一种寄生条带加载的小型平面八木天线的制作方法

文档序号:11105551阅读:1179来源:国知局
一种寄生条带加载的小型平面八木天线的制造方法与工艺

本发明涉及一种微带天线,特别是一种基于寄生条带加载的小型化平面八木微带天线。



背景技术:

八木天线因其结构简单、增益高等诸多优点,在很多电子领域得到了广泛的应用。其典型结构由一个偶极子天线、一个平行的反射器和一组平行的引向器组成。一般而言,其中偶极子天线与反射器之间的距离在0.15λ0-0.4λ0为宜。而随着二者距离的减小,由于天线的反射场和辐射场相抵消,天线的辐射阻抗将急剧降低,从而造成天线性能的恶化。因此,如何在保证八木天线优良性能的前提下,尽可能地减小天线尺寸,即减小偶极子天线与反射条带之间的距离,一直是业界研究的热点与难点。



技术实现要素:

本发明的目的在于提供一种基于寄生条带加载的小型化平面八木天线,该天线通过简单的单元加载方式,只需引入一个交指寄生条带,便能够有效减小八木天线的单元尺寸,并保持八木天线本来的优异性能。

一种寄生条带加载的小型平面八木天线,包括偶极子天线、介质基板、同轴馈电探针、两端弯折的反射条带和交指形寄生条带。其中偶极子天线和反射条带平行印制于介质基板的上表面,交指形寄生条带印制于偶极子天线和反射条带之间,同轴馈电探针从顶部与偶极子天线相连且与介质基板保持垂直。

采用上述天线,反射条带两端向偶极子天线方向呈90°转折且延伸至寄生条带中心线。

本发明与现有技术相比,其显著优点为:(1)在经典结构的基础上,仅增加了交指结构的寄生条带,准确地控制了天线反射电场的相位,从而控制天线反射电场和辐射电场同相叠加。借助这一设计原理,能够方便地进行天线的小型化设计和改进。在实施例中,偶极子天线与反射条带之间的距离相比于经典结构减小约70%。(2)该方案可以获得与经典设计方案相比拟的单元性能。单元性能优异、体积小、便于调试、易于组阵。

下面结合附图对本发明作进一步的详细描述。

附图说明

图1为本发明给出的具体实施例的3D结构示意图。

图2(a)为经典的平面八木天线结构俯视图,图2(b)为本发明给出的具体实施例的结构俯视图。

图3为本发明所给出的实施例的天线增益随偶极子天线与反射条带间距D的变化曲线与经典的平面八木天线的对比图。

图4为本发明给出的实施例的阻抗特性与经典的平面八木天线阻抗特性的对比图。

图5为本发明给出的实施例的反射系数随频率变化曲线与经典的平面八木天线反射系数随频率变化曲线的对比图。

图6为本发明给出的实施例的实测与仿真性能参数对比图。其中,图6(a)为天线反射系数曲线图,图6(b)为天线E面方向图,图6(c)为天线H面方向图。

具体实施方式

结合图1,本发明提出一种平面八木天线的小型化设计方法并给出具体的实施例。该小型化方法通过单元加载方式,在经典微带八木天线的馈电源与反射器之间引入一个交指形寄生条带,通过调节交指结构的插入深度,可以准确控制天线反射电场的相位,能够在馈电源与反射器距离较小的情况下,实现天线的反射电场与辐射电场同相叠加,从而能够以更小的天线尺寸获得相同的天线性能。图1所示实施例由偶极子天线1、介质基板2、同轴馈电探针3、两端弯折的反射条带4和交指形寄生条带5组成。偶极子天线1和反射条带4平行印制于介质基板2的上表面,交指形寄生条带5印制于偶极子天线1和反射条带4之间,同轴馈电探针3从顶部与偶极子天线1相连,与介质基板2保持垂直。

结合图1和图2(b),引入的交指形寄生条带5长度L3为0.44λ0,宽度W3为3.2mm,插入深度I为0.064λ0。区别于图2(a)给出的经典的平面八木天线的设计方案,在本发明实施例中,该交指结构被印制于偶极子天线1和反射条带之间4,偶极子天线长度L1为0.42λ0,宽度W1为1mm;反射条带长度L2为0.53λ0,宽度W2为7mm;反射条带的两端朝交指形寄生条带方向弯折,并延伸至交指形寄生条带的中心线处。由于交指形寄生条带对反射电场相位的调节作用,偶极子天线与反射条带之间的距离D缩短至0.06λ0。该天线整体尺寸为0.57λ0×0.12λ0

结合图3给出的天线增益随偶极子天线与反射条带间距D的变化曲线,经典的平面八木天线在D为0.21λ0时可以获得最大天线增益5.3dBi。但随着D的减小,天线增益也迅速恶化,当D减小到0.06λ0时,天线增益仅为2.65dBi。而本发明的实施例在小尺度范围内,即D小于0.21λ0的范围内,均可获得5dBi以上的天线增益性能。可见,本发明对小尺度下的天线增益性能有明显的改善。

结合图4给出的阻抗特性曲线,在未引入交指形寄生条带的情况下,当偶极子天线与反射条带间的距离D由0.21λ0减小到0.06λ0时,辐射阻抗也从56Ω线性减小到13Ω,天线性能逐渐恶化。引入了交指形寄生条带后,得益于其反谐振特性,当偶极子天线与反射条带间距离D为0.06λ0时,天线在1.48GHz处存在串联谐振点,可以获得56Ω的辐射阻抗。可见,在小尺度情况下,利用交指形寄生条带的反谐振特性,可以显著增强天线的辐射阻抗,改善天线的辐射性能。

结合图5给出的反射系数曲线,当偶极子天线与反射条带间距D为0.21λ0时,经典的平面八木天线匹配良好,可以获得11.2%的阻抗带宽(1.34GHz-1.5GHz)。而随着D减小至0.06λ0,天线失配,天线性能恶化严重。本实施例中,得益于引入了交指形寄生条带,当D为0.06λ0时,依然可以获得6.8%的阻抗带宽(1.42GHz-1.52GHz),相较于经典的平面八木天线方案,在小尺度情况下,通过引入寄生条带,天线的反射系数有明显的改善。

结合图6(a)给出的反射系数实测曲线,本发明实施例的阻抗带宽为7.1%(1.35GHz-1.45GHz),除了中心频点向低频段偏移了0.1GHz外,反射系数的实测结果与仿真结果基本保持一致。中心频点的偏移很大程度上是由于焊接点的加工精度造成的。结合图6(b)给出的E面方向图以及图6(c)给出的H面方向图,本发明实施例的最大辐射方向在θ=90°、φ=0°,实测最大天线增益为4.61dBi,仅比仿真结果低了0.49dBi。此外,由于实验环境的影响和限制,E面背瓣的实测结果与仿真结果存在4.5dBi的差异。总体而言,本发明实施例的实测结果与理论推导结论、计算机仿真结果相符合,有力地证明了本发明所提出的小型化设计方法,能够在保证平面八木天线优异性能的前提下,有效缩小天线的尺度,使天线单元的结构更加紧凑。

综上所述,本发明所提出的一种平面八木天线小型化设计方法,通过单元加载的方式,在偶极子天线与反射条带之间引入一个交指形寄生条带,能够在保证天线性能不变的前提下,显著缩小天线的尺寸,使天线单元的结构更加紧凑。该小型化设计方案结构简单、成本低廉,便于加工调试,且单元性能优异,便于组阵,具有很好的实用前景。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1