电池管理系统及对包含有多节电池的电池包充电的方法

文档序号:7493773阅读:728来源:国知局
专利名称:电池管理系统及对包含有多节电池的电池包充电的方法
技术领域
本发明是关于电池管理系统,尤其是具有可调充电电流的 电池管理系统。
背景技术
图l所示为一种传统的电池充电电^各100的示意图。如图l 所示,该电池充电电3各100包4舌适配器102、充电器106和电池包 104内的电池保护电路(未显示在图l中)。充电器106包括脉宽 调制控制器108和充电控制器110。所述适配器102输出 一个固定 电压。充电器106对模块112中的电源开关和降压转换器进行控 制,将适配器102的输出电压转化为较低的电压,并将该较低的 电压传llr症合电池包104。因此,这种传统的电池充电电^各体积大, 且损耗高。
图2所示为另 一种传统的电池充电电^各200的示意图。该电 池充电电路200包括可控适配器202和一个外部控制芯片(如图2 中的充电控制器210)。该外部控制芯片(充电控制器210)根据 电池包2 04的电流或电压控制所述可控适配器2 02的输出功率。 如图2所示,该电池充电电路200也需要额外的开关212来控制该 电池包204的充电电流。因此,这种电池充电电^各也是体积大且 损耗高。
除此之外,对于传统的充电电路,由于电池失衡现象(例 如,该电池包内各节电池之间有着不同的电压或容量),在某些 电池尚未被充满的情况下,另外有些电池却可能出现过充现象。 换句话说,对电池的充电过程其精确度并不高。

发明内容
本发明提供一种电池管理系统,该电池管理系统包括监 测电路,用于监测包含有多节电池的电池包,并在多个周期中 的每一个周期监测所述电池包是否有失衡现象产生;充电器,
用于为所述电池包提供充电电流,接收来自所述监测电路的监 测信息,并在监测到当前周期中有失衡现象产生后,将充电电 流从上 一 周期的第 一 幅度调节到比第 一 幅度更小的第二幅度。
本发明所述的电池管理系统,所述电池包包括均tf电路, 用于在监测到有所述失衡现象产生后,对所述多节电池进行均 衡。
本发明所述的电池管理系统,还包括耦合于所述电池包 和所述充电器之间的通信线路,用于将所述监测信息从所述监 测电路传送至所述充电器,其中,所述监测电路位于所述电池 包内部,所述监测信息包括所述多节电池中每一节电池的电压。
本发明所述的电池管理系统,所述失衡现象包括所述多节 电池中两节电池的电压差大于预设的电压差。
本发明所述的电池管理系统,所述监测电路通过所述充电 器的输出端监测所述电池包,所述监测信息包括所述电池包的 电压。
本发明所述的电池管理系统,所述失衡现象包括所述电池 包的电压变化率大于预设的阈值。
本发明所述的电池管理系统,所述失衡现象包括所述电池 包的电压大于预设的电压。
本发明所述的电池管理系统,当监测到有所述失衡现象产 生后,所述充电器在等待一段预设的时间后才把所述充电电流 调节到所述第二幅度。
本发明所述的电池管理系统,所述监测电路还能够在所述多个周期中的每一个周期监测所述电池包是否有异常现象产 生。
本发明所述的电池管理系统,还包括耦合于所述电池包 和所述充电器之间的通信线路,用于将所述监测信息从所述监 测电if各传送至所述充电器,其中,所述监测电3各位于所述电池 包内部,所述监测信息包括所述多节电池中每一节电池的电压。
本发明所述的电池管理系统,如果监测到有所述异常现象 产生,所述电池包断开充电开关。
本发明所述的电池管理系统,所述异常现象包括过压现象。
本发明所述的电池管理系统,所述监测电路通过所述充电 器的输出端监测所述电池包,如果所述充电电流小于预设的电 流,则所述监测电路判定有所述异常现象产生。
本发明还^是供一种对包含有多节电池的电池包充电的方 法,所述方.法包括下列步骤监测所述电池包的状态,在多个 周期中的每一个周期监测所述电池包是否有失衡现象产生,监 测到当前周期中有失衡现象产生后,利用充电器将所述电池包 的充电电流从上一周期的第 一幅度调节到比第 一幅度更小的第 二幅度。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括如果监测到有所述失衡现象产生,则对所述多节电池进 行均#f 。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括如果所述多节电池中两节电池的电压差大于预设的电压 差,则判定监测到有所述失衡现象产生。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括通过所述充电器的输出端口监测所述电池包的状态,其 中所述监测信息包括所述电池包的电压。本发明所述的对包含有多节电池的电池包充电的方法,还
包括如果所述电池包的电压变化率大于预设的阈值,则判定 监测到有所述失衡现象产生。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括如果所述电池包的电压大于预设的电压,则判定监测到 有所述失衡现象产生。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括当监测到有所述失衡现象产生后,等待一段预设的时间 后才把所述充电电流调节到所述第二幅度。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括通过一条通信线路把所述监测信息从一监测电路传送至 所述充电器,其中,所述监测信息包括所述多节电池中每一节 电池的电压。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括在多个周期中的每一个周期监测所述电池包是否有异常 现象产生;监测到当前周期中有所述异常现象产生后,将所述 电池包的充电电流从上 一周期的第 一 幅度调节到比第 一 幅度更 小的第三幅度。
本发明所述的对包含有多节电池的电池包充电的方法,所 述异常现象包括过压现象。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括在多个周期中的每一个周期监测所述电池包是否有异常 现象产生;如果监测到有所述异常现象产生,则断开充电开关。
本发明所述的对包含有多节电池的电池包充电的方法,还 包括如果所述充电电流小于预设电流,则判定监测到有所述 异常现象产生。
通过采用本发明所述的电池管理系统及对包含有多节电池的电池包充电的方法,如果有失衡现象产生,该电池管理系统 可以用减小的电流(小恒流充电才莫式)对电池包充电。因此, 均衡电路会获得更充足的时间对电池进行均衡,从而使所有的 电池能够完全充电,并消除各种异常现象。


图l所示为一种传统的电池充电电路的示意图2所示为另 一种传统的电池充电电路的示意图3所示为根据本发明 一个实施例的电池管理系统的示意
图4所示为根据本发明 一个实施例的电池管理系统的示意
图5所示为根据本发明 一个实施例的电池管理系统的运作 流程图6所示为根据本发明一个实施例的电池管理系统的另一 种运作流程图7所示为根据本发明 一 个实施例的电池管理系统的又一 种运作流程图8所示为才艮据本发明 一 个实施例的电池管理系统的再一 种运作流程图9所示为根据本发明 一个实施例的电池管理系统的示意
图10所示为根据本发明 一个实施例的电池管理系统的运作 流程图11所示为根据本发明 一个实施例的电池管理系统的另一 种运作流程图12所示为才艮据本发明 一个实施例的电池管理系统的又一种运作流程图。
具体实施例方式
图3所示为根据本发明 一 个实施例的电池管理系统3 0 0的示 意图。该电池管理系统300包^^舌用于对电池包304充电的适配器 302 (比如一个可控适配器),其中该电池包304包括多节电池 310—l-310_n。为简明起见,图3中没有画出所有的n节电池。
控制电^各320用于监测电池包304,并产生一个用于控制适 配器302输出功率的控制信号350,从而启动多种充电模式。更 具体地说,该控制电路320可用于根据电池包304中多节电池 310—l-310—n的每节电池的状态(例如,电池电压、电池电流、 电池温度和电池容量)来产生控制信号350。与控制电路320连 接的适配器302可对电池包304进行充电。适配器302输出端340 的输出功率可以在控制信号350的作用下进行调节。
在本实施例中,控制电路320被集成于电池包304内,电池 包304还包括有充电开关306和》欠电开关308。电池包304可以根 据每节电池的状态直接控制适配器302的输出端340的输出功 率,从而不需要外部电源开关和外部控制芯片(如外部充电控 制器)。
在本实施例中,控制电路320可以启动多种充电才莫式。这些 充电模式包括但并不限于标准恒流充电模式CCn ( n=0)、小 恒流充电模式CCn (n=l,2,…,max,其中max是数字n的一个预设 最大值,数字n则代表各种恒流充电模式)、标准恒压充电模式 CVm(m=0)、小恒压充电模式CVm ( m=l,2,…,max,,其中max' 是数字m的一个预设最大值,数字m则代表各种恒压充电模式) 以及充电终止才莫式。当出现电池失衡现象时,可以启动一种小 恒流充电模式或一种小恒压充电模式。当出现任何异常现象或错误时,或者当所有的电池都被充满时,可以启动充电终止模 式。
当控制信号350控制适配器302在其输出端340提供一 个恒 定充电电流I。时,标准恒流充电才莫式CC。可^皮启动。此时,电池 包304由该恒定充电电流I。进行充电。此处所谓的"恒定"是指充 电电流或充电电压可以波动,但须处于对电池包304进行安全充 电所要求的范围之内。当控制信号350控制适配器302在其输出 端340提供一个恒定充电电流1 ( n=l,2,…,max)时, 一种小恒 流充电才莫式CCn ( n=l,2,…,max)可#皮启动。此时,电池包304 由该恒定充电电流In ( n=l,2,…,max)进行充电。在一个实施例
中,1。〉I!〉l2〉…M
同理,当控制信号350控制适配器302在其输出端340提供一 个恒定充电电压V。时,标准恒压充电才莫式CV()可一皮启动。此时, 电池包304由该恒定充电电压V。进行充电。当控制信号350控制 适酉己器302在其输出端340提供 一 个恒定充电电压Vm (m=l,2, …,max,) 时, 一 种小恒压充电模式CVm (m=l,2,…,max,)可^皮启动。此时,电池包304由该恒定充电 电压Vm ( m=l,2,…,max,)进行充电。在 一 个实施例中, Vo〉V^V2〉…〉V隨,。
通过根据每节电池的状态来启动不同的充电模式 (CCo,Cd,…CC腿,或CVo,CVi,…,CV眼x,),所述电池包304中 所有电池可以被充满,并且可以避免异常现象的产生,从而延 长了电池寿命。
如前面所述,电池包304内的控制电路320可监测每节电池 的状态,并控制适配器302的输出功率,从而启动多种充电模式 (CCo,Cd,…CCmax,或CV。,CVb…,CV眼x,)。在另一个实施例 中,所述控制电路320也可设置在所述电池包304的外部,用于监测该电池包304的^1犬态(例如,电池包电压和电池包电流), 并产生控制信号350,用于启动多种充电模式(CC。,Cd, ...CCmax 或CVo,CV^…,CV眼x,)。
图4所示为根据本发明 一 个实施例的电池管理系统400的示 意图。在图4与图3中标记相同的元件具有相似的功能,为了简 明起见,在此将不对这些元件进行重复描述。在图4的例子中, 电池包304包括了三节电池310—1、 310—2和310_3。
图4中,电池管理系统400包括监测电i 各424 (例如,容量计 量电路),用于监测电池包304,并且在多个周期中的每一个周 期监测电池包是否出现失衡现象和/或其他异常现象(例如,过 压、过流、温度过高以及过充)。在图4的例子中,电池包304 包括三节电池310_1、 310一2和310一3。电池管理系统400还包括 适配器302(比如一个充电器),用于控制电池包304的充电电流, 同时接收来自监测电路424的监测信息,并在监测到当前周期中 有失衡现象产生后,将充电电流从上 一 周期的第 一 幅度调节到 比第一幅度更小的第二幅度。
在一个实施例中,失衡现象包括所述多节电池中两节电池 的电压差大于预设的电压差。在另 一个实施例中,异常现象(如 过压现象)包括一节电池的电压或者整个电池包的电压大于预 设的电压。
在图4中,监测电路424 (例如,容量计量电路)被配置用 于监测电池310_1、 310_2和310_3中每一节电池的状态(如电池 电压,电池电流,电池温度和电池容量),并消除失衡现象和/ 或其他异常现象(如过压,过流,温度过高,充电过度)。在一 个实施例中,监测电路424监测电池310—1-310_3,并产生指示 每节电池状态的监测信号。
举例来说,监测电路424监测该电池310—1-310_3的电压,并且产生分别指示这些电压的监测信号490—1-490—3。由于流过 电池310_1-310—3的电流相同,监测电i 各424可通过一个感应电 阻470来监测该电流,并且产生指示该电流的监测信号492。另 外,所述监测电路424也可通过一个温度传感器472来监测电池 温度,并且产生指示该电池温度的监测信号494。在一个实施例 中,该监测电路424还可监测电池310—1-310—3的容量,并且产 生分别指示各节电池310_1-310—3容量的监测信号(未显示在图 4中)。
一个与监测电路424连接的指令转换器426可根据上述监测 信号490—1-490—3、 492和494产生一个控制信号350。更具体地 说,集成到电池包304中的指令转换器426可基于每节电池的状 态来产生控制信号350,从而控制适配器302的输出功率。因此, 可以根据每节电池的状态启动不同的充电模式。在一个实施例 中,所述指令转换器426也可被设置在电池包304外部。在这种 情况下,电池管理系统400利用 一 条耦合于电池包304和适配器 (充电器)302之间的通信线路来传输控制信号350。换言之, 电池包304和适配器(充电器)302之间的通信线路能把监测信 息从电池包304中的监测电路424传输到适配器(充电器)302。 所述指令转换器42 6可以通过该通信线路接收到信息,如监测信 号490—1-490—3、 492和494。该通信线^各可以是串行总线(如单 线总线)或者二线式总线(例如,系统管理总线、内部集成电 路总线等)。
在一个实施例中,指令转换器426可由一个处理器(例如, 微处理器)或者一个状态机来实现。所述指令转换器426可以启 动的充电模式包括但不限于标准恒流充电模式CCn ( n=0)、 小恒流充电才莫式CCn ( n=l,2,…,max)、标准恒压充电才莫式CVm (m=0)、小恒压充电模式CVm ( m=l,2,…,max,)以及充电终
14止模式。
在一个实施例中,控制信号350是模拟控制信号。该模拟控 制信号可用于调节一个由脉宽调制信号发生器480产生的脉宽 调制信号的占空比。该脉宽调制信号发生器480可设置在所述适 配器302中。通过调节该脉宽调制信号的占空比,适配器302输 出端340的输出功率相应的得到调节。换句话说,可以通过调节 适配器302内部产生的脉宽调制信号的占空比来启动不同的充 电模式。比如说,如果需要根据电池状态来启动一种标准恒流 充电模式CC。,模拟控制信号将调节该脉宽调制信号的占空比, 从而使适配器302输出 一 个恒定电流10。
在另一个实施例中,控制信号350是一个数字控制信号。适 配器302中设置有一个解码器(未显示在图中),用于将该数字 控制信号转化为模拟控制信号,从而调节适配器302内部产生的 脉宽调制信号的占空比。
此外,上述指令转换器426还控制电池包304内的充电开关 430和放电开关432。当充电开关430被断开时,电池充电过程将 被终止。当电池包304对一个系统负载(未显示在图中)供电时, 放电开关432会一皮接通。
为了改善电池310—1-310—3的性能,电池包304还包括一个 i于均衡电池310—-卜-3ir6二5i^^t^^^各428 。如果有^f^现 象被监测到,该电池均衡电路428对电池310—1 -310_3进行均衡。
电池均衡电路428可设置在监测电路424内部,也可设置在 监测电路424夕卜部。在一个实施例中,该电池均衡电路428可在 失衡电池上分流出 一个旁^各电流(均4軒电流)。如图4中的电池 均衡电路428所示,当开关410—l被接通时,电池310一1可被分流 出 一个旁路电流。当开关410_2被接通时,电池310_2可被分流 出 一个旁^各电流。当开关410—3^皮接通时,电池310_3可#皮分流出 一个旁路电流。开关410—1-410_3可由监测电路424或者指令 转换器426控制,因此电池均衡电路428可由监测电路424或者该 指令转换器426控制。
电池失tf现象包括^旦不限于以下几种在一个实施例中, 当 一节电池的电压与其他任意一节电池的电压差超过一个预设 值AV,则该电池处于失tf状态。在另一个实施例中,当一节电 池电压超过 一 个预设的阈值电压Vbalance时,则该电池处于失衡 状态。又在另一个实施例中,当一节电池的电压变化率dV/dt (电池电压对时间的导数)超过 一 个预设的电压变化率 (dV/dt)th时,则该电池处于失tf状态。又在另一个实施例中, 当 一 节电池的容量与其他任意 一 节电池的容量之间的差值超过 一个预设的容量差值AC,则该电池处于失衡状态。
如前所述,当失衡现象发生时,适配器302可输出 一个较小 的充电电流(小恒流充电才莫式)对电池包304充电。因此,该电 池均衡电路428可以获得较长的时间对电池进行均衡(分流旁路 电流),以将所有电池充满。
图5所示为才艮据本发明 一个实施例的电池管理系统400的运 作流程图500。在本实施例中,可对所述指令转换器426进行配 置,从而4吏图4中的电池管理系统400以流程图500的方式运作。 更具体地说,流程图500阐明了指令转换器426如何基于不同的 电池状态来启动不同的充电模式。以下将结合图3和图4对图5 进行描述。
在图5给出的例子中,电池管理系统400对电池包304进行多 个周期的充电。电池管理系统400首先以标准恒流充电才莫式CCo 对电池包304充电。如果出现电池失tf现象,电池管理系统400 则以小恒流充电才莫式CCn (n=l,2,…,max)对电池包304充电。 在一个实施例中,如果电池包304的电池的最高电压(例如,电池310—l的电压为3.8V,电池310—2的电压为3.9V,电池310—3 的电压为4.05V,那么该电池最高电压为4.05V)大于第一预设 电压(例如,4里离子电池的3.9V),电池管理系统400则扭J亍失 衡检查,看是否出现电池失衡情况。当检查出电池失衡现象时, 该电池管理系统4 0 0不仅通过电池均衡电路42 8在失衡的电池上 分流出旁路电流,还对电池包304的充电电流进行调节(例如, 减小充电电流)。如果电池包304的电池平均电压大于第二预设 电压(例如,4里离子电池的4.2V),该电池管理系统400则以一 种恒压充电才莫式(例如,标准恒压充电才莫式CV())对该电池包 304充电。另外电池管理系统400还可执行保护检查。
在步骤502中,电池管理系统400开始对电池包304充电,并 且将象征不同恒流充电模式的数字n初始化为O。在步骤504中, 一种恒流充电才莫式CCn由该控制信号350启动。比如,当n设为O 时,标准恒流充电才莫式CC。将被启动。当n为l到max之间的一个 数时, 一种小恒流充电模式CCn ( n=l,2, ...,max)将被启动。步 骤506执行保护检查,比如说,指令转换器426接收来自监测电 路424的监测信号,从而确定是否出现异常现象(例如,过压、 过流,以及温度过高)。如果出现任何异常现象,流程图500将 转到步骤530, 乂人而终止对电池充电(启动充电终止模式)。此 时指令转换器426将断开该充电开关430来终止对电池充电。如 果无异常现象出现,流程图500将转到步骤508。
在步骤508中,可以利用指令转换器426将电池包3(M的电池 平均电压与第二预设电压(例如,锂离子电池的4.2V)进行比 举交,以确定是否可以启动一种恒压充电才莫式(例如,标准恒压 充电模式CVo )。如果电池包304的电池平均电压大于第二预设 电压,i兌明可以通过一种恒压充电才莫式(例如,标准恒压充电 模式CV。)对电池包304充电,那么流程图500将转到步骤524。在步骤524中,恒压充电模式(例如,标准恒压充电模式 CVQ)由控制信号350启动。步骤526执行保护检查(类似于步 骤506 )。如果出现任何异常现象,流程图500将转到步骤530, 从而终止对电池充电(启动充电终止才莫式)。否则,流程图500 将转到步骤528。
在步骤528中,如果电池包304中的所有电池都^皮充满,流 程图500将转到步骤530,从而终止对电池充电(启动充电终止 模式)。否则,流程图500将返回到步骤524中继续以一种恒压充 电模式(例如,标准恒压充电模式CV。)对电池包304充电。指 令转换器426接收来自监测电路424的监测信号,从而确定所有 的电池是否^皮充满。
在步骤508中,如果电池包304的电池平均电压小于第二预 ^殳电压明可以通过标准恒流充电才莫式/小恒流充电才莫式对电 池包304充电,那么流程图500将转到步骤510中。
在步骤510中,可以利用指令转换器426将电池包304的电池 最高电压与第一预设电压(例如,锂离子电池的3.9V)进行比 较,以确定是否应该才丸行失fH企查。如果该电池最高电压大于 第一预设电压,系统将执行失衡检查,流程图500将转到步骤 512。如果电池最高电压小于第一预设电压,流程图500将返回 到步骤504。前面已经对步骤504以及其后面的步骤进行详细描 述,为了简明起见,在此将不对其重复描述。
在步骤512中,系统执行失衡检查。如果无异常现象出现, 流程图500将返回到步骤504。如果检查出任何异常现象,在失 衡的电池上将会分流出一个旁路电流(为简明起见,此步骤未 被显示在流程图500中),且流程图500将转到步骤514中。
在步骤514中, 一个计时器开始计时。在步骤516中,可以 利用指令转换器426将电池包304的电池平均电压与第二预设电压进行比较(类似于步骤508 ),以确定是否可以启动一种恒压 充电模式(例如,标准恒压充电模式CV。)。如果电池包304的 电池平均电压大于第二预i殳电压,^说明可以通过一种恒压充电 模式(例如,标准恒压充电模式CV。)对电池包304充电,那么 流程图500将转到步骤524。前面已经对步骤524以及其后面的步 骤进行详细描述,为了简明起见,在此将不对其重复描述。
在步骤516中,如果电池包304的电池平均电压小于第二预 设电压,说明可以继续通过标准恒流充电模式/小恒流充电模式 对电池包304充电,那么流程图500将转到步骤518中。在步骤518 中,如果该计时器超时(例如,该计时器运行超过一个预设时 间),流程图500将转到步骤520中。如果该计时器尚未超时,流 程图500返回到步骤516。
在步骤520中,可以利用指令转换器426将数字n与预设最大 值max进行比较。如果n等于该预设最大值max,流程图500将返
回到步骤504中继续运行小恒流充电模式CCmax。否则,流程图
500将转到步骤522中。在步骤522中,数字n加l,然后流程图500 返回到步骤504开始一个新的周期。因为在上一周期中,步骤522 使得n加l,所以在这个新的周期(当前周期)中,充电电流从 上一周期的第一幅度调节到比第一幅度更小的第二幅度。前面 已经对步骤504以及其后面的步骤进行详细描述,为了简明起 见,在此将不对其重复描述。
图6所示为根据本发明 一个实施例的电池管理系统400的运 作流程图600。在本实施例中,可对指令转换器426进行配置, 从而使图4中的电池管理系统400以流程图600的方式运作。以下 将结合图3和图4对图6进行描述。
在图6给出的例子中,电池管理系统400对电池包304进行多 个周期的充电。电池管理系统400首先以标准恒流充电才莫式CCo对电池包304充电。在一个实施例中,如果出现电池失tf现象和 /或其他异常现象,该电池管理系统4 00则以小恒流充电模式C C n (n=l,2,…,max)对电池包304充电。如果电池包304的电池平 均电压大于一个第二预设电压(例如,锂离子电池的4.2V),电 池管理系统400则以一种恒压充电才莫式(例如,标准恒压充电才莫 式CV。)对电池包304充电。如果电池包304的电池最高电压大 于第三预i殳电压(例如,锂离子电池的4.3V),并且电池包304 的电池平均电压小于第二预设电压,电池管理系统400则将恒流 充电模式CCn改为恒流充电模式CCn+1,从而减小对电池包304 的充电电流以及纟丸行对电池包304的过压保护。在 一 个实施例 中,该电池管理系统400也可执行保护检查。
电池管理系统400对电池包304进行多个周期的充电。在步 骤602中,电池管理系统400开始对电池包304充电,并且将象征 不同恒流充电模式的数字n初始化为O。在步骤604中,恒流充电 才莫式CCn由控制信号350启动。比如说,当n祐j殳为O时,标准恒 流充电模式CCo将被启动。当n为l到max之间的一个数时, 一种 小恒流充电模式CCn (n=l,2, ...,max)将被启动。步骤606执行 保护检查。比如说,指令转换器426接收来自监测电路424的监 测信号,从而确定是否出现异常现象(例如,过压、过流,以 及温度过高)。如果出现任何异常现象,流程图600将转到步骤 636, /人而终止对电池充电(启动充电终止才莫式)。因此,指令 转换器426将断开充电开关430来终止对电池充电。如果无异常 现象出现,流程图600将转到步骤608。
在步骤608中,可以利用指令转换器426将电池包304的电池 最高电压与第三预设电压进行比较,以检测是否出现过压现象。 如果该电池最高电压大于第三预设电压(表示出现过压现象), 流程图600将转到步骤614。在步骤614中,数字n加l。然后流程图600转到步骤624,检查是否可以启动一种恒压充电模式(例 如,标准恒压充电模式CV。)。如果该电池最高电压小于第三预 设电压(表示没有出现过压现象),流程图600将转到步骤610。
在步骤610中,系统执行失衡检查。在一个实施例中,失衡 现象包括所述多节电池中的两节电池之间的电压差大于预设的 电压差。如果无失衡现象出现,流程图600将转到步骤624中检 查是否可以启动一种恒压充电模式(例如,标准恒压充电模式 CV。)。如果检查出现电池失衡现象,在失衡的电池上将会分流 出一个旁路电流(此步骤未被显示在流程图600中),且流程图 600将转到步骤615中。
在步骤615中, 一个计时器开始计时。在步骤616中,如果 该计时器超时,流程图600将转到步骤618,使得数字n加l。然 后流程图600将转到步骤624,检查是否可以启动 一种恒压充电 模式(例如,标准恒压充电模式CVo)。
在步骤624中,可以利用指令转换器426将电池包304的电池 平均电压与第二预设电压进行比较,以确定是否可以启动 一种 恒压充电模式。如果电池平均电压小于第二预设电压,流程图 600将返回到步骤604,开始一个新的充电周期。因为在上一周 期中,如果在步骤608中检查到过压现象,步骤614使得n加l; 如果在步骤610中检查到出现失衡现象,步骤618使得n加l。因 此在这个新的周期(当前周期)中,充电电流从上一周期的第 一幅度调节到比第一幅度更小的第二幅度。前面已经对步骤604 以及其后面的步骤进行详细描述,为了简明起见,在此将不对 其重复描述。
如果该电池平均电压大于第二预设电压,流程图600将转到 步骤626中,从而启动一种恒压充电模式(例如,标准恒压充电 模式CV。)。
21返回到步骤616中,如果该所述计时器没有超时,流程图6 0 0 将转到步骤622(类似于步骤624 ),检查是否可以启动一种恒压 充电模式(例如,标准恒压充电模式CV。)。在步骤622中,可 以利用指令转换器426将电池包304的电池平均电压与第二预设 电压进行比较。如果该电池平均电压小于第二预设电压,流程 图600则返回到步骤616中。前面已经对步骤616以及其后面的步 骤进行详细描述,为了简明起见,在此将不对其重复描述。如 果该电池平均电压大于第二预设电压,流程图600将转到步骤 626, 乂人而启动一种恒压充电才莫式(例如,标准恒压充电才莫式 CV0)。
在步骤628中,系统执行保护检查(类似于步骤606 )。如果 出现任何异常现象,流程图600将转到步骤636,终止对电池充 电(启动充电终止模式)。如果无异常现象出现,流程图600将 转到步骤630。在步骤630中,可以利用指令转换器426将电池包 304的电池最高电压与第三预设电压进行比较(类似于步骤 608 ),从而检查是否出现过压现象。如果该电池最高电压大于 第三预设电压(表示出现过压现象),流程图600将转到步骤634 中。在步骤634中,n被设置为该预设最大值max,然后流程图 600将返回到步骤604。因此,电池包304由 一 个最小恒定电流Imax
(1。〉Ii〉l2〉…Mmax)充电。如果该电池最高电压小于第三预设
电压(表示没有出现电池过压现象),流程图600将转到步骤632。 在步骤632中,如果所有电池都被充满,流程图600将转到步骤 636,从而终止对电池充电。否则,流程图600将返回到步骤626 中继续执行该恒压充电模式。前面已经对步骤626以及其后面的 步骤进行详细描述,为了简明起见,在此将不对其重复描述。
图7所示为才艮据本发明 一个实施例的电池管理系统400的另 一种运作流程图700。在本实施例中,对于磷酸锂离子电池,在充电过程中当其电池电压达到 一 阈值电压时,该电池电压将会
迅速增加(出现电压跳变)。那么,可以通过流程图700提供的 方法,在电池出现电压跳变时减小充电电流。在本实施例中, 可对指令转换器426进行配置,从而使图4中的电池管理系统400 以流程图700的方式运作。以下将结合图3和图4对图7进行描述。 在图7给出的例子中,电池管理系统400对电池包304进行多 个周期的充电。电池管理系统400首先以标准恒流充电才莫式CCo 对电池包304充电。如果出现电池过压现象,该电池管理系统400 将以一种小恒流充电才莫式CCn (n=l,2,…,max)对电池包304充 电。在一个实施例中,过压现象包括电池包304的电池最高电压 大于第三预设电压(例如,锂离子电池的4.3V)。如果发生电池 电压跳变,该电池管理系统400则以 一种小恒流充电才莫式(例如,
以充电电流为Imax ( I0>Il〉I2>...>Imax )的小恒流充电才莫式CCmax)
对电池包304充电。当电池电压(例如, 一 节电池的电压或者多 节电池的平均电压)的增量AV与其变化时间At的比值AV/At大 于一个预设值Ath时,代表出现电池电压跳变现象。当电池包304 的电池平均电压大于第二预设电压(例如,锂离子电池的4.2V) 时,该电池管理系统400则以一种恒压充电才莫式(例如,标准恒 压充电模式CVc))对该电池包304充电。另外该电池管理系统400 还可执行保护检查。
在步骤702中,电池管理系统400开始对电池包304充电,并 且将象征不同恒流充电模式的数字n初始化为O。在步骤704中, 一种恒流充电才莫式CCn由控制信号350启动。比如"^兌,当ni殳为O 时,标准恒流充电才莫式CCo将^皮启动。当n为l到max之间的一个 数时, 一种小恒流充电模式CCn ( n=l,2,…,max)将被启动。步 骤706执行保护检查,比如说,所述指令转换器426接收来自监 测电路424的监测信号,从而确定是否出现异常现象(例如,过压、过流,以及温度过高)。如果出现任何异常现象,流程图700 将转到步骤728,终止对电池充电(启动充电终止模式)。此时,
异常现象出现,流程图700将转到步骤708。
在步骤708中,可以利用指令转换器426将电池包304的电池 最高电压与第三预设电压进行比较,以检测是否出现过压现象。 如果电池最高电压大于第三预设电压(表示出现过压现象),流 程图700将转到步骤710。在步骤710中,数字n加l。然后流程图 700转到步骤712中,执行电压跳变检查。如果电池最高电压小 于第三预设电压(表示没有出现电池过压现象),流程图700将 直接转到步骤712。
在步骤714中,如果电池电压(比如一节电池的电压或多节 电池的平均电压)在一段时间内的的增量AV/At小于一个预设 阈值Ath,流程图700将返回到步骤704,开始一个新的周期。因 为若在步骤708中检查到有过压现象产生,步骤710会使得n加l, 在这个新的周期(当前周期)中,充电电流从上一周期的第一 幅度调节到比第一幅度更小的第二幅度。在前面已经对步骤704 以及其后面的步骤进行详细描述,为了简明起见,在此将不对 其重复描述。
如果电池电压(比如一节电池的电压或多节电池的平均电 压)在一段时间内的的增量AV/At大于该预设阈值Ath,则以一 种小恒流充电模式(例如,CCmax)对电池包304充电,如步骤 716所示。控制信号350将控制适配器302输出 一个恒定充电电流 (Imax)对电池包304充电。
步骤720执行恒压检查。更具体地说,将电池包304的平均 电压与第二预设电压进行比较,以确定是否可以启动恒压充电 模式(例如,标准恒压充电模式CVo)。在步骤720中,如果电
24池包304的平均电压小于第二预设电压,流程图700将返回到步 骤716,继续以一种小恒流充电才莫式对该电池包304充电。
在步骤720中,如果电池包304的平均电压大于第二预设电 压,流程图700将转到步骤722,以一种恒压充电模式(例如, 标准恒压充电才莫式CVo)对电池包304充电。然后流程图700将 转到步骤724中,以确定所有电池是否充满。
在步骤724中,如果检查到所有电池均被充满,流程图700 将转到步骤728,终止充电过程(启动充电终止模式)。否则, 流程图700将返回到步骤722中继续以恒压充电模式对电池包 304充电。
联系前面对图5至图7的描述,本发明的电池管理系统400 可以通过多种恒流充电模式(例如,标准恒流充电模式CCo、 小恒流充电模式Cd-CCmax),以及恒压充电模式(例如,标准 恒压充电模式CVo)对电池包304充电。通过对所述指令转换器 426进4亍配置或编程,则可以^^亍其他的充电才莫式。比如i兌,该 电池管理系统400可以通过恒流充电模式(例如,标准恒流充电 模式CC。),以及多种恒压充电模式(例如,标准恒压充电模式 CV。,小恒压充电模式CV广CVmax,)对电池包304充电。另外, 电池管理系统400还可以通过多种恒流充电才莫式(例如,标准恒
流充电模式CCo、小恒流充电模式CC广CCmax),以及多种恒压
充电模式(例如,标准恒压充电模式CV。,小恒压充电模式 CV广CVmax,)对电池包304充电。适配器(充电器)302能够接 收来自监测电路424的监测信息,如果在当前周期中监测到有失 衡现象和/或其他异常现象发生,则将充电电流从上一周期的第 一幅度调节到比第一幅度更小的第二幅度。
图8所示为根据本发明 一个实施例的电池管理系统400的另 一种运作流程图8 0 0 。以下将结合图3和图4对图8进行描述。如图8所示,在步骤802中,电池管理系统400监测一个电池 包304内的多节电池中的每节电池。比如,通过监测电路424监 测这些电池的电压、电流和温度等等,并且产生指示每节电池 状态的监测信号。
在步骤8 04中,电池管理系统4 00根据每节电池的状态产生 控制信号350 。比如,可以根据如图4中所示的监测信号 490—1-490—3、 492,和494来产生3空命H言号350。
在步骤806中,电池管理系统400根据控制信号350调节适配 器302的输出功率。比如,电池管理系统400可以通过调节一个 脉宽调制信号的占空比,从而调节该适配器302的输出功率。
如前所述,才艮据本发明7>开的电池管理系统,电池包可以 通过其内部的控制电路直接调整适配器的输出功率,且适配器 的输出功率是基于每节电池的状态进行调整,根据不同的电池 状态,可以启动不同的充电模式。当所有电池都完全充满电后 充电终止,并且各种异常现象得以消除。
在另一个实施例中,不同充电模式的启动,是基于电池包 的整体状态而非每节电池的状态。比如,充电开始时使用标准 恒流模式。如果电池包电压大于第一个阈值,则启动小恒流充 电模式。如果电池包电压在一段时间内的增量大于第二个阈值 (说明可能有失衡现象产生),也启动小恒流充电模式。如果电 池包电压大于第三个阈值,则启动恒压充电模式。
图9所示为才艮据本发明 一个实施例的电池管理系统900的示 意图。电池管理系统900包括监测电路908。监测电路908用于监 测包含有多节电池的电池包904,同时用于在每个周期里监测电 池包904出现的失衡现象或其他异常现象,如过压现象。尽管在 图9示出的实施例中,电池包904包含有三节电池910—1, 910—2 和910 3,电池包904包含的电池凄i目可以是4壬意的凄t目。电池管理系统900还包括充电器902,用于控制电池包904的充电电流 和接收来自监测电路908的监测信息,以及调节充电电流。如果 当前周期中出现失衡现象和/或其他异常现象(如过压,过流, 过充),充电器902将把充电电流从上一周期的第一幅度调节到 比第一幅度更小的第二幅度。充电器902包括适配器906,该适 配器906受控于充电控制器907。
充电器902通过输出端口 940提供充电电流/电压。在一个实 施例中,监测电路908 (例如,容量计量电路)位于充电器902 内部。监测电^各908通过充电器902的输出端口 904监测电池包状 态,并产生指示电池包状态的监测信号960。在一个实施例中, 监测电路9 0 8监测电池包电压,并产生指示电池包电压的监测信 号960。在一个实施例中,监测电路908监测电池包904的充电电 流,并产生指示电池包充电电流的监测信号960。比如,监测电 路908监测电池包904的电压变化率dV/dt (电池包电压对时间的 导数),并产生指示dV/dt的监测信号960。监测电路908也可以 监测电池包904的充电电流变化率dl/dt(电池包充电电流对时间 的导数),并产生指示dl/dt的监测信号960。
监测电路908产生的监测信号960被传送至充电控制器907。 充电控制器907产生控制信号950用于控制适配器906的输出功 率,以启动不同的充电模式。具体来讲,充电控制器907可以基 于电池包状态产生控制信号950。所述电池包状态可以包括但不 限于电池包电压,电池包充电电流,电池包电压对时间的导 数,电池包充电电流对时间的导lt,以及在一l殳时间内电池包 电压的增量。因此,适配器906的输出功率可以在控制信号950
的作用下进行调节。
在一个实施例中,监测电路908和充电控制器907都集成于 充电器902中。充电器902能够基于电池包904的状态调节适配器
27906的输出功率。因此,充电器902和电池包904之间不需要专门 的通信线路。
电池管理系统900可以才艮据电池包电压启动不同的充电冲莫 式。在一个实施例中,充电控制器907可以启动多种充电模式。 这些充电模式包括但不限于,标准恒流充电模式CCn ( n=0)、 小恒流充电模式CCn (n=l,2, ...,max,其中max是数字n的一个预 设最大值,数字n则代表各种恒流充电模式)、标准恒压充电模 式CVm( m=0)、小恒压充电才莫式CVm( m=l,2, ... ,max,,其中max' 是数字m的一个预设最大值,数字m则代表各种恒压充电模式) 以及充电终止才莫式。当电池包出现失tf或其他异常现象时,可 以启动一种小恒流充电模式或一种小恒压充电模式。当出现任 何异常现象或错误时,或者当电池包被充满时,可以启动充电 终止模式。
当控制信号950控制适配器906在其输出端940提供 一 个恒 定充电电流Io时,标准恒流充电才莫式CCo可^皮启动。此时,电池 包904由该恒定充电电流Io进行充电。当控制信号950控制适配 器906在其输出端940提供一个恒定充电电流In ( n=l,2,…,max) 时, 一种小恒流充电才莫式CCn( n=l,2, ...,max)可^皮启动。此时, 电池包904由该恒定充电电流In ( n=l,2,…,max)进4亍充电。在
一个实施例中,1。M!〉l2〉…〉Imax。
同理,当控制信号950控制适配器906在其输出端940提供一 个恒定充电电压V。时,标准恒压充电模式CV。可被启动。此时, 电池包904由该恒定充电电压Vo进行充电。当控制信号950控制 适配器906在其输出端940提供 一 个恒定充电电压Vm (m=l,2, …,max,) 时, 一 种小恒压充电模式CVm (m=l,2,…,max,)可一皮启动。此时,电池包904由该恒定充电 电压Vm ( m=l,2,…,max,)进行充电。在 一 个实施例中,Vo〉Vi〉V2〉…〉V隨,。
因此,通过根据电池包904的状态来启动不同的充电模式
(CC。,Cd,…CCmax,或CV。,CVb…,CVmaxO,电池包904可以被 完全充满,并且可以避免异常现象的出现从而延长了电池寿命。
在一个实施例中,适配器906包括脉宽调制信号发生器980。 控制信号950可以用于控制由脉宽调制信号发生器980产生的脉 宽调制信号的占空比。通过调节该脉宽调制信号的占空比,适 配器906输出端940上的输出功率相应得到调节。换句话说,通 过调节适配器906内部的脉宽调制信号的占空比,可以启动不同 的充电模式。比如说,根据电池包的状态,如果需要启动一种 标准恒流充电模式(CC。),控制信号950将调节该脉宽调制信 号的占空比,乂人而^f吏适配器906输出 一个恒定电流10。
在一个实施例中,电池监测电路920(比如一个容量计量电 路)监测各节电池910_1, 910_2和910_3的状态,比如电池电压, 电池电流,电池温度和电池容量,并〗吏得各节电池910一1, 910—2 和910一3避免产生失衡现象或其他异常现象(如过压,过流,温 度过高,充电过度)。在一个实施例中,电池监测电路920集成 于电池包904内部,并能够控制电池包904中的充电开关930和it 电开关932。当有异常现象出现时,电池监测电路920可以断开 充电开关930。当异常现象消除时,电池监测电路920可以接通 充电开关930。当电池包904为系统负载(为简明起见,图9中未 示出)供电时,放电开关932接通。
在一个实施例中,电池包304包括均tf电路928,用于均衡 电池910—1-910—3以进一步提高电池910_1-910_3的性能。均衡 电路928可以设置于电池监测电路920的内部或者外部。为了对 失衡的电池进行均衡,均衡电路928可以在该失衡电池上分流出 一个旁路电流(均;街电流)。如图9中的均tf电路928所示,当开关912 _ 1被接通时,电池910—1可被分流出 一 个均衡电流。当开 关912—2 #皮*接通时,电池910—2可#皮分流出 一 个均#f电流。当开 关912_3,皮接通时,电池910—3可被分流出 一个均4軒电流。开关 912—1-912—3可由电池监测电路920控制。
图IO所示为才艮据本发明 一个实施例的电池管理系统900的 运作流程图1000。充电控制器907控制适配器906使得图9中的电 池管理系统900按照流程图1000所示的步骤运作。具体的说,流 程图1 OOO表明了根据电池包不同的状态,充电控制器907会启动 哪种充电模式。
在图IO的示例中,电池管理系统900对电池包904进行多个 周期的充电。电池管理系统900首先以标准恒流充电模式CCo对 电池包904进行充电。如果出现失衡现象或其他异常现象(如过 压现象),电池管理系统900则以小恒流充电模式 CCn(n^l,2,…,max)对电池包904进^亍充电。如果电池包电压比第 一预设电压更大,电池管理系统900以一种恒压充电模式(如标 准恒压充电模式CVo)对电池包904进行充电。在一个实施例中, 电池管理系统900还会执行均衡检查,将电池包的电压变化率 dV/dt (电池包电压对时间的导数)与一个预设阔值TH1进行比 较。
在步骤1002中,电池管理系统900开始对电池包904进行充 电,代表不同恒流充电模式的n的值初始化为O。在步骤1004中, 一种恒流充电模式CCn由控制信号950启动。比如,当n的值设 为O,标准恒流充电模式CCo将被启动。当n的值设为l到max之 间的 一 个数时, 一种小恒流充电模式CCn(n= 1 ,2,...,max)将被启 动。
步骤1006执行保护检查,以确定是否有异常现象出现,如 是否过压,过流或温度过高。比如,监测电路908通过充电器902的输出端口 940监测电池包904,如果充电电流小于第 一预设电 流,则判断有异常现象出现。如果充电电流小于该第一预设电 流(说明有过压,过流,温度过高等异常现象出现),流程图1000 转到步骤1007。在步骤1007中,n的值加l。在另一个实施例中, 如果有过压,过流,温度过高等异常现象出现,电池监测电路 920断开充电开关930,因此充电电流减小到O。如果充电电流大 于该第一预设电流,说明没有异常现象出现,流程图1000转到 步骤1008。
步骤1008执行均衡检查,判定是否有失衡现象产生。在一 个实施例中,电池包904的电压变化率dV/dt (电池包电压对时 间的导数)与 一个预设阈值TH1进行比较。如果dV/dt大于TH1 , 说明有失衡现象产生,流程图1000转到步骤1016。如果dV/dt 小于TH1,流程图转到步骤IOIO。
步骤1016中一个计时器开始计时。在步骤1018中,如果计 时结束(比如计时器运行超过一个预设时间),流程图1000转到 步骤1019使得n加l,然后转到步骤1010执行恒压检查。
步骤1010执行恒压检查。在一个实施例中,监测电路908 将电池包电压与第 一预设电压比较,判定是否可以启动 一种恒 压充电模式。如果电池包电压小于该第 一预设电压,流程图1000 返回步骤1004,开始一个新的充电周期。如果在上一充电周期 的步骤1006中监测到有异常现象产生,步骤1007会使得n加l。 如果在上一充电周期的步骤1008中监测到有失衡现象产生,步 骤1019会使得n加l。因此在新的一个充电周期(当前充电周期) 中,充电电流将会从上一周期的第一幅度调节到比第一幅度更 小的第二幅度。在一个实施例中,如果步骤1008监测到有失衡 现象,系统等待一段预设的时间后才开始新的充电周期。为简 明起见,步骤1004之后的流程不再做重复存又述。如果电池包电压大于该第一预设电压,流程图1000转到步骤1012,启动一种 恒压充电模式(如标准恒压充电模式CVo)。
回到步骤1018,如果计时器的计时尚未结束,流程图IOOO 转到步骤1020执行恒压检查(类似于步骤IOIO ),判定是否应该 启动一种恒压充电模式(如标准恒压充电模式CV。)。在步骤 1020中,监测电路908将电池包电压与第一预设电压进行比较。 如果电池包电压小于该第一预设电压,流程图IOOO返回步骤 1018。为简明起见,步骤1018之后的流程不再做重复叙述。如 果电池包电压大于该第一预设电压,流程图IOOO转到步骤1012, 启动一种恒压充电模式(如标准恒压充电模式CVo)。
步骤1014执行保护检查(类似于步骤1006 )。比如,监测电 路908监测充电电流并判定充电电流是否小于第 一预设电流。如 果充电电流小于第一预设电流,说明有异常现象出现,流程图 1000转到步骤1015。在步骤1015中,n设置为最大值max,流程
图IOOO返回步骤1004,使用最小充电电流Imax(I。〉I户l2〉…〉I眼x)
进行充电。在另一个实施例中,如果有异常现象(如过压,过
流,温度过高)出现,电池监测电路920断开充电开关930,因 此充电电流减小到O。如果充电电流大于第一预设电流,说明没 有异常现象出现,流程图1000转到步骤1022。步骤1022执行完 全充电4企查。如果,监测电^各908监测充电电流,并判定充电电 流是否小于第二预设电流。如果充电电流小于第二预设电流, 说明电池包904已经充满,流程图IOOO转到步骤1024,结束充电。 如果充电电流大于第二预i殳电流,i兌明电池包904尚未充满,流 程图转到步骤1012,继续以一种恒压充电才莫式(如标准恒压充 电模式CVo)进行充电。为简明起见,步骤1012之后的流程不 再估支重复存又述。
图ll所示为才艮据本发明 一个实施例的电池管理系统900的另 一种运作流程图1 100,可以用于对磷酸锂离子电池进行充电。
充电控制器907控制适配器906,使得图9中的电池管理系统900 按照流程图1100所示的步骤运作。图11将结合图9进行描述。
在图ll的示例中,电池管理系统900对电池包904进行多个 周期的充电。电池管理系统900首先以标准恒流充电才莫式CCo对 电池包904进行充电。如果出现失衡现象或其他异常现象(如过 压现象),电池管理系统900则以小恒流充电模式 CCn(n-l,2,…,max)对电池包904进行充电。如果电池包电压比第 一预i殳电压更大,电池管理系统900以一种恒压充电才莫式(如标 准恒压充电才莫式CVo)对电池包904进行充电。
在步骤1102中,电池管理系统900开始对电池包904进行充 电,代表不同恒流充电模式的n的值初始化为O。在步骤1104中, 一种恒流充电模式CCn由控制信号950启动。比如,当n的值设 为O,标准充电才莫式CCo将被启动。当n的值设为l到max之间的 一个数时, 一 种小恒流充电模式CCn(n= 1,2,... ,max)将被启动。
步骤1106执行保护检查,以确定是否有异常现象出现。比 如,监测电路908监测充电电流,并判断充电电流是否小于第一 预设电流。如果充电电流小于第一预设电流,说明有异常现象 出现,流程图1100转到步骤1107。在步骤1107中,n的值加l, 然后流程图1100回到步骤1104开始一个新的充电周期。如果在 上一充电周期里监测到有异常现象产生,步骤1107会使得n加l, 因此在新的一个充电周期(当前充电周期)中,充电电流将会 从上一周期的第一幅度调节到比第一幅度更小的第二幅度。在 另一个实施例中,如果有异常现象(如过压,过流,温度过高) 出现,电池监测电^各920断开充电开关930,因此充电电流减小 到0 。如果充电电流大于第 一 预设电流,说明没有异常现象出现, 流程图1100直接转到步骤1108。步骤1 108执行均衡检查,将电池包电压和第二预设电压比
较。如果电池包904的电池包电压大于第二预i殳电压,则_说明有 失衡现象产生,流程图IIOO转到步骤1112,否则流程图回到步 骤1104。为简明起见,步骤1104之后的流程不再做重复叙述。
步骤1112中,使用小恒流充电模式(如CC削x)对电池包904 进行充电。在一个实施例中,控制信号950控制适配器906输出
恒定充电电流Im^对电池包904进^亍充电。
步骤1114执行恒压检查,判定是否应该启动一种恒压充电 模式(如标准恒压充电模式CV。)。在步骤1114中,监测电路908 将电池包电压与第 一预设电压进行比较。如果电池包电压小于 该第一预设电压,流程图1100返回步骤1112。为简明起见,步 骤1112之后的流程不再做重复叙述。如果电池包电压大于该第 一预设电压,流程图IIOO转到步骤1116,启动一种恒压充电模 式(如标准恒压充电模式CVo)。然后流程图1100转到步骤1118, 执行完全充电4企查。
步骤1118^丸行完全充电检查。监测电路908监测充电电流, 并判定充电电流是否小于第二预设电流。如果充电电流小于第 二预设电流,i兌明电池包904已经充满,流程图1100转到步骤 1120,结束充电。如果充电电流大于第二预设电流,说明电池 包904尚未充满,流程图1100回到步骤1116,继续以一种恒压充 电模式(如标准恒压充电模式CVo)进行充电。为简明起见, 步骤1116之后的流程不再做重复叙述。
图12所示为根据本发明 一 个实施例的电池管理系统900的 运作流程图1200。图12将结合图9进行描述。
如图12所示,在步骤1202中,电池管理系统900监测电池包 904的状态。在一个实施例中,如图9所示,集成于充电器902 中的监测电3各908通过输出端口 940监测电池包的电压和/或充
34电电5充。
在步骤1204中,利用监测电路908监测在每个充电周期中可 能出现的失衡现象。该步骤还可进一 步包括利用监测电路908 监测在每个充电周期中可能出现的异常现象(如过压,过流, 温度过高)。
在一个实施例中,如果监测电路908监测到电池包的电压变 化率(电池包电压对时间的导数)大于一个预设的阈值,则判 断有失衡现象产生。在另一个实施例中,如果监测电路908监测 到电池包电压大于 一个预设的电压,则判断有失衡现象产生。 在另 一个实施例中,如果监测电路908监测到充电电流小于一个 预设的电流,则判断有异常现象产生。
在步骤1206中,如果当前充电周期中监测到有失衡现象产 生,电池管理系统900把充电器902提供的充电电流从上一周期 的第一幅度调节到比第一幅度更小的第二幅度。比如,电池管 理系统900通过调整适配器906中的脉宽调制信号的占空比来调 节适配器906的输出的充电电流。步骤1206还可以进一步包括, 如果当前充电周期中监测到有异常现象产生,电池管理系统900 把充电器902提供的充电电流从上一周期的第 一幅度调节到比 第一幅度更小的第三幅度。
如前所述,本发明的实施例公开了可以对电池包分阶段进 行充电的电池管理系统。如果有失衡现象或者异常现象产生, 该电池管理系统可以用减小的电流(小恒流充电才莫式)对电池
(如在失衡电池上分流出均衡电流),从而使所有的电池能够完 全充电,并消除各种异常现象。
在此使用的措辞和表达都是用于说明而非限制,使用这些 措辞和表达并不将在此图示和描述的特性的任何等同物(或部分等同物)排除在发明范围之外,在权利要求的范围内可能存 在各种修改。其它的修改、变体和替换物也可能存在。因此, 权利要求旨在涵盖所有此类等同物。
权利要求
1.一种电池管理系统,其特征在于,包括监测电路,用于监测包含有多节电池的电池包,并在多个周期中的每一个周期监测所述电池包是否有失衡现象产生;充电器,用于为所述电池包提供充电电流,接收来自所述监测电路的监测信息,并在监测到当前周期中有失衡现象产生后,将充电电流从上一周期的第一幅度调节到比第一幅度更小的第二幅度。
2. 根据权利要求l所述的电池管理系统,其特征在于,所 述电池包包4舌均衡电路,用于在监测到有所述失衡现象产生后,对所述 多节电池进行均衡。
3. 根据权利要求l所述的电池管理系统,其特征在于,还 包括耦合于所述电池包和所述充电器之间的通信线路,用于将 所述监观'j信息从所述监测电路传送至所述充电器,其中,所述监测电^各位于所述电池包内部,所述监测信息 包括所述多节电池中每一节电池的电压。
4. 根据权利要求l所述的电池管理系统,其特征在于,所 述失衡现象包括所述多节电池中两节电池的电压差大于预设的 电压差。
5. 根据权利要求l所述的电池管理系统,其特征在于,所 述监测电路通过所述充电器的输出端监测所述电池包,所述监 测信息包括所述电池包的电压。
6. 根据权利要求l所述的电池管理系统,其特征在于,所
7. 根据权利要求l所述的电池管理系统,其特征在于,所 述失衡现象包括所述电池包的电压大于预设的电压。
8. 根据权利要求l所述的电池管理系统,其特征在于,当 监测到有所述失衡现象产生后,所述充电器在等待一段预设的 时间后才把所述充电电流调节到所述第二幅度。
9. 根据权利要求l所述的电池管理系统,其特征在于,所 述监测电路还能够在所述多个周期中的每一个周期监测所述电 池包是否有异常现象产生。
10. 根据权利要求9所述的电池管理系统,其特征在于,还 包括耦合于所述电池包和所述充电器之间的通信线路,用于将 所述监测信息从所述监测电路传送至所述充电器,其中,所述监测电路位于所述电池包内部,所述监测信息 包括所述多节电池中每一节电池的电压。
11. 根据权利要求9所述的电池管理系统,其特征在于,如 果监测到有所述异常现象产生,所述电池包断开充电开关。
12. 根据权利要求9所述的电池管理系统,其特征在于,所 述异常现象包括过压现象。
13. 根据权利要求9所述的电池管理系统,其特征在于,所 述监测电路通过所述充电器的输出端监测所述电池包,如果所 述充电电流小于预设的电流,则所述监测电路判定有所述异常 现象产生。
14. 一种对包含有多节电池的电池包充电的方法,其特征 在于,包括监测所述电池包的状态;在多个周期中的每一个周期监测所述电池包是否有失衡现 象产生;监测到当前周期中有所述失衡现象产生后,利用充电器将 所述电池包的充电电流从上一周期的第 一 幅度调节到比第 一 幅度更小的第二幅度。
15. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括如果监测到有所述失衡现象产生,则对所述多节电池进行 均衡。
16. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括如果所述多节电池中两节电池的电压差大于预设的电压 差,则判定监测到有所述失衡现象产生。
17. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括通过所述充电器的输出端口监测所述电池包的状态,其中 所述电池包的状态包括所述电池包的电压。
18. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括如果所述电池包的电压变化率大于预设的阈值,则判定监 测到有所述失衡现象产生。
19. #^据^=又利要求14所述的对包含有多节电池的电池包充电的方法,其特征在于,还包括如果所述电池包的电压大于预设的电压,则判定监测到有 所述失衡现象产生。
20. 才艮据4又利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括当监测到有所述失衡现象产生后,等待 一 段预设的时间后 才把所述充电电流调节到所述第二幅度。
21. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括一监测电路根据所述电池包的状态产生相应的监测信息, 并通过一条通信线路把所述监测信息传送至所述充电器,其中,所述监测信息包括所述多节电池中每一节电池的电压。
22. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括在多个周期中的每一个周期监测所述电池包是否有异常现 象产生;监测到当前周期中有所述异常现象产生后,将所述电池包 的充电电流从上一周期的第 一幅度调节到比第 一幅度更小的第 三幅度。
23. 根据权利要求22所述的对包含有多节电池的电池包充 电的方法,其特征在于,所述异常现象包括过压现象。
24. 根据权利要求14所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括在多个周期中的每一个周期监测所述电池包是否有异常现 象产生;如果监测到有所述异常现象产生,则断开充电开关。
25. 根据权利要求22所述的对包含有多节电池的电池包充 电的方法,其特征在于,还包括如果所述充电电流小于预设电流,则判定监测到有所述异 常现象产生。
全文摘要
本发明公开了一种电池管理系统及对包含有多节电池的电池包充电的方法,其中该电池管理系统包括监测电路和充电器。监测电路用于监测包含有多节电池的电池包,并在多个充电周期中的每一个周期监测电池包是否有失衡现象产生。充电器用于控制电池包的充电电流,接收来自监测电路的监测信息,并在监测到有失衡现象产生后,将充电电流从上一周期的第一幅度调节到比第一幅度更小的第二幅度。本发明使电池包内所有的电池能够完全充电,并消除各种异常现象。
文档编号H02J7/02GK101604860SQ20091011787
公开日2009年12月16日 申请日期2009年3月13日 优先权日2008年3月31日
发明者侯晓华, 张珍明, 栗国星, 汤瑞超, 郭建魁 申请人:凹凸电子(武汉)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1