系统、发射机、发射天线、接收天线和接收机,其中,所述采集存储显示单元与所述以太网控制器既可以无线连接,也可以有线连接。本系统实现扫描地面和确定路面分布过程中不受重量、体积的限制并且使用不受器件的局限,耗电小且无需移动无线数据采集子系统。
文档编号G08C17/02GK201757788SQ20102022014
公开日2011年3月9日 申请日期2010年6月4日 优先权日2010年6月4日
发明者刘策 申请人:武汉天毅达电子科技有限公司;武汉环达电子科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1