一种基于几何反演阵列的目标探测方法与装置制造方法

文档序号:6735533阅读:162来源:国知局
一种基于几何反演阵列的目标探测方法与装置制造方法
【专利摘要】本发明公开了一种基于几何反演阵列的目标探测方法与装置,采用前端探测和后端目标反演分离模式,探测终端采用单发多收的阵列传感器/天线,负责超宽带探测信号的发射和回波信号的接收,通过无线模块把探测、回波信号和收、发阵元的空间坐标传输到无线移动终端,相关数据通过无线或有线网络传输到负责目标反演后运算的云计算服务器,运用信号处理方法估计从发射阵元到各接收阵元的信号传输延时,应用空间几何原理一次性推算出多个目标空间位置;反演结果由无线模块回传到探测终端,再由人机交互界面显示。该装置采用超宽带探测信号,运用前端探测和后端目标反演分离探测模式,能提高探测精度,降低设备复杂性,使设备小型和轻型化,降低制造成本。
【专利说明】一种基于几何反演阵列的目标探测方法与装置
【技术领域】
[0001]本发明涉及超宽带声波/电波探测的【技术领域】,具体涉及一种应用于目标探测、缺陷目标定位的超宽带声波/电波探测方法与装置。
【背景技术】
[0002]在目标探测领域,为了提高目标探测的准确性和探测结果的可靠性,利用相控阵技术进行前端聚焦和逐点扫描是当前的主要研究方向,该技术广泛应用于雷达和超声检测。在基于相控阵的检测技术中,相干波源产生的电磁波或者超声波具有同样的频率及相位,波动理论指出相干波在介质中会产生干涉现象,通过形成稳定的电场或声场而实现聚焦。如果调整阵元发射电波或声波信号的相位,可实现波束方向和聚焦点的改变。因此,采用逐点聚焦和扫描方式可以逐点进行目标探测或缺陷检测,利用图像处理技术还可以实现目标或缺陷的成像。相关应用趋于多样化,主要包括工业无损检测、医疗超声成像与诊断、矿产资源勘探、水下目标探测、国防等【技术领域】。
[0003]鉴于波动理论的相干原理,利用相控阵技术进行前端聚焦和逐点扫描可逐点进行目标探测,在实际应用中存在问题如下:
(I)为了实现相干聚焦,相控阵系统需要根据聚焦算法计算出天线中各阵元激发电磁波的延迟时间、振幅大小或者探头中各阵元发射超声波的延迟时间。对于简单的相控阵型(如线阵),其波束扫描范围有限。如果采用环形阵、圆面阵等共形阵型,系统的聚焦算法势必复杂化,造成设备复杂、造价昂贵,并制约了目标检测时效性。
[0004](2)在实际应用中,为了简化相位调整,基于相控阵的检测多数采用窄带脉冲信号(相对带宽不超过10%);同时,在特定的扫描周期内,逐点扫描导致发射探测信号的持续时间不能太长,从而使得发射探测信号的时宽频宽积在I左右。根据香农信息论可知,时宽频宽积与探测精度成正比,因而这种采用窄带信号逐点扫描的方式必然限制探测精度的提高。如果采用宽频带探测信号,其相位的调整必然变复杂,聚焦算法会因此变得更为复杂,严重制约目标检测的时效性。
[0005](3)基于相控阵的检测技术采用逐点扫描方式,通过不断聚焦进行多目标探测。为了遍历整个探测空间,各阵元需要遵循聚焦算法进行多次波束发射和回波接收,结果造成目标探测的延时长且功耗大。
[0006](4)利用相干原理进行聚焦,不可避免地存在伪像问题,影响了目标探测的准确性。因为电波或者声波产生干涉时,波形叠加产生的旁瓣在探测时无法与主瓣分开,形成旁瓣效应伪像。相比幅度较小的低回声信号,旁瓣效应伪像也无法和它区分开,使得探测装置对低回声信号的分辨率降低。

【发明内容】

[0007]针对相控阵技术在目标探测领域中的现存问题,本发明目的在于提出一种基于几何反演阵列的一次性多目标探测方法与装置,可应用于电磁波和声波的探测系统中。该装置使用超宽带探测信号和单发多收阵列,在接收阵元获取多路回波信号,运用频率估计算法和几何学原理,通过高速的后运算进行一次性多目标反演,可实现快速、高效、高精度的探测。
[0008]为了达到以上目的,本发明采用以下技术方案:
一种前端探测和后端目标反演分离的探测模式,探测终端采用单发多收的阵列传感器/阵列天线,负责超宽带探测信号的发射和回波信号的接收,并通过无线模块把探测信号、回波信号和收、发阵元的空间坐标传输到无线接收终端,无线接收终端通过无线或有线网络与云计算服务器相连;云计算服务器负责目标反演的后运算。
[0009]一种基于几何反演阵列的目标探测装置,其特征在于包括阵列换能器/阵列天线,目标探测模块,探测数据处理模块,无线模块和云计算模块;其中阵列换能器/阵列天线与目标探测模块相连接,目标探测模块、无线模块分别与探测数据处理模块相连接;阵列换能器/阵列天线用于发射和接收超宽带探测信号;目标探测模块用于探测信号的产生与驱动、探测接收回波信号的增益与采样处理;探测数据处理模块用于整个装置的探测参数设置与控制、探测数据的存储与处理、数据通信以及人机交互;无线模块用于探测装置的无线定位、探测数据的无线传输及反演结果的接收;云计算模块用于信号传输延时估计和目标反演的快速实现。
[0010]上述一种基于几何反演阵列的目标探测装置,其中所述阵列换能器/阵列天线包括I个超宽带发射阵元和至少3个的超宽带接收阵元;所述目标探测模块包括超宽带发射单元、超宽带接收单元与频率时钟;所述探测数据处理模块包括主控制器、探测数据缓存单元、存储单元以及人机交互平台;所述无线模块包括全球定位系统定位单元(GPS定位单元)和无线传输单元;所述云计算模块包括延时估计单元和目标反演单元。
[0011]本发明的另一目的在于提出一种基于几何反演阵列的一次性目标探测方法,具体实现步骤包括:
步骤1:探测装置参数配置。设置的参数包括:阵列换能器/阵列天线参数,接收阵元参数,无线模块网络参数,探测结果的显示控制参数;
[0012]步骤2:装置设备状态自动检测。该步骤所检测的状态包括:探测数据处理模块与目标探测模块的连接状态,目标探测模块与阵列换能器/阵列天线的连接状态,探测装置电源容量状态,无线模块的在线状态,无线传输单元与无线接收终端的连接状态;
[0013]步骤3:探测前的增益校准。其中增益校准方式包括两种:手动增益与自动增益;手动增益校准方式由探测人员根据检测对象各层介质的特性设置各种增益参数;自动增益校准方式则是在检测对象获得一定的样本数据后,由探测主机自动估算检测对象各层介质的各种增益参数;其中增益参数包括无线电波/声波在各层探测介质中的传输速度,增益大小,带通滤波器的频率带宽;
[0014]步骤4:发射探测信号。目标探测模块根据步骤I所设置的发射阵元参数发射超宽带探测信号;无线模块启动扫描,对当前探测位置进行GPS定位;
[0015]步骤5:接收探测回波信号。目标探测模块根据步骤I所设置的接收参数及选定的接收换能器/接收天线通道接收探测回波信号,同时检测GPS定位坐标;
[0016]步骤6:通过无线传输单元把探测信号、回波信号数据和发射、接收阵元的位置信息传输到无线接收终端:[0017]步骤7:无线接收终端通过无线或有线网络与云计算服务器相连,把探测信号、回波信号数据和发射、接收阵元的位置信息传输到云计算模块;
[0018]步骤8:在延时估计单元中根据探测信号和回波信号进行延时估计。包括以下步骤:
步骤8.1:数据预处理,包括A-Scan数据频域变换、去噪声处理及频域滤波;
[0019]步骤8.2:探测信号和回波信号进行相关运算和高频滤波;
[0020]步骤8.3:通过频率估计算法获取信号传输延时;
[0021]步骤9:在目标反演单元中根据发射阵元、接收阵元的位置和信号的传输延时进行几何反演,确定探测目标的空间位置;
[0022]步骤10:探测结果通过无线接收终端回传到探测数据处理模块;
[0023]步骤11:对目标反演结果进行分类处理,并将探测结果在人机交互平台中显示出来。目标探测结果分为以下两类进行分别处理:
(I)确定目标数据。此类数据为探测目标的数据,主控制器将目标位置、亮度、以及目标类型等探测结果存储于存储单元的探测数据库中;
[0024](2)可疑目标数据。此类数据是既不能确定为目标,但又不能确定为无目标,该类数据先存储于存储单元中,等待探测数据处理端空闲或探测完成之后由探测人员选择是否进行重复探测以及是否进行进一步精确的数据处理。
[0025]本发明所提出了一种基于几何反演阵列的目标探测方法与装置。不同于相控阵技术,本发明摒弃前端聚焦和逐点扫描的方法,利用发射阵元、接收阵元的几何位置和探测信号传输到不同接收阵元的延时进行一次性目标反演。本发明简化了前端的收发流程和算法,但目标反演的后运算量比较大。如果借助云计算资源或者高速计算机系统,本发明的几何反演算法可以快速完成,并具有以下优点:
(I)本发明使用超宽带信号进行一次性目标反演,可增加探测信号的时宽、频宽和抗干扰能力,通过增大信号的时宽频宽积可提高理论探测精度和改善实际探测效果。
[0026](2)本发明采用单发多收阵列。利用阵元的几何位置和信号传输延时进行一次性多目标反演,摒弃逐点扫描可降低发射和接收的能耗,实现低功耗目标探测;
[0027](3)本发明从探测原理上摈弃了波束相干原理,可完全避免旁瓣效应。可提高低回声信号的分辨率,从而提高目标探测精度;
[0028](4)本发明采用云计算或者高性能计算系统,提高了延时估计和多目标反演的后处理运算能力,从而提高目标探测的时效性;
[0029](5)本发明采用前端探测和后端目标反演分离的探测模式,可降低探测设备的复杂性,便于探测端设备的小型化和轻型化,可明显降低探测设备的制造成本,并提高探测的灵活性;
[0030](6)本发明适用范围广,可采用超声波和电波探测手段,适用于水下、空中和医疗、工业目标的探测,移动性强,能够精确定位目标位置,便于远程实时控制探测过程以及远程数据处理;
[0031](7)本发明使用自动探测代替人工判断,操作简单方便,在探测过程结束后即可完成探测报告,可提高目标探测的效率,能够快速、准确地判断出目标或缺陷的位置信息,同时对探测工作人员的要求降低。【专利附图】

【附图说明】
[0032]图1是本发明的探测原理图。
[0033]图2是本发明的装置结构图。
[0034]图3是本发明的探测数据处理框图。
[0035]图4是本发明的探测数据处理框图。
[0036]图5是本发明的几何反演示意图。
【具体实施方式】
[0037]下面结合实施例及附图对本发明作进一步详细的描述说明,但本发明的实施方式不限于此。
[0038]实施例
[0039]本发明的探测原理图如图1所示。本发明提出了一种前端探测和后端目标反演分离的探测模式,探测终端采用单发多收的阵列传感器/阵列天线,负责超宽带探测信号的发射和回波信号的接收,并通过无线模块把探测信号、回波信号和收、发阵元的空间坐标传输到无线接收终端,无线接收终端通过无线或有线网络与云计算服务器相连;云计算服务器负责目标反演的后运算,运用信号处理方法估计从发射阵元到各接收阵元的信号传输延时,并应用空间几何原理推算出多个探测目标的空间位置,反演结果通过无线模块回传到探测终端,并通过人机交互界面显示。
[0040]本发明的装置结构图如图2所示。本发明提出的一种基于几何反演阵列的目标探测装置,探测终端由阵列换能器/阵列天线、目标探测模块、探测数据处理模块、无线模块共同组成,云计算模块位于云计算服务器;其中阵列换能器/阵列天线与目标探测模块通过电缆相连接,目标探测模块、无线模块分别与探测数据处理模块相连接。
[0041]上述阵列换能器/阵列天线用于超宽带探测信号的发射与接收,其包括I个的超宽带发射阵元和至少3个的超宽带接收阵元,通过接收通道切换可进行接收阵元的选择;其中换能器/天线的中心频率可以根据探测介质、探测深度及分辨率要求综合考虑进行选择;
[0042]上述目标探测模块包括发射单元、接收单元与频率时钟;其中发射单元根据探测数据处理模块的设置参数发射超宽带无线探测信号;接收单元根据选定的接收换能器/接收天线通道接收探测回波信号;频率时钟用于控制目标探测模块中发射单元的脉冲产生、增益校准、接收单元的信号接收以及时间采样的工作时序;
[0043]上述探测数据处理模块包括主控制器、探测数据缓存单元、存储单元以及人机交互平台;其中主控制器采用嵌入式处理器,用于整个装置的探测参数设置与控制;探测数据缓存单元用于缓存目标探测模块接收的回波信号数据;存储单元用于探测参数、探测处理结果和探测数据库存储,人机交互平台用于探测过程中控制命令的输入及探测结果的输出;
[0044]上述无线模块包括GPS定位单元和无线传输单元,分别用于探测装置所在位置的无线定位以及数据的无线传输;其中,GPS定位单元采用GPS接收机,无线传输单元可以采用的无线通信方式包括但不限于:GPRS、WiFi及3G等通信方式;[0045]所述的一种基于几何反演阵列的目标探测装置,其探测数据处理框图如图3所示。探测数据处理模块的主控制器通过目标探测模块进行超宽带探测信号的收发,并将回波信号数据存储于探测数据缓存单元中;回波信号数据采用实时处理,实时处理用于实时探测时的信号数据处理,具体包括传输延时估计、目标位置反演及探测结果分类。
[0046]本发明同时实现一种基于几何反演阵列的目标探测方法,其工作流程如图4所示,包括以下步骤:
步骤1:探测装置参数设置。探测过程中,需要设置的参数包括:
(I)发射天线/换能器参数设置,包括:发射驱动方式选择,探测信号波形,信号强度A,发射中心频率fo,发射带宽Bs,发射角度Θ s与探测信号初始相位% ;
[0047](2)接收天线/换能器参数设置,包括:接收通道选择,接收信号带宽&,接收频率偏移值△ f,接收角度Θ r,采样频率fs,采样点数目N,接收时窗大小?;,电磁波/声波在探测介质中的预设速度V;
[0048](3)探测结果显示参数设置,包括:显示模式(包括三维立体模型、二维图像或一维波形形式显示),坐标轴显示坐标与范围,图像显示对比度;
[0049]步骤2:装置设备状态检测。该步骤所检测的状态包括:探测数据处理模块与目标探测模块连接状态,目标探测模块与阵列换能器/阵列天线的连接状态,探测装置电源容量状态,无线模块的在线状态,无线传输单元与云计算模块的连接状态;其中只有在上述装置设备状态均为正常运行的情况下,才能够进行下一步的操作;如有设备出现故障错误状态,则在人机交互平台提示错误信息,结束当前探测工作流程;
[0050]步骤3:探测前的增`益校准。可以选择的增益校准方式包括以下两种:手动增益与自动增益;如果选择手动增益校准方式,则由探测人员根据检测对象各层介质的特性设置各种增益参数;如果选择自动增益校准方式,则由探测人员在获得探测数据后,目标探测主机自动估算检测对象各层介质的各种增益参数;其中增益参数包括无线电波/声波在各层探测介质中的传输速度,带通滤波器的频率带宽;
[0051]步骤4:发射探测信号。目标探测模块的发射单元根据步骤I所设置的发射天线参数发射超宽带信号,无线模块启动扫描对当前探测位置进行GPS定位;
[0052]步骤5:接收探测回波信号。目标探测模块的接收单元根据步骤I所设置的接收参数以及选定的接收换能器/接收天线通道接收探测回波信号,存放于探测数据缓存单元,并将GPS定位单元的定位坐标存放在存储单元中;
[0053]步骤6:探测信号、回波信号数据及发射、接收阵元坐标信息的无线传输。探测数据处理模块通过无线模块的无线传输单元把信号数据和各阵元的位置参数传输到无线接收终端。无线接收终端通过无线或有线网络与云计算服务器相连,把相关数据传输到云计算模块;
[0054]步骤7:对接收回波信号进行传输延时估计。在延时估计单元中用信号处理方法估计从发射阵元到接收阵元的信号传输延时;
[0055]步骤8:根据发射、接收阵元的坐标和信号传输延时进行几何反演;
步骤8.1:本发明几何反演示意图如图5所示,根据GPS定位坐标可推算发射阵元S所对应的空间坐标,即:S(us,vs, ws)。假定探测目标O的空间坐标为(X,y, z),根据收发阵元的相对位置和发射阵元的空间位置可确定接收阵元i的坐标Ri (uri, vri, wri),(i=l,..., Nr),Nr是接收阵元数。在延时估计单元中,根据探测信号和接收阵元Ri的回波信号可估计从发射阵元S到目标O和从目标O到接收阵元Ri的传输时延Ii (i=l,...,Nr),Ii=SCHORi。可见,目标O在以S和Ri为焦点的椭球面上,即:
【权利要求】
1.一种基于几何反演阵列的目标探测装置,其特征在于所述前端探测和后端目标反演分离的探测模式,包括探测终端、无线接收终端和云计算服务器;探测终端通过低功耗高速无线通信技术与无线接收终端相连,无线接收终端通过无线或有线网络与云计算服务器相连。
2.根据权利要求1所述的基于几何反演阵列的目标探测装置,其特征在于所述无线阵列探测终端,包括阵列换能器/阵列天线、目标探测模块、探测数据处理模块、无线模块,其中阵列换能器/阵列天线与目标探测模块通过电缆相连接,目标探测模块、无线模块分别与探测数据处理模块相连接; 阵列换能器/阵列天线用于发射和接收超宽带探测信号,其特征包括I个超宽带发射阵元和至少3个超宽带接收阵元,通过接收通道切换可进行接收阵元的选择;其中换能器/天线的中心频率可以根据探测介质、探测深度及分辨率要求综合考虑进行选择; 目标探测模块用于探测信号的产生与驱动、探测接收回波信号的增益与采样处理,其特征包括发射单元、接收单元与频率时钟;其中发射单元根据探测数据处理模块的设置参数发射超宽带无线探测信号;接收单元根据选定的接收换能器/接收天线通道接收探测回波信号;频率时钟用于控制目标探测模块中发射单元的脉冲产生、增益校准、接收单元的信号接收以及时间采样的工作时序; 探测数据处理模块用于整个装置的探测参数设置与控制、探测数据的存储与处理、数据通信以及人机交互,其特征包括主控制器、探测数据缓存单元、存储单元以及人机交互平台;其中主控制器采用嵌入式处理器,用于整个装置的探测参数设置与控制;探测数据缓存单元用于缓存目标探测模块接收的回波信号数据;存储单元用于探测参数、探测处理结果和探测数据库存储,人机交互平台用于探测过程中控制命令的输入及探测结果的输出; 无线模块用于探测装置的无线定位、探测数据的无线传输及反演结果的接收;其特征包括GPS定位单元和无线传输单元,分别用于探测装置所在位置的无线定位以及数据的无线传输;其中,GPS定位`单元采用GPS接收机,无线传输单元可以采用的无线通信方式包括但不限于:GPRS、WiFi及3G等通信方式。
3.根据权利要求1所述的基于几何反演阵列的目标探测装置,其特征在于所述无线接收终端负责探测终端与云计算服务器间的数据中转、储存工作,以及接收云计算服务器的探测结果。
4.根据权利要求1所述的基于几何反演阵列的目标探测装置,其特征在于所述云计算服务器负责信号传输延时估计与目标反演,通过高速的后运算实现一次性多目标反演。
5.一种基于几何反演阵列的目标探测方法,其特征在于所述几何反演的目标探测原理是:探测信号、回波信号和收、发阵元的空间坐标通过无线模块传输到无线接收终端,并通过无线或有线网络传输到云计算服务器;云计算服务器负责目标反演的后运算,运用信号处理方法估计从发射阵元到各接收阵元的信号传输延时,并应用空间几何原理一次性推算出多个探测目标的空间位置,反演结果通过无线模块回传到探测终端。
6.根据权利要求5所述的基于几何反演阵列的目标探测方法,其特征在于包括如下步骤: 步骤1:探测装置参数配置;设置的参数包括:阵列换能器/阵列天线参数,接收阵元参数,无线模块网络参数,探测结果的显示控制参数;步骤2:装置设备状态自动检测;该步骤所检测的状态包括:探测数据处理模块与目标探测模块的连接状态,目标探测模块与阵列换能器/阵列天线的连接状态,探测装置电源容量状态,无线模块的在线状态,无线传输单元与无线接收终端的连接状态; 步骤3:探测前的增益校准;其中增益校准方式包括两种:手动增益与自动增益;手动增益校准方式由探测人员根据检测对象各层介质的特性设置各种增益参数;自动增益校准方式则是在检测对象获得一定的样本数据后,由探测主机自动估算检测对象各层介质的各种增益参数;其中增益参数包括无线电波/声波在各层探测介质中的传输速度,增益大小,带通滤波器的频率带宽; 步骤4:发射探测信号;目标探测模块根据步骤I所设置的发射阵元参数发射超宽带探测信号;无线模块启动扫描,对当前探测位置进行GPS定位; 步骤5:接收探测回波信号;目标探测模块根据步骤I所设置的接收参数及选定的接收换能器/接收天线通道接收探测回波信号,同时检测GPS定位坐标; 步骤6:通过无线传输单元把探测信号、回波信号数据和发射、接收阵元的位置信息传输到无线接收终端: 步骤1:无线接收终端通过无线或有线网络与云计算服务器相连,把探测信号、回波信号数据和发射、接收阵元的位置信息传输到云计算模块; 步骤8:在延时估计单元中根据探测信号和回波信号进行延时估计; 步骤9:在目标反演单元中根据发射阵元`、接收阵元的位置和信号的传输延时进行几何反演,确定探测目标的空间位置; 步骤10:探测结果通过无线接收终端回传到探测数据处理模块; 步骤11:对目标反演结果进行分类处理,并将探测结果在人机交互平台中显示出来。
【文档编号】G08C17/02GK103529442SQ201310405463
【公开日】2014年1月22日 申请日期:2013年9月6日 优先权日:2013年9月6日
【发明者】韦岗, 刘娇蛟 申请人:广州丰谱信息技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1