带变速机构的旋转电机及使用该旋转电机的驱动装置的制作方法

文档序号:87592阅读:317来源:国知局
专利名称:带变速机构的旋转电机及使用该旋转电机的驱动装置的制作方法
技术领域
本发明涉及带变速机构的旋转电机及使用该旋转电机的驱动装置,该带变速机构的旋转电机具备设置了多个齿的铁心(core)。
背景技术
电动机是作为驱动用机械使用的,其将产业用、家电、汽车等领域的电能转变为机械输出。作为这些领域的动力机器的电动机一般要求小型且高转矩。
作为增大输出转矩的方法,考虑通过减速机构(变速机构)来放大转矩。根据这种方法,以具有相同的间隙(gap)磁通密度、相对面积的电动机,就能够加快电动机的旋转速度、增大输出。这种方法通常在具有大转矩的用途中,有通过在电动机的输出轴配置减速机(变速机构)的方法使用齿轮电动机(gear motor)的例子。但是,该结构由于机械转矩转换装置变大,因此即便使电动机本身小型化、也不能将系统整体小型化。
因此,公开有如下技术,作为在保持产生的小型化了的电动机设计的原样状态下想要得到大转矩的构造,在电动机的转子内部内置行星辊机构,通过减速得到大转矩(参照专利文献1)。另外,在专利文献1的技术中,由于来自变速机构的发热、烧粘成为问题,所以提出有在中空轴结构的电动机和其内侧部分内置行星齿轮机构、封入用于润滑的油的构造的电动机(参照专利文献2)。在该例子中,示例的结构的特征在于,旋转电机具有转子、定子和套筒(casing),具备行星辊机构,该行星辊机构设置在转子的内侧、向外部传递转子的驱动力,在转子的内侧或者套筒内部封入了油。另外,公开有一种方法,其在外转型电动机的定子铁心内部设置齿轮机构,在与设置于转子轴的齿轮之间配置行星齿轮,通过对电动机的旋转进行减速以得到大转矩(参照专利文献3)。
专利文献1日本特许第2607889号说明书(第2图);专利文献2日本特开2003-143805号公报(权利要求
1);专利文献3日本特开平9-47003号公报(图2)。
但是,通常如果想要在这些电动机的转子或定子的内部配置变速机构,则由于需要与减速的齿轮比对应的齿数的齿轮,所以需要一定的空间。因此,存在的问题是电动机的外径变得大于用于输出必要转矩的最小的电动机外径,即使通过齿轮减速能够实现大转矩,但与系统整体直接采用低速大转矩的电动机的情况相比较,不能加强小型化效果的问题。
另外,专利文献2的技术是如下的构造,为了采用在狭槽(slot)构造的齿上卷绕绕组的构造,通过在电动机的套筒内部封入用于对齿轮进行润滑的油,电动机的励磁线圈也被淋上油。这是因为在齿轮机构、辊机构产生的磨损粉等会有损于励磁线圈的绝缘,所以励磁线圈的绝缘剂有必要选择耐油性好的材料,并且必要的是在油的流路上设置过滤器等对策。在这种情况下,由于过滤器的空间而不得不把电动机的大小设计为稍有一些余量。
此外,考虑了在励磁线圈部分设置保护罩,用树脂材料密封励磁线圈从而保护其不受油(润滑油)的影响。但是,在设置保护罩的情况下,由于保护罩致使电动机的外形增大,在用树脂材料密封的情况下,由于励磁线圈的表面积大,所以存在难以用树脂材料进行封闭的问题。

发明内容因此,本发明以提供外径小的带变速机构的旋转电机及使用该旋转电机的驱动装置为课题。
为了解决所述课题,本发明的带变速机构的旋转电机,具备具有圆环状的励磁线圈的定子;在所述定子内部旋转的圆筒状的转子;在所述圆筒状的转子的内部设置的变速机构;以及至少封入所述转子、所述变速机构及润滑油的框体,其特征在于,所述定子具有圆环状的所述励磁线圈和圆环状的铁心,所述铁心封入所述圆环状的励磁线圈及有机材料、在内周面交互地设置了多个突起的爪部。
因为使用的是封入了圆环状的励磁线圈以及有机材料的圆环状的铁心,所以润滑变速机构的润滑油并不与励磁线圈接触。另外由于能够在铁心内部装入励磁线圈,因此利用有机材料进行封闭是容易的。
根据本发明,能够提供外径小的带变速机构的旋转电机及使用该旋转电机的驱动装置。
图1是表示本发明的一个实施方式即带变速机构的旋转电机的构造的剖面图;图2是表示定子结构的立体图;图3是表示爪齿电动机的原理的图和表示在励磁线圈中流动的交流电流波形的图;图4是表示狭槽型电动机的结构的剖面图;图5是用于比较狭槽型电动机和爪齿电动机的剖面图;图6是表示压粉磁心和电磁钢板的铁损的频率特性的图;图7是具备了旋转臂的移动机器人的结构图;图8是通过进给丝杠设置了直动机构的电动机的剖面图。
具体实施方式使用爪齿电动机并在转子内侧配置了齿轮等变速机构,该爪齿电动机具有在圆环状的铁心的内部内置了励磁线圈的定子、和在该定子的内周部设置的圆筒状的转子。该爪齿电动机的定子铁心,由树脂等有机材料密封了圆环状的励磁线圈与圆环状的定子铁心。由此,励磁线圈不会与空气接触。这种结构的情况,由于在凹部或中空部形成定子铁心的剖面,在该凹部或中空部配置励磁线圈即可,励磁线圈的大部分表面积被定子铁心包围,所以容易利用有机材料进行密封。另外,在定子铁心的内周部分配置中空结构的转子,在该中空部配置行星齿轮等变速机构,该机构部形成充满润滑油等润滑材料(润滑剂)的结构。此外,定子铁心为了减少因涡电流引起的铁损而优选由压粉磁心形成。
(第一实施方式)
参照图1和图2,对本发明的一个实施方式即带变速机构的旋转电机进行说明。图1是带变速机构的旋转电机即减速电动机30的剖面图,图2是表示在减速电动机30的定子使用的爪齿铁心10的立体图。
在图1中,本实施方式的减速电动机30的主要结构包括在圆环状的爪齿铁心10的内部设置的由励磁线圈7构成的三个定子;在表面设置有被多极磁化了的圆筒状的转子4的旋转轴3;以及设置在旋转轴3的内部、对输出轴1的旋转速度进行减速的变速机构(后述)。
在图2中,定子18具有由压粉磁心等软磁性体构成的圆环状的两个爪齿铁心10a、10b;和将被覆导线卷绕成圆环状的励磁线圈7,两个爪齿铁心10a、10b被构成为能够装入励磁线圈7,并被树脂等有机材料密封(参照图2(a))。爪齿铁心10a、10b的剖面形成为L字状,通过使该L字的短边侧S重合而形成为U字状,在该U字状的凹部装入励磁线圈7。由此,定子18的剖面形成为大致长方形。另外,在爪齿铁心10a、10b的内周面,隔开地形成有梯形状的多个爪部(爪齿)10c,在侧面凹入设置有圆形状的O型环固定槽11(参照图2(b))。此外,爪部10c的长度和定子18的厚度大致相等,定子18的外径和内径的比率小于5∶3,其内径是较大的。
再次,返回到图1,在轴方向上并排设置三个定子18,各励磁线圈7的末端被从定子18的外周面引出,通过将该末端进行Y结线或Δ结线,对励磁线圈7施加三相交流电。定子18被树脂20密封,在轴方向前后夹入定子18的尾架(end bracket)8、9和定子18之间,被作为密封部件的O型环12密封。另外,各定子18之间也是由O型环12密封的。进而,以相对于在爪齿铁心10a、10b的内周面设置的多个爪部的方式设置有在表面具有圆筒状的转子4的旋转轴3。另外,转子4是这样构成的,即,在旋转轴3上呈圆筒状地粘贴具有与定子1 8的爪磁极数相同数量的磁极的磁铁。通过定子18和转子4构成爪齿电动机。
另外,在旋转轴3的内周面形成有内齿轮14,经由行星齿轮16,将在转子4产生的转矩传递给形成有外齿轮17的输出轴1。此外,行星齿轮16在每90度的等角度方向上设置有四个,行星齿轮16的轴被保持于旋转轴3。另外,旋转轴3利用轴承5被能够旋转地保持于尾架8,并利用轴承5′被固定于尾架9。另外,输出轴1利用轴承6被能够旋转地保持于旋转轴3,并被作为密封部件的油封13和尾架8密封。由此,旋转轴3的旋转速度被减小,并被传递给输出轴1。另外,具有形成了内齿轮14的旋转轴3、行星齿轮16、以及形成了外齿轮17的输出轴1的变速机构被润滑油充满。
接下来,参照图3说明爪齿电动机的动作原理。
如图3(a)所示,在爪齿铁心10a设置的爪部10c、和在爪齿铁心10b设置的爪部10d,交互排列在内周面侧,并由空气或润滑油形成有间隙。
如果对定子18的励磁线圈7施加正弦波交流电压,则流动有如图3(b)所示的正弦波交流电流。该正弦波交流电流,在时刻T1时流动的是正的最大电流、而在时刻T2时流动的是负的最大电流。通过该电流,按照右螺旋定律的方向的磁通,产生于由爪齿铁心10a、爪齿铁心10b、和在爪部10c、10d之间形成的磁间隙构成的闭路。此外,如粗实线所示,在磁通从爪部10d、经由爪齿铁心10a、10b的铁心部、以顺时针流到爪部10c的情况下,爪部10d磁化成N极,爪部10c磁化成S极(图3(a)中的黑体字所述)。相反地,如粗虚线所示,在磁通从爪部10c、经由爪齿铁心10a、10b的铁心部、以逆时针流到爪部10d的情况下,爪部10c磁化成N极,爪部10d磁化成S极(图3(a)中的明体字所述)。
图3(c)是表示在励磁线圈7流动的电流向逆时针流动时的磁化的样子的图,在被设置于爪齿铁心10a、10b的多个爪部10c、10d产生的S极与转子4的N极相互吸引,在爪部产生的N极与转子4的S极相互吸引,由此,转子4绕逆时针旋转。另一方面,图3(d)是表示在励磁线圈7流动的电流向顺时针流动时的磁极的样子的图,在被设置于爪齿铁心10a、10b的多个爪部产生的N极与转子4的S极相互吸引,在爪部产生的S极与转子4的N极相互吸引,转子4绕顺时针旋转。
带变速机构的旋转电机的目的在于提高通常的电动机(旋转电机)能够得到的旋转速度、转矩输出。例如,如果从图1所示的减速电动机30除去变速机构的爪齿电动机的旋转速度为N(rad/sec)、输出转矩为T(N·m)时,则爪齿电动机本身的机械输出是N·T(W)。如果是本实施方式的减速电动机30的结构,电动机部分的旋转速度为两倍,减速比为2∶1,则在输出轴端,由于转矩达到两倍的2T,所以可以使输出达到2N·T(W)即两倍。此时,输入电动机部分的电流,由于在电动机部分产生的转矩相同,所以该电流也相同。因此,在相同电流值、相同外形不变的状态下,能够得到两倍的轴端输出。为了达到上述目的,有必要提升电动机自身的旋转速度。
接下来,利用图4的12狭槽8极的狭槽型电动机的剖面结构图,对于作为比较例的狭槽型电动机进行说明。在此,在图中只记载有上半部分。
在外形为d1的定子铁心,在上半部分设有6根、共计设有12根的齿15a,并形成有在齿间卷绕绕组的空间即狭槽。即,圆环状地形成有在齿上卷绕了绕组的多个励磁线圈。另外,在齿15a的内周侧,能够旋转地设置有被多级地磁化了的转子4。在要使该电动机以5000r/min旋转时的电枢电流(励磁电流)的基本频率是333Hz。如所述例子那样,如果单纯地使旋转速度为两倍即10000r/min,该频率变为两倍即666Hz。通常,因为由涡电流引起的铁损与频率的平方成比例,所以提高频率会使狭槽型电动机的效率显著降低,因此不能采取此方法。但是,为了使该频率下降,有减少极数的方法。
接下来参照图5,对于极数不同的情况,对狭槽型电动机和爪齿电动机进行比较。图5(a)是表示狭槽型电动机的原理的图,在定子外周部的内侧以等角度设置有T字状的多个齿15c,在齿间形成狭槽。
在多个齿15c的内周侧,能够旋转地设置有转子4。在此,尤其对于如该图的上半部分所述的那样有3根齿的情况、和如下半部分所述的那样有1根齿的情况来说,使各部的磁通密度一定,对相对于铁心的截面积的铁心的厚度进行比较。通过线圈绕组部的磁通在定子外周部被分割为两部分,因此,如果3根齿的各线圈绕组部的直径为D,则定子外周部的厚度为D/2。另一方面,1根齿的线圈绕组部的直径需要达到3D,定子外周部的厚度需要达到3D/2。因此,相比于3根齿的情况,1根齿的情况下的定子外周部的厚度需要达到3倍,因此,在电动机的外径相同时,线圈绕组部的径向长度缩短,线圈的量减少。另外,由于齿的重量也变成了3倍,所以优选的是使齿的前端部变粗、朝向齿根部分逐渐变细。换言之,需要使磁心背部(core back)部分的径向宽度也对应于该齿的粗细而扩大截面积。在这种情况下,在齿和定子外周部之间形成的线圈绕组部分的空间减小,绕组的量减少。
换言之,由于在狭槽部分必须施加与原来的3根齿的情况相同量的绕组,所以电动机的外径变大。即,为了在狭槽卷绕同量的绕组,需要增大定子的外径。另外,通过减少极数,由于动作时的转矩脉动(torque ripple)变大,所以也可以说不适于在变速机构等具有齿隙的本实施方式的电动机。
接下来,图5(b)是表示爪齿电动机的原理的图,对于在上半部分设置了记载的4根爪齿的情况、和在下半部分设置了记载的1根爪齿的情况进行比较。由于磁动势NI一定,所以磁通密度依存于与转子4相对的部分的面积,在4根爪齿的各自的长度为L时,在设置了1根爪齿的情况下,长度只是变为4L,对线圈的量、外径没有影响。
即,8极8爪类型、和4极4爪类型的电动机径是不变的。这是因为,每一极的磁通增加的量、对其相对的爪部分的截面积在周方向增加。由此,由于能够在降低频率的同时构成小型电动机,电动机的外径不会变大。
另外,通过用变速机构对电动机产生的旋转力进行减速,在输出轴能够得到大的转矩,与由现有的狭槽型电动机(专利文献2)构成的情况相比较,由于没有线圈端部部分,所以在轴方向是短而扁平,能够实现大转矩。另外,由于在充满润滑油的区域没有励磁线圈露出,所以不需要考虑因磨损粉等造成励磁线圈的绝缘损伤等,能够减小系统整体的外形。另外,铁心与励磁线圈、托座与铁心等的接触面积大,还可以提高导热性。
另外,即使在因所述的转矩脉动的问题而利用提高了频率的电动机来应对的情况下,由于爪齿电动机是由压粉磁心构成的,从而变得有利。如图6的频率-铁损特性所示,压粉磁心(参照虚线)在频率为0.1kHz时铁损为0.2W/kg,在频率为5kHz时,铁损在对数坐标图上直线增加到5W/kg左右,50A700电磁钢板(参照实线),在0.1kHz时铁损为0.1W/kg,在频率为10kHz时,铁损在对数坐标图上直线增加到100W/kg左右,在500Hz左右交叉。因此,压粉磁心具有的特性是,频率变得越高,与50A700电磁钢板相比越能够降低铁损(W/kg)。因此,即使在高速化了的情况下,也能够设计成对效率不会有多大损失的结构,在两倍左右的高速化中,能够构成为并不用怎么担心转矩脉动的问题的极数。
如上述说明,根据本实施方式,由于在作为电动机必要的外径内,能够在转子4的内周侧部分配置变速机构,所以能够得到外径一致且输出转矩大的电动机。另外,由于是润滑油不与励磁线圈7接触的结构,因此能够实现产品寿命长并且可靠性好的产品。
(第2实施方式)所述实施方式针对作为旋转电机的电动机进行了说明,但可以作为使用了该电动机的驱动装置而构成。汽车机器或如图7所示的移动机器人被认为是驱动装置的例子。
通过利用于图7所示的移动机器人(自己行走机器人)等移动体的需要旋转的大转矩的臂关节部分等,能够减轻移动体的重量,并且能够确保移动体的电池寿命。在移动机器人31上,在利用车轮33在前后方向能够移动的本体部上搭载有减速电动机30,该减速电动机30使旋转臂32a在水平方向旋转,内置于旋转臂32a的其他的减速电动机使旋转臂33b在水平方向旋转。
另外,在汽车机器中,由于在每一台上使用有多个电动机,所以为了提高汽车的燃料利用率、减轻汽车整体的重量,降低各个电动机的重量就成为课题,可以作为对这种情况的输出密度大的电动机适用。图8是表示其应用例的一个例子。容易利用中空结构虽然与前面所示一样,但作为一个在内侧部分配置该结构的例子,还能够配置进给丝杠机构。通过具有中空的旋转轴3、或输出轴的内侧部分具有进给丝杠22,能够得到可以产生大推力的驱动装置。
(变形例)本发明不限定于所述实施方式,例如可以有以下这样的各种变形。
(1)第一实施方式是构成了减速电动机,但也可以是发电机。在这种情况下,变速机构对输出轴1的旋转速度进行加速,被加速的旋转速度传递到旋转轴3及转子4。
(2)第一实施方式在励磁线圈7施加了正弦波交流电压,但也可施加矩形波交流电压。在输出轴1的无负荷情况下直线增加,或减少的无负荷电流在励磁线圈7流动。另外,如果在输出轴1施加机械负荷ωT(ω旋转角速度,T转矩),则与负荷相对应的恒定电流重叠于无负荷电流。
(3)第一实施方式为了施加三相交流电压,在轴方向上并排设置三个定子18,但利用一个定子18也能够施加单相交流电压。这种情况与施加三相交流电压相比,转矩脉动变大。
权利要求
1.一种带变速机构的旋转电机,具备具有圆环状的励磁线圈的定子;在所述定子内部旋转的圆筒状的转子;在所述圆筒状的转子的内部设置的变速机构;以及至少封入所述转子、所述变速机构及润滑油的框体,其特征在于,所述定子具有圆环状的所述励磁线圈和圆环状的铁心,所述铁心封入所述圆环状的励磁线圈及有机材料、在内周面设置了多个突起的爪部。
2.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,所述圆环状的铁心的截面形成为U字状,在所述U字状的凹部封入有所述励磁线圈及所述有机材料。
3.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,所述定子具有所述内周面和外周面这两个侧面,其截面是大致长方形,从所述外周面引出所述励磁线圈的末端,设置有密封部件,该密封部件分别密封所述转子的中心轴及所述侧面与所述框体。
4.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,所述变速机构是在所述转子的内径部分设置的行星齿轮机构或行星辊机构。
5.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,在轴方向具有多个所述定子,对所述励磁线圈施加多相交流电。
6.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,在所述转子的内径部分设置有进给丝杠机构,该进给丝杠机构将旋转运动变换为直线运动。
7.根据权利要求
1所述的带变速机构的旋转电机,其特征在于,所述圆环状的铁心是由压粉磁心形成的。
8.一种驱动装置,其特征在于,具有权利要求
1所述的带变速机构的旋转电机。
专利摘要
提供一种带变速机构的旋转电机。其具有具有圆环状的励磁线圈(7)的定子;在所述定子内部旋转的圆筒状的转子(4);在所述圆筒状的转子(4)的内部设置的变速机构(3、14、16、17);以及至少封入所述转子(4)、所述变速机构及润滑油的框体(8、9),其中,所述定子具有圆环状的所述励磁线圈(7)和圆环状的铁心(10),所述铁心(10)封入所述圆环状的励磁线圈(7)及有机材料、在内周面设置了多个突起的爪部。
文档编号H02K7/116GK1996718SQ200610172140
公开日2007年7月11日 申请日期2006年12月29日
发明者
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1