用于确定调制方案的控制器和方法

文档序号:7464115阅读:105来源:国知局
专利名称:用于确定调制方案的控制器和方法
技术领域
本发明涉及一种用于确定调制方案的控制器和方法,尤其涉及一种用于控制逆变器的调制方案以产生驱动电动马达的电压波形。
背景技术
多相电动马达的工作通常使用逆变器来进行控制,其中逆变器被设置成将直流电压转换成多相电压波形。图I示出了三相桥式逆变器10,本领域技术人员熟知其含有六个开关11。该六个开关11被设置成三个并联的两个开关组,每组开关为串联以构成三相桥式电路的一个臂。该逆变器的每一个臂被耦合到三相电动马达12的一个相应的线圈组,以允许单个电压相 位施加到相应的电动马达线圈组。通常被耦合到直流电压的上面三个开关构成高侧驱动器。下面三个开关构成低侧驱动器。通过利用相应的脉宽调制PWM信号来驱动高侧驱动器开关,PWM信号的占空比根据所需的调制方案而随时间变化,可以施加大体上的正弦电压到电动马达的每个线圈绕组。为了避免短路的情况,高侧驱动器开关关断时,低侧驱动器开关导通,反之亦然。为了确保高侧驱动器和低侧驱动器开关不同时导通,在关断一侧并导通另一侧之间设置一个小的死区时间。在调制深度为I (即,开关占空比为100%)时,为线圈绕组施加全电池电压。在在调制深度为O时,为线圈绕组施加OV电压。图2中示出了生成PWM信号以表征正弦调制方案,任意两个线圈之间的最大电压差值为O. 866*电池电压或31/2XVbat/2参考图2,y轴表示调制深度,X轴表示电角度。为了增加任意两个电动马达线圈绕组之间的最大电压差,从而增大电动马达的最大速度,通常采用不连续PWM最小(DPWMMIN DiscontinuousPWM Minimum)或不连续PWM最大(DPWMMAX Discontinuous PWM Maximum)调制方案。对于DPWMMIN,多相交变信号的最小电压值被从每个交变信号中减去,由此允许交变调制方案的一个相位总是为零。对于DPWMMAX,多相交变信号的最大电压值之间的差值被加到每个交变信号中,由此允许交变调制方案的一个相位总是为最大调制值。图3示出了 DPWMMIN调制方案,其通过施加具有变化占空比的PWM信号而被施加到逆变器的高侧驱动器开关。如上所述,为了避免短路情况,施加反向调制方案到低侧驱动器开关。图4示出了被施加到逆变器的高侧驱动器开关的DPWMMAX调制方案。使用这些方案,任意两个电动马达线圈之间的最大电压差为电池电压,从而与正弦调制相比显著增加了马达的基础速度。额外的一个益处在于在三分之一的时间内,高侧或低侧驱动器中的一个开关关断,从而降低开关损耗。不幸的是,控制设计要求限制了 DPWMMIN和DPWMMAX调制方案的实施。尽管根据DPWMMIN和DPWMMAX调制方案驱动线圈的逆变器开关可以被关断,但如果它们导通,则理想地存在一个必须施加的最小脉宽。如果施加短于该期间的脉宽(这在DPWMMIN和DPWMMAX调制方案的调制信号的不连续点处将是必须的),则相关逆变器开关在这样一个区域工作,在该区域中它们没有完全关断或导通并具有高阻抗。这导致了热损耗以及逆变器开关寿命降低。为了克服这一问题,通常的解决方案是确保在实施DPWMMIN和DPWMMAX调制方案时,逆变器开关绝不全部关断,这会限制最大调制深度,如图5所示。其后果是降低了任意两个线圈之间的最大电压。另外,这也没有能够在三分之一的时间内关断一个逆变器开关的益处。

发明内容
因此,期望改进该方案。根据本发明的一个方面,提供了一种根据所附权利要求的控制器和方法。该方案有益地允许任意两个电动马达线圈绕组之间的电压差保持为正弦,同时还允许每个电压相位在三分之一的时间内可以关断而不违反最小脉宽要求,从而使得调制深
度得以最大化。


下面将结合附图通过实施例描述本申请,其中图I示出了三相桥式逆变器;图2示出了正弦三相调制方案;图3示出了 DPWMMIN调制方案;图4示出了 DPWMMAX调制方案;图5示出了最小调制深度大于零的DPWMMIN调制方案;图6示出了本发明一个实施例所使用的电动马达的分解图;图7从另一个角度示出了图6所示的电动马达的分解图;图8示出了本发明一个实施例所使用的电动马达的线圈组的示例布置;图9示出了三相定子电流复数空间矢量;图10示出了根据本发明一个实施例的闭合环路控制系统;图11示出了具有d, q旋转参考巾贞的三相定子电流参考巾贞;图12示出了根据本发明一个实施例的调制方案。
具体实施例方式所描述的本发明的实施例是用于车轮的永磁同步电动马达(即车轮电动马达)的控制器。然而,本领域技术人员能够明白,该控制器适用于其他类型的永磁同步电动马达或感应马达。该类型马达的线圈组为定子的一部分以接附到车辆,该定子被转子径向环绕,而转子承载磁铁组以接附到车轮。另外,本发明的一些方面适用于在径向环绕的线圈内居中安装转子的布置。结合图6、7可以最佳地理解体现本发明的组件的实体布置。该组件可以描述为具有内置电子器件和轴承的马达,或也可以因其被构造成适用于单个车轮而被描述为轮毂马达或轮毂驱动。然而,所描述的永磁同步电动马达配置仅用于示意性描述之目的。首先参考图6,该组件包括定子252,其包括构成组件壳体的第一部分的后部230、以及热沉和驱动布置231,驱动布置231包括多个线圈和电子器件以驱动线圈和热沉。线圈驱动布置231被固定于后部230以构成定子252,定子252随后被固定于车辆并在使用中不旋转。线圈本身形成于齿形叠层上,后者连同驱动布置231和后部230共同构成定子252。尽管图中未示出,多个电容电路板也安装在定子上以提供电动马达和电压源之间的电容以降低电压线路下降。
转子240包括构成盖的前部220和柱形部221,该盖基本上包围定子252。转子包括围绕柱形部221内侧设置的多个磁体242。由此这些磁体紧邻组件231上的线圈,从而由组件231中的线圈所产生的磁场产生作用于围绕转子240的柱形部221内侧设置的磁体242上的力,进而使得转子240旋转。转子240通过轴承块223连接到定子252。该轴承块223可以为标准轴承块,其将用于该马达组件所要安装的车辆内。该轴承块包括两部分,第一部分固定于定子,第二部分固定于转子。轴承块固定于定子252的壁230的中心部分233,还固定于转子240的壳体壁220的中心部分225。转子240由此通过轴承块223在转子240的中心部分225处可旋转地固定于其所要用于的车辆上。其显著优点在于,通过普通车轮螺栓,可以将轮缘和轮胎在中心部分225处固定至转子240,以将轮缘固定至转子的中心部分并由此牢固地固定至轴承块223的可旋转侧。车轮螺栓可以穿过转子的中心部分225穿入到轴承块本身。这样现有的轴承块可以被安装到组件内,整个布置可以在定子侧被安装到车辆,并且普通的轮缘和车轮可以被安装到转子,从而轮缘和车轮环绕整个马达组件。图7从另一侧示出了与图6相同的组件的分解图,其中定子252包括后定子壁230和线圈以及电子器件组件231。转子240包括外转子壁220和周壁221,在周壁221内磁体242沿圆周布置。如前所述,定子252通过轴承块223在转子和定子壁的中心部分处与转子240连接。图6中还示出了控制装置80,或者被称作马达驱动电路,其如下文所述,包括逆变器和控制电路,该控制电路作为控制器工作以根据本发明一个实施例执行调制方案。另外,图7中提供了包括转接聚焦环(commutation focusing ring)和多个磁体的磁体环227,以为一系列设置在定子252的控制装置80上的传感器指示转子相对于定子的位置。图8示意性地示出了电动马达40的例子。其中,马达为基本上环形的。然而,可以理解,本发明的实施例可以采用其他拓扑结构。例如,可以采用线圈的线性布置以产生直线运动。在该实施例中,马达40包括八个线圈组60,每个线圈组60具有三个线圈子组61、62,63,它们耦合至各自的控制装置80,每个控制装置80和相应的线圈子组构成三相逻辑或子电动马达,其可以独立于其它子马达而被控制。控制装置80以三相电压源驱动其相应的子马达,从而允许相应的线圈子组产生旋转磁场,如下文所述。尽管本实施例描述每个线圈组60具有三个线圈子组61、62、63,但本发明并不限于此,可以明白每个线圈组60可以具有两个或更多线圈子组。同样的,尽管本实施例描述电动马达具有八个线圈组60 (即八个子马达),但马达可以具有任意数量的线圈组及相关的控制装置。马达40可以包括转子(在图8中未示出),该转子位于由马达的各个线圈的布置所限定的圆的中心,从而允许该转子在由所述线圈产生的旋转磁场中进行旋转。然而优选地,将该转子布置在线圈周围,如之前在图6和7中所公开的。该转子通常可包括一个或多个永磁体,它们被布置来进行旋转以使得它们的磁极扫过马达40的线圈的端部。线圈子组61、62和63中的线圈的电流的恰当切换允许转子的永磁体的磁极的同步吸引力和排斥力来产生马达40的旋转动作。可以意识到,图8是高度示意性的,在实践中,将线圈子组布置在定子的外周并且使转子磁体包围线圈。如上所述,每个控制装置80包括具有6个开关的三相桥式逆变器。该三相桥式逆变器耦合到线圈组60的三个子组线圈,以形成三相电动马达配置。因此,如上所述,该马达包括8个三相子马达,其中每个三相子马达包括耦合到线圈组60的三个子组线圈的控制装·置80。每个三相桥式逆变器被配置来提供各个线圈子组61、62和63上的PWM电压控制,以便产生电流并为相应的子马达提供需要的驱动或制动扭矩,如下文所述。尽管本实施例描述了使用位于控制装置80上的控制电路来控制三相桥式逆变器以提供PWM电压信号,但也可以使用任何合适形式的控制器。例如,控制器可以被本地地安置到电动马达,或者被安置到车辆的中心。对于给定的线圈组,控制装置80的三相桥式开关被配置来为线圈子组61、62和63中的每个施加单个电压相位。使用场定向控制(Field Orientation Control)来产生在马达控制器(未示出)的控制下由控制装置80在电动马达中生成的正弦电压波形,其中,产生的转子磁通和定子电流由被隔开120度的相应向量表示,如图9中的三个轴A、B和C所示。如图9所示,电流ia、ib和ic表示在三相电流参考帧的A、B和C轴的各个定子线圈中的瞬时电流,其中定子电流向量被定义为is=ia+ a ib+ a 2ic,其中 a =e(i*2*n/3)。场定向控制是基于将三相时间和速度依赖系统转变为两坐标的时间恒定系统的映射的,其中,定子电流或电压分量与正交轴q对齐,并且磁通分量与直轴d对齐。通过使用闭环控制系统(图10中示出了其中的一个示例),将需要的扭矩τ和需要的磁通λ与从电动马达测量的实际值进行比较,其中,所述需要的扭矩τ由输入^或Vd值表示,所述需要的磁通λ由输入iq或值表示。然而应当注意,在普通情况下,永磁同步电动马达通常会具有设置为零的i,或V,。图10中示出的闭环控制系统100执行需要的扭矩值与测量值之间的比较,并通过使用Park和Clarke变换器来执行驱动电动马达所需要的相关联的电压和电流控制。Clarke变换器101使用用于驱动电动马达的三相电压va、vb和vc中的至少两个的测量值来计算在两相正交定子轴να和νβ上的电压。然后Park变换器102执行Park变换以将两个固定坐标定子轴V Ct和νβ变换为两坐标的时间恒定系统vd和vq,其定义了d、q旋转参考帧。图11示出了在d、q旋转参考帧中相对于两相正交定子轴να和νβ的定子电压和a、b和c静止参考巾贞的关系。在正常的驱动状况下,转子相位角和定子电子相位角06与(1轴对齐,从而保持转子相位角Θ ^和定子电子相位角之间的同步,其中,转子相位角Θ ^由转子磁通向量Ψκ定义。为了本实施例的目的,使用转子换相磁体和安装在控制装置80上的位置传感器来测量转子相位角Θ P这对本领域技术人员是公知的。为了允许Park变换器102获得时间恒定变换,将转子相位角Θ r提供给该Park变换器。将两坐标的时间恒定值Vd和vq与需要的扭矩和需要的磁通进行比较。然后将校正后的vd*和值输入到逆Park变换器103以获得固定坐标ν α *和ν β *。该固定坐标να和νβ值被输入到逆Clarke变换器104以得到用于驱动电动马达的需要的三相电压值Va, Vb 和 Vc。该三相电压值Va、Vb和Vc被馈送到调制单元105,其使用该三相电压值Va、Vb和 Vc来确定调制方案。一旦已经得到了调制方案,使用空间向量调制来确定逆变器开关的开关序列,以生成三相PWM电压来表示需要的正弦三相电压,从而用需要的扭矩来驱动电动马达。为了本实施例的目的,由调制单元105使用的调制方案是基于DPWMMIN或DPWMMAX的修改版的。调制方案(对于基于DPWMMIN的调制方案,其被应用到逆变器106的高侧驱动器)首先需要在多个电角度处,将由逆Clarke变换器产生的多相交变信号(即Va、Vb和Vc)的多个电角度的每个处的最小电压值从在各自电角度处的交变信号的每个中减去。这产生其中一个多相值对于给定的电角度范围处于零的调制方案,从而确保在任何两个线圈之间的最大电压。对于基于DPWMMAX的调制方案,产生的调制方案被应用到逆变器106的低侧驱动器。为了避免调制深度对应的脉宽小于最小脉宽,如果两个非零调制深度中的任一个的最小值对应于小于最小脉宽的脉宽,则将最小允许调制深度值加到每个三个相位调制值中。通常,该最小允许调制深度将对应于与最小允许脉宽对应的调制深度。然而,可以将大于最小允许调制深度的任何值加到每个三相调制值中。在一个实施例中,在多个不同的电角度(通常由脉宽调制频率来确定)处,对于每个非零调制深度,通过首先确定在每个不同的电角度处的三个调制值的中间值,来确定非零调制值是否具有小于最小允许调制深度的值。由于调制深度值中的一个将总是为零,通过提取中间值可以识别出最低的非零调制深度值。然后将该中间值的调制深度值与最小允许调制深度进行比较。如果该中间值的调制深度值小于该最小允许调制深度,则将该最小允许调制深度加到在相应电角度处的每个调制值。图12中示出了所产生的调制方案。然后,由PWM频率所确定的在不同电角度处的调制值被用作在高侧驱动器和低侧驱动器上的相应逆变器开关的占空比,如上所述。为了最小化由电动马达产生的电子和听觉噪声,优选采用16kHz的PWM频率。由于应用到逆变器的高侧驱动器的用于DPWMMAX的调制方案对应于应用到逆变器的低侧驱动器的用于DPWMMIN的调制方案,能够基于DPWMMAX调制方案使用相同的机制确定调制方案。这样会将总体最大电压值和给定电角度处的多相交变信号的最大电压值之间的差加到每个交变信号,从而允许交变调制方案的一个相位总是处于最大调制值。能够使用空间向量调制SVM来实现这种在相应的多个电角度处从每个交变信号减去最小值,或者相反地对于每个交变信号增加多相交变信号的最大电压值之间的差从而确定调制方案的机制。
由逆变器106产生的结果PWM电压信号导致在电动马达的任意两个线圈绕组之间的电压差是正弦曲线,其中在不违反最小脉宽要求的情况下对于三分之一的时间每个相位被关断。
权利要求
1.一种为一组多相交变信号确定调制方案的方法,所述方法包括 根据所述一组多相交变信号在多个电角度的每个处确定最小值; 在分别的所述多个电角度处从每个所述交变信号减去相应的最小值,以为每个信号提供调制值,其中,对于在分别的所述多个电角度处具有小于第一预定值的非零调制值的信号,向每个所述调制值增加第二预定值。
2.根据权利要求I所述的方法,还包括 对于三相交变信号,从多个调制值确定中间调制值,其中,如果所述中间调制值的调制值小于预定值,则向每个所述调制信号增加所述第二预定值。
3.根据权利要求I或2所述的方法,还包括 使用所述调制值来生成用于控制逆变器的开关的占空比的控制信号,其中,所述逆变器配置来驱动电动马达。
4.根据权利要求3所述的方法,其中,所述第一预定值是基于所述逆变器的开关的开关特性的。
5.根据权利要求4所述的方法,其中,所述逆变器的开关的所述开关特性是开关导通和关断所需要的时间段。
6.根据权利要求4所述的方法,其中,所述第一预定值是基于脉宽调制开关方案的最小开关时间的。
7.一种用于为一组多相交变信号生成多相调制值的控制器,所述控制器包括 用于根据所述一组多相交变信号在多个电角度的每个处确定最小值的装置; 用于在分别的所述多个电角度处从每个所述交变信号减去相应的最小值,以为每个信号提供调制值的装置,其中,对于在分别的所述多个电角度处具有小于第一预定值的非零调制值的信号,向每个所述调制值增加第二预定值。
8.根据权利要求7所述的控制器,还包括 用于从多个调制值确定中间调制值的装置,其中,如果所述中间调制值的调制值小于预定值,则向每个所述调制信号增加所述第二预定值。
9.根据权利要求7或8所述的控制器,还包括 用于使用所述调制值来生成用于控制逆变器的开关的占空比的控制信号的装置,其中,所述逆变器配置来驱动电动马达。
10.一种车辆,其包括根据权利要求9所述的控制器、逆变器以及配置来产生用于移动所述车辆的扭矩的电动马达。
全文摘要
一种为多相交变信号确定调制方案的方法,所述方法包括在多个电角度处确定具有最小值的多相交变信号;在分别的所述多个电角度处从所述交变信号的每个减去各自的最小值,以为每个信号提供调制值,其中,对于在分别的所述多个电角度处具有小于第一预定值的非零调制值的信号,向所述调制值的每个增加第二预定值。
文档编号H02P27/08GK102904523SQ20121026628
公开日2013年1月30日 申请日期2012年7月27日 优先权日2011年7月27日
发明者R·伯克 申请人:普罗蒂恩电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1