一种智能网联环境下连续路口速度诱导方法与流程

文档序号:30497620发布日期:2022-06-22 06:50阅读:57来源:国知局
一种智能网联环境下连续路口速度诱导方法与流程

1.本发明涉及交通工程技术领域,具体涉及一种智能网联环境下连续路口速度诱导方法。


背景技术:

2.车辆在城市道路行驶的过程中,经常会遇到红灯而不得不停车,甚至会出现在连续路口连续遇到红灯而停车的情况。针对该问题,传统its技术提供了绿波车速引导和干线绿波协调控制相结合的解决方案,但该方案只能应用在城市主干路环境下,且要求路口信号控制机支持协调控制,还会降低非干线方向道路的通行效率,因此该解决方案应用并不广泛。
3.随着智能网联环境的扩展以及“端-边-云”概念在智慧交通环境中的应用,智能网联车辆可以获取远距离多个交叉口的信号配时信息。在智能网联交通环境下,交叉口的红绿灯信息会形成spat消息经rsu对外播报,而配备obu的网联车辆可以实时接收spat消息,在较远距离即可获得红绿灯信息。obu根据红绿灯信息和车辆自身的位置和速度信息即可进行速度引导,引导车辆避开红灯,不停车通过交叉口。
4.因此,结合车辆行驶路径,利用多个交叉口的配时信息来引导车辆不停车通过连续路口的技术条件已经成熟,需要提供一种智能网联环境下连续路口速度诱导方法,对网联车辆提供速度引导,用以减少车辆在行程中的停车次数,能够所有的信号控制交叉口环境,且不会对非干线方向的交通产生不利影响。


技术实现要素:

5.有鉴于此,有必要提供一种智能网联环境下连续路口速度诱导方法、系统、电子设备和计算机存储设备,用以解决现有技术中对车辆进行速度诱导时存在的对信号机兼容性差,对非干线方向交通会产生不利影响的问题。
6.为了解决上述问题,本发明提供一种智能网联环境下连续路口速度诱导方法,包括:获取当前交叉口的信息、下一交叉口的信息和车辆信息;根据所述当前交叉口的信息、车辆信息和预设通行场景类别,得到车辆在当前交叉口的通行场景;根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,得到车辆能够不停车通过当前交叉口的初步诱导车速;根据所述初步诱导车速、车辆信息、当前交叉口的信息和下一交叉口的信息,对所述初步诱导车速进行优化,得到车辆能够不停车连续通过当前交叉口和下一交叉口的修正诱导车速。
7.进一步地,所述交叉口的信息包括:交叉口停车线的位置、交叉口交通灯灯色状态、交叉口交通灯灯色剩余显示时长、交叉口交通灯灯色变换周期;
所述车辆信息包括:车辆速度和车辆位置。
8.进一步地,根据所述当前交叉口的信息、车辆信息和预设通行场景类别,得到车辆在当前交叉口的通行场景,包括:根据当前交叉口停车线的位置和车辆位置,得到车辆与当前交叉口的距离;根据所述车辆与当前交叉口的距离和车辆速度,得到车辆到达当前交叉口停车线的预计通行时间;根据所述当前交叉口预计通行时间、当前交叉口交通灯灯色状态、当前交叉口交通灯灯色剩余显示时长和预设通行场景类别,得到车辆在当前交叉口的通行场景。
9.进一步地,预设通行场景类别包括:交通灯当前状态通行场景、交通灯状态变换通行场景和停车等待场景;当车辆处于交通灯当前状态通行场景时,车辆能在交通灯当前状态保持不变的情况下通过当前交叉口;当车辆处于交通灯下一周期通行场景时,车辆能在交通灯状态发生至少一次改变后通过当前交叉口;当车辆处于停车等待场景时,车辆无法通过当前交叉口。
10.进一步地,根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,得到车辆能够不停车通过当前交叉口的初步诱导车速,包括:当车辆在当前交叉口的通行场景不属于停车等待场景时,根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,计算车辆不停车通过当前交叉口的建议行程时间范围;根据所述建议行程时间范围,得到车辆能够不停车通过当前交叉口的建议速度范围,所述建议速度范围为初步诱导车速。
11.进一步地,根据所述当前交叉口车辆所处场景、当前交叉口的交通灯信息和车辆信息,计算车辆不停车通过当前交叉口的建议行程时间范围,包括:当车辆处于交通灯当前状态通行场景时,根据当前交叉口交通灯灯色剩余显示时长、车辆速度和车辆与当前交叉口的距离,计算车辆不停车通过当前交叉口的最大建议行程时间和最小建议行程时间;当车辆处于交通灯下一周期通行场景时,根据当前交叉口交通灯灯色剩余显示时长、交叉口交通灯灯色变换周期、车辆速度和车辆与当前交叉口的距离,计算车辆不停车通过当前交叉口的最大建议行程时间和最小建议行程时间。
12.进一步地,根据所述建议行程时间范围,得到车辆能够不停车通过当前交叉口的建议速度范围,包括:根据当前交叉口车辆所处场景的最大建议行程时间和最小建议行程时间,得到车辆能够不停车通过当前交叉口的最大建议速度和最小建议速度。
13.进一步地,据所述初步诱导车速、车辆信息、当前交叉口的信息和下一交叉口的信息,对所述初步诱导车速进行优化,包括:根据所述初步诱导车速、车辆与当前交叉口停车线的距离,得到车辆通过当前交叉口时的末速度和预测时间;根据所述车辆通过当前交叉口的预测时间和下一交叉口交通灯灯色剩余显示时
长,得到车辆通过当前交叉口时下一交叉口交通灯的预测灯色剩余时长;根据所述下一交叉口交通灯的预测灯色剩余时长、车辆通过当前交叉口时末速度、车辆与下一交叉口停车线的距离和所述初步诱导车速,确定车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景;根据所述车辆在下一交叉口的通行场景,对所述初步诱导车速进行优化。
14.进一步地,确定车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景,包括:分别计算车辆以所述最大建议速度和最小建议速度到达当前交叉口的预测行驶时间;根据所述车辆通过当前交叉口时的末速度、下一交叉口交通灯灯色剩余显示时长和预测行驶时间,得到车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景。
15.进一步地,根据所述车辆在下一交叉口的通行场景,对所述初步诱导车速进行优化,包括:当所述车辆在下一交叉口的通行场景属于停车等待场景时,对所述车辆不停车通过当前交叉口的建议行程时间范围进行优化,得到优化后的建议行程时间范围;根据所述优化后的行程时间范围对所述最大建议速度和最小建议速度进行优化,得到车辆能够不停车连续通过当前交叉口和下一交叉口的修正诱导车速。
16.与现有技术相比,本发明的有益效果包括:首先,获取当前交叉口、下一交叉口的交通灯信息和车辆信息;其次,根据预设的通行场景类型,确定当前交叉口车辆所处场景,根据当前交叉口车辆所处场景计算初步诱导车速;最后,根据下一交叉口的交通灯信息,对初步诱导车速进行优化,得到修正诱导车速。本方法适用于所有的信号控制交叉口环境,相较于传统its技术的干线绿波速度引导,并不会只适用于干线信号控制交叉口环境,而且由于不要求特殊的信号协调控制方案,在设备上不要求信号机支持干线协调控制功能(适用于绝大多数信号机),也不会对非干线方向的交通产生不利影响。本方法通过下游交叉口状态信息来反向修正车辆的诱导速度,保证车辆能够连续不停车通过交叉口。本方法仅需要获取连续两个交叉口的交通灯信息和当前车辆信息即可通过不断迭代来实现对连续路口的速度诱导,不需要获取路径上所有交叉口的信息,提高了车速诱导效率。
附图说明
17.图1为本发明提供的一种智能网联环境下连续路口速度诱导方法一实施例的流程示意图;图2为本发明提供的通行场景判断方法一实施例的流程示意图;图3(a)为本发明提供的车辆在m时刻的一实施例的通行情况示意图;图3(b)为本发明提供的车辆在n时刻的一实施例的通行情况示意图;图3(c)为本发明提供的车辆在p时刻的一实施例的通行情况示意图。
具体实施方式
18.下面结合附图来具体描述本发明的优选实施例,其中,附图构成本技术一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
19.首先需要说明的是,由于在进行连续路口速度诱导时,考虑的交叉口越多,越难形成统筹协调,难以生成速度诱导方案。因此,本发明的方法讨论的是针对连续路口为连续两个交叉口的情形:车辆前进方向下游的第一个路口为当前交叉口,车辆前进方向下游的第二个路口为下一交叉口。通过不断对当前交叉口和下一交叉口诱导信息的递推,实现多个连续路口的速度诱导。
20.本发明实施例提供了一种智能网联环境下连续路口速度诱导方法,其流程示意图如图1所示,包括:步骤s101、获取当前交叉口的交通灯信息、下一交叉口的交通灯信息和车辆信息;步骤s102、根据所述当前交叉口的交通灯信息、车辆信息和预设通行场景类别,得到当前交叉口车辆所处场景;步骤s103、根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,得到车辆能够不停车通过当前交叉口的初步诱导车速;步骤s104、根据所述初步诱导车速、车辆信息、当前交叉口的信息和下一交叉口的信息,对所述初步诱导车速进行优化,得到车辆能够不停车连续通过当前交叉口和下一交叉口的修正诱导车速。
21.与现有技术相比,本实施例提供的一种智能网联环境下连续路口速度诱导方法,首先,获取当前交叉口、下一交叉口的交通灯信息和车辆信息;其次,根据预设的通行场景类型,确定当前交叉口车辆所处场景,根据当前交叉口车辆所处场景计算初步诱导车速;最后,根据下一交叉口的交通灯信息,对初步诱导车速进行优化,得到修正诱导车速。本方法适用于所有的信号控制交叉口环境,相较于传统its技术的干线绿波速度引导,并不会只适用于干线信号控制交叉口环境,而且由于不要求特殊的信号协调控制方案,在设备上不要求信号机支持干线协调控制功能(适用于绝大多数信号机),也不会对非干线方向的交通产生不利影响。本方法通过下游交叉口状态信息来反向修正车辆的诱导速度,保证车辆能够连续不停车通过交叉口。本方法仅需要获取连续两个交叉口的交通灯信息和当前车辆信息即可通过不断迭代来实现对连续路口的速度诱导,不需要获取路径上所有交叉口的信息,提高了车速诱导效率。
22.作为优选的实施例,步骤s101中,所述交通灯信息包括:交通灯位置、交通灯灯色状态、交通灯灯色剩余显示时长、交通灯灯色变换周期;所述车辆信息包括:车辆速度和车辆位置。
23.作为优选的实施例,步骤s102中,预设通行场景类别包括:交通灯当前状态通行场景、交通灯状态变换通行场景和停车等待场景;当车辆处于交通灯当前状态通行场景时,车辆能在交通灯当前状态保持不变的情况下通过当前交叉口;当车辆处于交通灯下一周期通行场景时,车辆能在交通灯状态发生至少一次改变后通过当前交叉口;当车辆处于停车等待场景时,车辆无法通过当前交叉口。
24.作为优选的实施例,根据所述当前交叉口的信息、车辆信息和预设通行场景类别,得到车辆在当前交叉口的通行场景,包括:根据当前交叉口停车线的位置和车辆位置,得到车辆与当前交叉口的距离;
根据所述车辆与当前交叉口的距离和车辆速度,得到车辆到达当前交叉口停车线的预计通行时间;根据所述当前交叉口预计通行时间、当前交叉口交通灯灯色状态、当前交叉口交通灯灯色剩余显示时长和预设通行场景类别,得到车辆在当前交叉口的通行场景。
25.作为一个具体的实施例,为了保证交通行驶的安全性,并考虑到交通灯设置的差异性,我们将黄灯灯色也定义为红灯,即:交通灯灯色状态为红色时,包含了灯色为红色和灯色为黄色的情形。因此,交叉口的交通灯灯色状态包括绿灯和红灯,根据交叉口的交通灯信息和车辆信息,预设了下面几种通行场景:绿灯匀速通行(场景1)、绿灯加速通行(场景2)、绿灯减速停车(场景3)、红灯减速通行(场景4)、红灯减速停车(场景5)、红灯匀速通行(场景6)、红灯加速通行(场景7)、绿灯减速通行(场景8)。
26.将场景1:绿灯匀速通行场景定义为:交叉口的交通灯当前灯色为绿色,且车辆保持当前车速可以在当前灯色结束前不停车通过交叉口。场景1的判定条件如下:式中,表示绿灯灯色剩余显示时长,表示车辆与交叉口停止线的距离,表示交通灯的灯色状态,表示交通灯的灯色为绿色。
27.将场景2:绿灯加速通行场景定义为:交叉口的交通灯当前灯色为绿色,且车辆保持当前车速难以在当前灯色结束前不停车通过交叉口,但是在道路最高限速的约束条件下,车辆可以先加速到一定速度,然后在当前灯色结束前匀速通过交叉口。场景2的判定条件如下:式中,表示绿灯灯色剩余显示时长,表示车辆与交叉口停止线的距离,表示车辆的初始速度,表示道路最高限速,表示车辆的加速度,表示交通灯的灯色状态,表示交通灯的灯色为绿色。
28.将场景3:绿灯减速停车场景定义为:交叉口的交通灯当前灯色为绿色,车辆立即加速至道路最高限速,并保持最高车速匀速行驶,仍不能在当前绿灯结束前通过交叉口,并且车辆立即减速至预设的最低诱导速度并保持最低诱导速度匀速行驶,也不能在交通灯由当前绿灯结束后的红灯结束后(即:下一个绿灯开始时)通过交叉口。场景3的判定条件如下:
式中,表示绿灯灯色剩余显示时长,表示车辆与交叉口停止线的距离,表示车辆的初始速度,表示道路最高限速,表示车辆的加速度,表示红灯剩余显示时长,表示预设的最低诱导速度,表示车辆的减速度,表示交通灯的灯色状态,表示交通灯的灯色为绿色。
29.将场景4:红灯减速通行场景定义为:交叉口的交通灯当前灯色为红灯,车辆保当前车速会在当前红灯结束前到达交叉口,但车辆立即减速至预设的最低诱导速度然后保持最低诱导速度匀速行驶可以在当前红灯结束后的绿灯开始时通过交叉口。场景4的判定条件如下:式中,表示红灯剩余显示时长,表示车辆与交叉口停止线的距离,表示车辆的初始速度,表示预设的最低诱导速度,表示车辆的减速度,表示交通灯的灯色状态,表示交通灯的灯色为红色。
30.将场景5:红灯减速停车场景定义为:交叉口的交通灯当前灯色为红灯,车辆保持当前车速会在当前红灯结束前到达交叉口,且车辆立即减速至预设的最低诱导速度并保持最低诱导速度匀速行驶也不能在当前红灯结束后(当前灯色变为绿灯后)通过交叉口。场景5的判定条件为:式中,表示红灯剩余显示时长,表示车辆与交叉口停止线的距离,表示车辆的初始速度,表示预设的最低诱导速度,表示车辆的减速度,表示交通灯的灯色状态,表示交通灯的灯色为红色。
31.将场景6:红灯匀速通行场景定义为:交叉口的交通灯当前灯色为红色,且车辆保
持当前车速可以在当前红灯结束后的绿灯结束前不停车通过交叉口。场景6的判定条件为:式中,表示红灯剩余显示时长,表示绿灯灯色剩余显示时长,表示车辆与交叉口停止线的距离,表示车辆的初始速度,表示交通灯的灯色状态,表示交通灯的灯色为红色。
32.将场景7:红灯加速通行场景定义为:交叉口的交通灯灯色为红色,车辆保持当前车速匀速行驶会在当前红灯结束后的绿灯结束后(即:下一个红灯开始时)到达交叉口,但是在车辆道路最高速度限制的约束条件下,车辆可以先加速到一定速度,在当前红灯结束后的绿灯结束前匀速通过交叉口。场景7的判定条件为:式中,表示车辆与交叉口停止线的距离,表示道路最高限速,表示车辆的初始速度,表示车辆的加速度,表示红灯剩余显示时长,表示绿灯灯色剩余显示时长,表示交通灯的灯色状态,表示交通灯的灯色为红色。
33.将场景8:绿灯减速通行场景定义为:交叉口的当前灯色为绿色,车辆保持当前车速匀速行驶会在当前绿灯结束后到达交叉口,即使车辆加速到道路最高限速然后保持最高速度匀速行驶,也不能在当前绿灯结束前通过交叉口,即不属于场景2:绿灯加速通行类的场景,但在预设的最低诱导速度的约束下减速至一定速度并保持匀速行驶,能够在当前绿灯结束后的下个周期的绿灯开始后通过交叉口。场景8的判定条件为:式中,表示绿灯灯色剩余显示时长,表示红灯剩余显示时长,表示车辆的初始速度,表示道路最高限速,表示车辆的加速度,表示预设的最
低诱导速度,表示车辆的减速度,表示车辆与交叉口停止线的距离,表示交通灯的灯色状态,表示交通灯的灯色为绿色。
34.如图2所示,图2是上述8种场景的判断流程示意图,对上述8种情况进行了总结。具体为:步骤s201:获取在m时刻:第i个交叉口的交通灯状况和位置,以及车辆位置和速度;步骤s202:判断m时刻第i个交叉口的交通灯灯色是否为绿色,如果是,进入步骤s203;如果否,进入步骤s206;步骤s203:判断按照m时刻的车辆速度和灯色剩余时长是否能通过第i个路口,如果是,确定为场景1(绿灯匀速通行);如果否,进入步骤s204;步骤s204:判断加速到道路最高限速行驶是否能够通过第i个交叉口,如果是,确定为场景2(绿灯加速通行);如果否,进入步骤s205;步骤s205:判断按照最低诱导速度行驶是否能在下一周期的绿灯期间通过第i个交叉口;如果是,确定为场景8(绿灯减速通行);如果否,确定为场景3(绿灯减速停车);步骤s206:判断按照m时刻的车辆速度是否能在下一个绿灯期间通过第i个交叉口;如果是,确定为场景6(红灯匀速通行);如果否,进入步骤s207;步骤s207:判断按照道路最高限速行驶是否能在下一个绿灯期间通过第i个交叉口;如果是,确定为场景7(红灯加速通行);如果否,进入步骤s208;步骤s208:判断按照最低诱导速度行驶是否能在下一个绿灯期间通过第i个交叉口;如果是,确定为场景4(红灯减速通行);如果否,确定为场景5(红灯减速停车)。
35.通过对上述8种场景的分析可以看出:交通灯当前状态通行场景包括:场景1绿灯匀速通行、场景2绿灯加速通行;交通灯状态变换一次通行的场景包括:场景4红灯减速通行、场景6红灯匀速通行和场景7红灯加速通行;交通灯状态变换两次通行的场景包括:场景8绿灯减速通行;停车等待场景包括:场景3绿灯减速停车和场景5红灯减速停车。
36.当车辆属于绿灯减速停车(场景3)或红灯减速停车(场景5),说明车辆无法通过车速诱导不停车通过交叉口,不具备速度诱导的条件;当车辆属于绿灯匀速通行(场景1)、绿灯加速通行(场景2)、红灯减速通行(场景4)、红灯匀速通行(场景6)、红灯加速通行(场景7)、绿灯减速通行(场景8),说明车辆可以通过车速诱导不停车通过交叉口,具备速度诱导的条件。
37.作为优选的实施例,步骤s103中,根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,得到车辆能够不停车通过当前交叉口的初步诱导车速,包括:当车辆在当前交叉口的通行场景不属于停车等待场景时,根据车辆在当前交叉口的通行场景、当前交叉口的信息和车辆信息,计算车辆不停车通过当前交叉口的建议行程时间范围;根据所述建议行程时间范围,得到车辆能够不停车通过当前交叉口的建议速度范围,所述建议速度范围为初步诱导车速。
38.作为优选的实施例,根据所述当前交叉口车辆所处场景、当前交叉口的交通灯信息和车辆信息,计算车辆不停车通过当前交叉口的建议行程时间范围,包括:当车辆处于交通灯当前状态通行场景时,根据当前交叉口交通灯灯色剩余显示时长、车辆速度和车辆与当前交叉口的距离,计算车辆不停车通过当前交叉口的最大建议行程时间和最小建议行程时间;当车辆处于交通灯下一周期通行场景时,根据当前交叉口交通灯灯色剩余显示时长、交叉口交通灯灯色变换周期、车辆速度和车辆与当前交叉口的距离,计算车辆不停车通过当前交叉口的最大建议行程时间和最小建议行程时间。
39.作为一个具体的实施例,在上述讨论的8种通行场景中,当车辆所述的场景不属于场景3绿灯减速停车和场景5红灯减速停车时,可以根据车辆所处的场景,得到初步诱导车速。具体的实现方法如下:假定车辆完全服从速度诱导,将车辆的运动模型简化为匀变速运动和匀速运动,车辆先通过匀变速运动加速或减速至诱导速度,然后保持诱导速度匀速通过交叉口。
40.在上述车辆运动模型下,可以根据车辆的初速度、末速度、车辆位置与当前交叉口停止线之间的行程距离,以及车辆的加速度计算出车辆到达当前交叉口的行程时间,所述行程时间计算模型为:式中,表示车辆初速度为、车辆到达当前交叉口的速度为、车辆与交叉口停止线的距离l(车辆与交叉口停止线的距离可以根据车辆位置与交叉口的交通灯的位置换算得到)、车辆加速度为的情况下的行程时间。
41.下面分别对各个场景对行程时间进行计算。
42.当车辆属于绿灯匀速通行(场景1)或绿灯加速通行(场景2)时,车辆可以保持当前速度或加速至最大诱导速度保持最大速度(不停车通过当前交叉口速度区间上限值),然后匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最小行程时间;从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最大行程时间(此时最大行程时间等于剩余绿灯时间)。场景1和场景2的最小行程时间和最大行程时间的计算模型为:式中,表示绿灯灯色剩余显示时长,表示车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离(车辆与当前交叉口停止线的距离可以根据车辆位置与当前交叉口的交通灯的位置换算得到)、车辆加速度为的情况下的行程时间;表示车辆经速度诱导后行驶至当
前交叉口停止线的最大行程时间;表示车辆经速度诱导后行驶至当前交叉口停止线的最小行程时间。
43.当车辆属于红灯减速通行(场景4)时,车辆可以立即减速至一定速度并保持该速度(不停车通过当前交叉口速度区间上限值),然后恰好在当前红灯结束时刻匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最小行程时间(此时最小行程时间等于当前红灯剩余时长);车辆也可以立即减速至最低速度(不停车通过当前交叉口速度区间下限值)并保持该速度,可恰好在当前红灯结束后的绿灯结束时刻匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最大行程时间,由于最小诱导速度的限制,车辆在末速度为最小诱导速度时也有可能在绿灯结束前通过交叉口(未等到绿灯刚好结束就通过交叉口),因此最小行程时间为两者之间的较小值。场景4最小行程时间和最大行程时间的计算模型为:式中,表示车辆经速度诱导后行驶至当前交叉口停止线的最大行程时间;表示车辆经速度诱导后行驶至当前交叉口停止线的最小行程时间,表示红灯剩余显示时长,表示绿灯灯色剩余显示时长,表示车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离、车辆减速度为的情况下的行程时间。
44.当车辆属于红灯匀速通行(场景6)时,车辆可以在当前红灯结束后的绿灯结束之前通过交叉口。车辆可以立即加速至一定速度并保持该速度(不停车通过当前交叉口速度区间上限值),然后能够在当前红灯结束后的绿灯结束前匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最小行程时间;车辆也可以立即减速至一定速度(不停车通过当前交叉口速度区间下限)并保持该速度,在当前红灯结束后的绿灯结束前匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最大行程时间。场景6最小行程时间和最大行程时间的计算模型为:式中,表示车辆经速度诱导后行驶至当前交叉口停止线的最大行程时间;表示车辆经速度诱导后行驶至当前交叉口停止线的最小行程时间,表示绿灯灯色剩余显示时长,表示红灯剩余显示时长,表示车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离、车
辆减速度为的情况下的行程时间;表示车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离、车辆加速度为情况下的行程时间。
45.当车辆属于红灯加速通行(场景7)时,车辆可以经诱导加速后在当前红灯结束后的绿灯结束前通过交叉口。车辆可以立即加速至一定速度并保持该速度(不停车通过当前交叉口速度区间上限值),在当前红灯结束后的绿灯结束前匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最小行程时间;车辆也可以立即加速至一定速度(不停车通过当前交叉口速度区间下限)并保持该速度,恰好在当前红灯结束后的绿灯结束时刻匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最大行程时间。场景7的最小行程时间和最大行程时间的计算模型为:式中,表示车辆经速度诱导后行驶至当前交叉口停止线的最大行程时间;表示车辆经速度诱导后行驶至当前交叉口停止线的最小行程时间,表示绿灯灯色剩余显示时长,表示红灯剩余显示时长,表示车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离、车辆加速度为情况下的行程时间。
46.当车辆属于绿灯减速通行(场景8)时,车辆可以经诱导减速后在下个绿灯周期结束前通过交叉口。车辆可以立即减速至一定速度并保持该速度(不停车通过当前交叉口速度区间上限值),恰好能够在下个绿灯周期开始时刻匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最小行程时间;车辆也可以立即减速至一定速度(不停车通过当前交叉口速度区间下限值)并保持该速度,能够在下个绿灯周期结束前匀速通过交叉口,从当前时刻到车辆通过交叉口的时刻即为经诱导不停车通过交叉口的最大行程时间。场景8的最小行程时间和最大行程时间计算模型为:式中,表示车辆经速度诱导后行驶至当前交叉口停止线的最大行程时间;表示车辆经速度诱导后行驶至当前交叉口停止线的最小行程时间,表示灯色变换周期,表示绿灯灯色剩余显示时长,表示红灯剩余显示时长,表示
车辆初速度为、车辆到达当前交叉口的速度为道路最高限速、车辆与当前交叉口停止线的距离、车辆减速度为的情况下的行程时间。
47.因此,根据上述各类场景的最小行程时间和最大行程时间的计算模型,可以计算出各类场景车辆不停车通过当前交叉口的建议行程时间范围。车辆的建议行程时间区间为。
48.作为优选的实施例,根据所述建议行程时间范围,得到车辆能够不停车通过当前交叉口的建议速度范围,包括:根据当前交叉口车辆所处场景的最大建议行程时间和最小建议行程时间,得到车辆能够不停车通过当前交叉口的最大建议速度和最小建议速度。
49.作为一个具体的实施例,在前面设置的车辆运动模型下,可以根据车辆不停车通过当前交叉口的建议行程时间范围、车辆的初速度、行程距离和车辆加速度计算车辆的初步诱导车速。诱导车速的计算模型为:式中,表示车辆初始速度为、车辆的加速度(或减速度)为,建议行程时间为,车辆与交叉口停止线的距离l (车辆与交叉口停止线的距离可以根据车辆位置与交叉口的交通灯的位置换算得到)的情况下车辆的末速度。
50.为了简化计算量,对不同场景的诱导车速计算模型进行了以下推导:绿灯匀速通行(场景1)场景下最小诱导速度和最大诱导速度的计算模型为:式中,表示通过当前交叉口的最小诱导车速,表示通过当前交叉口的最大诱导车速。(下同)绿灯加速通行(场景2)场景下最小建议速度和最大建议速度的计算模型为:红灯减速通行(场景4)场景下最小建议速度和最大建议速度的计算模型为:红灯匀速通行(场景6)场景下最小建议速度和最大建议速度的计算模型为:
红灯加速通行(场景7)场景下最小建议速度和最大建议速度的计算模型为:绿灯减速通行(场景8)场景下最小建议速度和最大建议速度的计算模型为:通过上述对建议行程时间和初步诱导车速的计算可以看出,建议行程时间和初步诱导车速仅考虑了不停车通过当前交叉口的情况,但在通过连续路口的情况下需要对这些数据进行修正。
51.作为优选的实施例,据所述初步诱导车速、车辆信息、当前交叉口的信息和下一交叉口的信息,对所述初步诱导车速进行优化,包括:根据所述初步诱导车速、车辆与当前交叉口停车线的距离,得到车辆通过当前交叉口时的末速度和预测时间;根据所述车辆通过当前交叉口的预测时间和下一交叉口交通灯灯色剩余显示时长,得到车辆通过当前交叉口时下一交叉口交通灯的预测灯色剩余时长;根据所述下一交叉口交通灯的预测灯色剩余时长、车辆通过当前交叉口时末速度、车辆与下一交叉口停车线的距离和所述初步诱导车速,确定车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景;根据所述车辆在下一交叉口的通行场景,对所述初步诱导车速进行优化。
52.作为一个具体的实施例,在确定了车辆到达当前交叉口的建议行程时间和初步诱导车速的基础上,根据当前下一交叉口的交通灯状态可预测车辆驶至当前交叉口时下一交叉口的交通灯状态。对不同的情形进行推导:首先对各字母的含义进行说明:表示下一交叉口交通灯的当前灯色实际剩余时长,表示下一交叉口交通灯的下一灯色实际剩余时长;预测车辆驶至当前交叉口时,下一交叉口的交通灯预测灯色状态为、下一交叉口当前的灯色预测剩余显示时长为;下一交叉口的交通灯下一灯色的预测剩余时长为,表示交通灯的灯色为绿色;表示交通灯的灯色为红色或黄色,表示交通灯灯色变换周期,表示车辆行驶至当前交叉口的行程时间。
53.若,即:当车辆到达当前交叉口的行程时
间大于等于下一交叉口交通灯当前灯色实际剩余时长,且小于下一交叉口交通灯下一灯色实际剩余时长的情况,下一交叉口交通灯的灯色满足下式:即:下一交叉口的交通灯预测灯色状态发生转换,下一交叉口当前的灯色预测剩余显示时长为下一交叉口当前灯色剩余时长与下一灯色剩余时长的和减去车辆到达当前交叉口的行程时间,下一交叉口的交通灯下一灯色的预测剩余时长与下一交叉口交通灯的下一灯色实际剩余时长相同。
54.若,即:车辆到达当前交叉口的行程时间小于周期变换时长,且大于下一交叉口交通灯当前灯色实际剩余时长和下一灯色实际时长的和,则下一交叉口交通灯的灯色满足下式:即:下一交叉口的交通灯预测灯色状态不发生转换,下一交叉口当前的灯色预测剩余显示时长为车辆到达当前交叉口的行程时间减去下一交叉口当前灯色剩余时长再减去下一灯色剩余时长,下一交叉口的交通灯下一灯色的预测剩余时长与下一交叉口交通灯的下一灯色实际剩余时长相同。
55.若,即:车辆到达当前交叉口的行程时间小于等于下一交叉口当前灯色的剩余时长时,下一交叉口交通灯的灯色满足下式:即:下一交叉口的交通灯预测灯色状态不发生转换,下一交叉口当前的灯色预测剩余显示时长为下一交叉口当前灯色剩余时长减去车辆到达当前交叉口的行程时间,下一交叉口的交通灯下一灯色的预测剩余时长与下一交叉口交通灯的下一灯色实际剩余时长相同。
56.根据上述分析,在获得下一交叉口的交通灯当前状态信息和车辆由当前位置行驶至当前交叉口的行程时间的前提下,可以预测车辆行驶至当前交叉口时下一交叉口的交通灯的预测灯色状态、预测灯色剩余显示时长,下一灯色的预测灯色时长。
57.作为优选的实施例,确定车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景,包括:分别计算车辆以所述最大建议速度和最小建议速度到达当前交叉口的预测行驶时间;根据所述车辆通过当前交叉口时的末速度、下一交叉口交通灯灯色剩余显示时长和预测行驶时间,得到车辆在达到当前交叉路口时,车辆在下一交叉口的通行场景。
58.作为一个具体的实施例,分别以最小诱导车速和最大诱导车速为车辆到达当前交叉口时的末速度,结合车辆行驶至当前交叉口时下一交叉口的交通灯的预测灯色状态、预测灯色剩余显示时长、下一灯色预测时长,分别预测最小诱导速度和最大诱导速度下,车辆驶向下一交叉口的场景类别。
59.作为优选的实施例,根据所述车辆在下一交叉口的通行场景,对所述初步诱导车速进行优化,包括:当所述车辆在下一交叉口的通行场景属于停车等待场景时,对所述车辆不停车通过当前交叉口的建议行程时间范围进行优化,得到优化后的建议行程时间范围;根据所述优化后的行程时间范围对所述最大建议速度和最小建议速度进行优化,得到车辆能够不停车连续通过当前交叉口和下一交叉口的修正诱导车速。
60.作为一个具体的实施例,若车辆驶向下一交叉口时的场景类别属于绿灯匀速通行(场景1)、绿灯加速通行(场景2)、红灯减速通行(场景4)、红灯匀速通行(场景6)、红灯加速通行(场景7)、绿灯减速通行(场景8),则车辆遵循速度诱导可以连续不停车通过下一交叉口,无需对初步诱导车速进行修正;若车辆驶向下一交叉口时的场景类别属于绿灯减速停车(场景3)、红灯减速停车(场景5),则需对初步诱导车速进行修正,才能使车辆不停车通过连续交叉口。
61.对车速的修正,本质上仍然是对建议行程时间的修正,初步诱导车速的增加和减少在时间上表现为建议行程时间的减少或增加。
62.为了减少计算量,对不同的行程时间修正创建相应的修正模型:当建议行程时间区间为时,则建议行程时间允许调整的最大值为。对行程时间区间的上限,创建行程时间减少修正模型,对行程时间区间的下限,创建行程时间增加修正模型。
63.1、行程时间减少修正模型当预测下一交叉口所处场景为绿灯减速停车时,车辆若要能不停车通过下一交叉口,则车辆在驶向当前交叉口需要减少的行程时间计算模型为:式中,表示车辆到达当前交叉口时对于下一交叉口的预测场景类别,表示车辆经速度诱导后行驶至下一交叉口停止线的最小行程时间,表示车辆与当前交叉口停止线的距离,表示灯色变换周期;表示减少的行程时间,表示下一交叉口当前的灯色预测剩余显示时长,表示驶向当前交叉路口的诱导车速,表示道路最高限速。
64.若,车辆可以通过减少行程时间来实现车辆不停车通过下一交叉口;否则,无法通过减少行程时间来实现车辆不停车通过下一交叉口。
65.当当预测下一交叉口所处场景为红灯减速停车时,车辆若要能不停车通过下游交叉口(第二交叉口),车辆在驶向目标交叉口需要减少的行程时间计算模型为:若,则车辆可以通过减少行程时间来实现车辆不停车通过下一交叉口;否则,无法通过减少行程时间来实现车辆不停车通过下一交叉口。
66.2、行程时间增加修正模型
当预测下一交叉口所处场景为绿灯减速停车时,车辆若要能不停车通过下一交叉口,则车辆在驶向目标交叉口需要增加的行程时间计算模型为:若,则车辆可以通过增加行程时间来实现车辆不停车通过下一交叉口;否则,无法通过增加行程时间来实现车辆不停车通过下一交叉口,。
67.当预测下一交叉口所处场景为红灯减速停车时,车辆若要能不停车通过下一交叉口,则车辆在驶向目标交叉口需要增加的行程时间计算模型为:若,则车辆可以通过增加行程时间来实现车辆不停车通过下一交叉口;否则,无法通过增加行程时间来实现车辆不停车通过下一交叉口。
68.根据上述分析,修正后的行程时间区间为,即。
69.由于行程时间区间相较于发生变化,车辆在驶向当前交叉路口所对应的场景分类可能会发生变化,场景变化模型为:
式中,表示行程时间修正后车辆驶向当前交叉路口所对应的场景类型。
70.根据修正后的行程时间区间以及修正后车辆驶向当前交叉路口所对应的场景类型,通过前面讨论的不同场景的诱导车速的计算模型,可以获得修正后的最小诱导车速和最大诱导车速。
71.式中:加速度a的取值取决于(变化后的场景类别)。
72.下面结合图3(a)、图3(b)和图3(c)对一个具体通行速度诱导的示例进行详细说明。
73.如图3(a)所示,在m时刻,车辆与第i个交叉口的距离为l1,当前车速为v。此时,第i个交叉口的灯色为绿色、绿灯剩余时长为ti,第i+1个交叉口的灯色为绿色、绿灯剩余时长为t
i+1
;若车辆以当前车速v行驶至第i个交叉口,则行驶时间t=l1/v,而t》ti,即:车辆行驶到交叉口的时间比交叉口绿灯剩余时间长。因此无法在第i个交叉口当前绿灯结束前通过,但如果加速到道路最高限速,并保持最高速到达第i个交叉口,则可以在第i个交叉口当前绿灯结束前通过。根据上述的分析,可确定车辆在当前第i个交叉口的通行场景为场景2(绿灯加速通行)。
74.根据场景2的行程时间计算模型,可以计算得到车辆不停车通过第i个交叉口的最小行程时间和最大行程时间。因此,建议行程时间范围为。
75.根据建议行程时间范围,可以计算得到车辆不停车通过第i个交叉口的最大速度
和最小速度,从而得到初步诱导车速。
76.如图3(b)所示,当车辆以大速度行驶至第i个交叉口时(假设此时为n时刻,可推得n=m+),根据车辆通过第i个交叉口时的速度以及n时刻车辆与第i+1交叉口的距离l2,可以计算车辆以当前速度到达第i+1个交叉口的行驶时间t2,t2=l2/。根据m时刻第i+1个交叉口的绿灯剩余时长t
i+1
和到达第i+1个交叉口的行驶时间t2,可以确定在时刻n车辆在第i+1个交叉口的场景。
77.同理,如图3(c)所示,可以得到当车辆以最小速度行驶至第i个交叉口时(假设此时为p时刻),并确定在时刻p,车辆在第i+1个交叉口的场景。
78.如果在时刻n车辆在第i+1个交叉口的场景不属于场景3或场景5,即:可以对时刻n车辆的速度进行诱导从而不停车继续通过第i+1个交叉口,则不需要对初步诱导车速区间上限进行调节。
79.如果在时刻p车辆在第i+1个交叉口的场景属于场景3或场景5,即:车辆以时刻p的速度行驶时,无法通过上述的诱导过程不停车继续通过第i+1个交叉口,则需要对初步诱导车速下限进行调节。
80.即:需要对建议行程时间范围即:需要对建议行程时间范围进行调节,从而对初步诱导车速范围进行调节。
81.根据需要增减的行程时间,以及p时刻车辆在第i+1个交叉口的通行场景,调用相应的修正模型进行调整,得到修正后的诱导速度。
82.通过上述过程完成在m时刻车辆能够连续通过第i和第i+1个交叉口的诱导速度。
83.同理,当车辆行驶至第i个路口时,继续迭代上述的推导过程,将此时的下一个交叉口(即m时刻的i+1个交叉口)作为第i个交叉口进行分析。
84.本发明公开的一种智能网联环境下连续路口速度诱导方法,首先,获取当前交叉口、下一交叉口的交通灯信息和车辆信息;其次,根据预设的通行场景类型,确定当前交叉口车辆所处场景,根据当前交叉口车辆所处场景计算初步诱导车速;最后,根据下一交叉口的交通灯信息,对初步诱导车速进行优化,得到修正诱导车速。本方法适用于所有的信号控制交叉口环境,相较于传统its技术的干线绿波速度引导,并不会只适用于干线信号控制交叉口环境,而且由于不要求特殊的信号协调控制方案,在设备上不要求信号机支持干线协调控制功能(适用于绝大多数信号机),也不会对非干线方向的交通产生不利影响。本方法通过下游交叉口状态信息来反向修正车辆的诱导速度,保证车辆能够连续不停车通过交叉口。本方法仅需要获取连续两个交叉口的交通灯信息和当前车辆信息即可通过不断迭代来实现对连续路口的速度诱导,不需要获取路径上所有交叉口的信息,提高了车速诱导效率。
85.以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1