含有自动增益控制的多波放大远距离通信系统的制作方法

文档序号:7666041阅读:220来源:国知局
专利名称:含有自动增益控制的多波放大远距离通信系统的制作方法
技术领域
本发明涉及到包括光放大器的远距离通信系统,它尤其适用于波分复用传输,即WDM传输。
对于波分复用即WDM传输,是沿着包括光纤在内的相同线路中,利用波长复用的方式,传送多个互相独立的信号;传输信号可以是数字的也可以是模拟的,各信号之间由不同的波长互相进行区分。
对每一个不同波长的信号,WDM的传输需要分配预定了波幅的特定波段,即后面提到的信道。
信号以后根据信号的中心波长来区分,根据以后称作信号中心波长的波长值区分的信号,在中心波长附近具有一定的光谱幅度,它与信号源--激光器的特性以及利用数据单元对信号进行的调制相关。在激光器的发射信号的平均高度的情况下,如果不存在调制,测量的光谱振幅的典型值大约为10MHz;存在外部调制时,例如在2.5Gbit/s时,在平均高度下的光谱振幅大约为5GHz。
为了能够在大量的信道中传送信号,利用所谓的硅光纤的第三传输窗口和光纤放大器的传输频带(典型的是从1525nm到1620nm,特别是从1529nm左右到1602nm左右),信号之间的波长分隔以nm或者其分数的数量级进行。
这种传输方式的优点在于不同的信道在功率电平、信号质量、信噪比和二进制误码率(BER)等方面基本是相当的。
当存在放大器尤其光放大器的时候,所有的信道传输必须具有基本一致的响应;而且,为了传送大量信道,放大器必须具有足够大的带宽。
光放大器原理是基于荧光杂质的特性,例如一种稀有元素,尤其铒,作为一种杂质将其引入光纤的芯子;因为铒被泵激光能激活之后,在对应硅基光纤光衰减最小的波段的波长范围内具有较大的辐射。
当具有对应该高辐射波长的光信号通过处于激活状态的搀铒光纤时,导致处于激活状态的铒原子渡越至较低的能量级,用信号波长的受激光辐射,使得信号得以放大。
铒原子一旦进入被激状态,它们总是自发地开始衰减,这将产生一随机辐射,形成“背景噪声”,叠加于放大信号的受激辐射上。
泵激光能量注入搀杂光纤或者有源光纤产生的光辐射根据杂质的不同能够产生多种波长,由此产生光纤的荧光谱。
在特别的情况下,例如,一个或多个信号源的开与关,从而同时在线路和放大器中提供信道数目可变的情况下,放大器之间的光功率值是变化的,这将导致放大增益的变化,从而将对传输质量产生负面影响。
在电子文学1999年3月28日第7期第27卷560-561页中("ElectronicsLetters”,28 March 1991,vol.27,no.7,pp 560-561),M.Zirngibl等人叙述了一种搀铒光纤放大器,具有一个光纤反馈环路,用它抽取放大器输出端的部分放大的自发辐射信号(ASE),滤波和衰减特定波长的信号,最终重新输入放大器的输入端,因此这里有一个激光器环路结构,该环路结构中不同于传输波长的单个波长被反馈回去。
激光的振荡条件(“发射激光”)可以通过调整所选择波长以及调整反馈环路的衰减大小得到控制。
在这种情况下,不同于激光器环路内部振荡波长的任何波长的信号增益,与所有光信道的输入功率无关。
本申请人已经注意到,由于抽取了部分信号并与自发辐射合在一起,最终消失在激光器环路中,所提到的装置以及下面所列出版物中提到的装置,在传输信道中均引入了明显的恶化,在文章所说的试验中为4-8 dB。
美国专利5.088.095(M.Zirngibl)介绍了一种具有稳定增益的光纤放大器,在光纤的输入端口和输出端口有一反馈环路连接,此光纤掺有稀土元素并由一激光器泵激。利用一窄带滤波器,使得不同于泵激和信号波长的放大器自发辐射选定波长信号从放大器输出端进入输入端。
美国专利5.128.800(M.Zirngbl)介绍了一种具有可转换增益的光纤放大器,在光纤的输入端口和输出端口有一反馈环路连接,此环路包括一种均匀加宽的非线性耗散媒质。
干涉和隔离滤波器可以在此环路中用来选择比装置这个部分的传输波长。
美国专利5.155.780(M.Zirngibl)介绍了一种光限制放大器,相对于输入端的可变信号,在它的输出端提供的功率信号基本是稳定,其中输入端可变功率信号被分成两个信号,第一个信号以第一“正”方向提供给放大器;另一个信号则在相反方向通过可饱和吸收器后提供给放大器。
因为经过可饱和吸收器的信号比输入端的信号变化更大了些,不管输入信号如何,由反方向信号引起的放大器的饱和使其输出功率保持不变。
美国专利5.239.607,申请人V.L.da Silva等人,介绍了一种具有平坦增益谱特性的光放大器,其中放大器和环路激光器一起工作,由于一绝缘体连接在该环路中,它允许在该环路中的传播只能与将要放大的信号的传播方向相反。
增益锁定为在环路中由损耗所决定的值。
在IEEE纤维光学技术文学1991年5月第五期第三卷453-455页(IEEEPhotonics Technology Letters,vol.3,No.5,May 1991,pp.453-455)中,介绍了一种搀铒光纤放大器(EDFA)。在EDFA中在输出光谱的给定波长λref处监控由于ASE信号波动所产生的误差信号,此信号用于调制在放大器输入端输入的波长为λccmp的补偿信号的强度,此补偿信号用于保持放大器饱和电平的稳定。
美国专利5.598.491,申请人J.Ohya,介绍了一种光传输系统,此系统中的光放大器包含一个选择器,选择部分自发辐射信号,此信号产生于放大器中的搀铒光纤中,其波长小于放大信号的波长。
部分自发辐射重新进入放大器输入端,以便在输入信号的功率和波长变化时保持放大增益的基本恒定。
本申请人注意到根据现有技术,具有反馈环路的稳定增益放大器中,稳定性的获得是以噪声系数的显著增加为代价的。尤其是,申请人注意到放大器的噪声系数是随着反馈环路衰减的减少而增加的。
申请人注意到在多级放大器中,根据前述技术,当增益控制应用于其中一个级,例如对于输出级,并不能保证有效的稳定性,因为在没有增益控制的级,各信道之间的差异均被放大。而且含有增益控制的级,其所具有的动态范围并不能有效地稳定所有信道。
另一方面,当在级间有影响放大器性能的装置存在时,应用于每一级的增益控制将会引起单个受控级难于校对。而且,每一级的ASE信号都会增加放大器的总的噪声系数。
另外,在放大器中很大一部分再循环ASE信号将被传输到线路上。由于非线性现象,将会限制最大可利用传输信道数目,尤其对于低有效区域和/或低散射的线路光纤。
根据本发明,已经发现多级放大器的每一级都至少包含一个泵激光源提供的有源光纤以及至少一个位于各级之间的衰减元件。利用一单个电路,可以将整个放大器作为一个整体来稳定其增益,在此单个电路中,部分再循环信号ASE在所述衰减元件前后至少各通过一个放大级。再循环ASE信号最好不通过位于两个级之间的衰减元件,从而所述ASE对于传输信号没有影响,和/或所说衰减元件不改变上述ASE信号的特性。
因此,即便放大器信道数量可变的情况下,所有信道的增益基本保持不变。这是由于环路中流通的ASE电平自动根据当前信道数量进行调节。而且,在某一信道不存在的情况下,ASE信号可吸收多余的泵功率,将在任何情况下基本不变的泵电平留于当前信道。
另外,控制是完全本地化的,也就是说,它是通过调节ASE信号通路的衰减完成的。而且,ASE信号被完全保持在放大器内部。没有明显的ASE残余信号进入传输线路。
本发明的第一个方面涉及到光远距离通信系统,包括-至少有一个传输站,它能够传输至少包含两路预先决定了波长的多波长信号;-光纤传输线路;-至少一个接收站,所说的光纤连接到所说的传输站和接收站;-位于传输站和接收站之间的光信号放大站,包括至少一第一放大部分和一第二放大部分以及一增益稳定电路,此放大站还包括一位于上述两部分之间的衰减元件;其特征在于上述增益稳定电路包括自发辐射的再循环电路,此电路为上述第一和第二放大部分所共有。
尤其是上述自发辐射再循环电路包括一个不通过所说衰减元件的通路。
优选地,所说的自发辐射再循环电路包括自发辐射波长选择装置。
具体地说,上述波长选择装置是位于上述第二部分后面的波长选择滤波器。
进一步说明,上述选择装置至少包括一对滤波器,其中一个位于第一放大部分之前,另一个位于第二放大部分之后。
优选地,上述自发辐射信号的再循环电路包括一个第一通路,在此通路中抽取所述第一放大部分和上述衰减元件之间的自发辐射信号,然后送入所述第二放大部分。
具体地说,上述自发辐射信号的再循环电路在放大部分有两个传输方向,一个与传输信号方向相同,另外一个则相反。所说的传输方向与所述第一通路中的传输方向相同。
另外,所述自发辐射信号的再循环电路还包括第二通路,在此通路中抽取所述第二放大部分和所述衰减元件之间的反方向的所述自发辐射信号,然后送入所述第一放大部分。
详细说明,上述第一通路包括-一具有三个端口的光环行器,其第一端口连接于上述第一放大部分之后,第二端口连接于所述衰减元件之前的选择光栅。
-第一光耦合器,它耦合所述衰减元件和上述光环行器第三端口的输出信号。
最好是,上述第二通路包括-光环行器,它的第一端口连接于一可变衰减器,其第二端口连接于所述第一放大部分前面的所述滤波器,第三端口连接于所述第一放大部分;-光分路器,位于所述第二放大部分之前,将部分所述第二部分的输入信号送入所提到的可变衰减器。
另外,上述第二通路包括-光分路器,位于上述第二放大部分之前,将所述第二部分输入端的部分信号送入可变衰减器;-第二光耦合器,将上述可变衰减器的输出信号送入所述滤波器。
最好是,所述光耦合器至少耦合来自所述衰减元件60%的光功率。
最好是,所述光分路器至少将5%的光功率送入所述可变衰减器。
最好是,所述耦合器至少将所述可变衰减器的输出光功率的5%耦合入所述滤波器。
最好是,所述自发辐射信号的波长选择装置选择了与信道波长相近的自发辐射波长。
本发明的另一方面涉及的多波长信号光放大器包括至少一第一放大部分,一第二放大部分和一增益稳定电路。所说的放大站还应包括位于上述两部分之间的衰减元件;上述增益稳定电路的特点在于,包括一个自发辐射再循环电路,所说的电路为所述第一和第二放大部分所共用。
本发明的另一方面涉及到光远距离通信方法,它包括以下步骤-地预先确定的彼此不同的波长处产生至少两路光传输信号;-将上述光信号复用进一条传输线路,形成包含所述光传输信号的多波长光信号;-在传输线上传送此多波长信号;-放大在传输线上的光信号;-将上述光信号送入接收站,此接收站至少有一个接收器;-放大光信号步骤的特点在于包括以下步骤-在第一放大部分放大此光信号;-在衰减元件中处理此放大了的信号;-在第二放大部分放大所述处理过的光信号;-从上述放大信号中分别抽出部分所述第一和第二放大部分处的自发辐射信号;-以这样的方法再循环所述部分的自发辐射进入所述第一和第二放大部分,即该部分不通过所述衰减元件。
具体地说,上述再循环步骤还包括对所说的自发辐射进行衰减步骤。
本发明的另一方面涉及稳定光放大器的增益的方法,包括如下步骤-在放大器第一放大部分放大光信号;-利用衰减器处理此放大光信号;-在放大器第二放大部分放大所述处理过的光信号;其特点在于还包括以下步骤-从上述放大光信号中抽取部分放大器本身的自发辐射信号;-将上述部分自发辐射信号不经过上述衰减元件直接再循环进入所述第一和第二放大部分。
尤其是,上述再循环步骤还包括衰减所说的部分自发辐射信号的步骤。
参考附图,从下面的说明可以得到进一步的细节

图1a中为多波长远距离通信系统;
图1b中为多波长远距离通信系统的传输站;图1c中为1525nm-162nm波段的光放大站的光谱辐射曲线;图2中为本发明的一个实施例的双波段光放大器的方案;图3a,b中分别为图2放大器在开放环路条件下的光谱辐射曲线,其中BB波段有16条信道,RB1波段有48条信道;图4a,b分别为图2中放大器在闭合环路条件下的光谱辐射曲线,其中BB波段有16条信道,RB1波段有48条信道;图5a,b分别为图2中放大器在闭合环路条件下的光谱辐射曲线,其中RB1和BB波段均为一个信道传输;图6为图2中放大器在闭合环路条件下,其输出端的光谱辐射曲线,其中RB波段有48条信道,BB波段没有传输信道;图7为图2中放大器在闭合环路条件下,其输出端的光谱辐射曲线,其中RB1波段没有传输信道,BB波段有16路传输信道;图8为一放大器在1520nm-1570nm波段的自发辐射曲线;图9为根据本发明另一实施方案的光放大器;图10为图9放大器的实验构造;图11为图9中放大器在闭合环路的条件下,具有64传输信道时其输出端的光谱辐射曲线;图12为图9中放大器在闭合环路的条件下,具有4传输信道时其输出端的光谱辐射图曲线图13为图9中放大器在闭合环路条件下,具有设置不同的4传输信道时其输出端的光谱辐射曲线;图14为图9中放大器在闭合环路条件下,具有设置不同的4传输信道时其输出端的光谱辐射曲线;图15是图9中单信道放大器的增益作为环路衰减值A和输入功率的函数曲线;图16是图9中单信道放大器的增益作为环路衰减值A,输入功率和再循环自发辐射波长的函数的曲线;图17是1570nm-1620nm波段的光放大器自发辐射曲线。
参考图1a,光传输系统包括第一终端100,第二终端200,连接这两终端的光纤线路300a,300b以及沿着光纤线路插入的至少一个线路站点400。
简单起见,所介绍的传输系统是单向的,即光信号从一个终端传输到另外一个终端。但是下面的情况对于光信号在两个方向传输的双向系统也是有效的。
在本示例中,系统所适用的最大的传输信道数为128,但是根据系统所采取构造,信道的最大数目也可以有所不同。
第一终端100最好包括用于多输入信道160的复用部分110(MUX),还包括功率放大部分120(TPA)。
第二终端最好包括预放大部分140(RPA)和用于多输出信道170的一去复用部分150(DMUX)。
每一输入信道160由复用部分110接收,这在图1b有详细介绍。它将信道优先分成为三个子波段,即蓝波段(BB),红波段1(RB1)和红波段2(RB2)。光传输系统可以均分为一定数目的子波段,可以大于或者小于三个。这三个子波段被送往功率放大部分120,然后进入线路300。
功率放大部分120优先接收这三个子波段的信号,利用复用装置将它们分开,分别放大,然后把它们组合在一起产生一宽带WDM信号(SWB),送入传输线路300。线路站点400接收此宽带WDM信号,将它们重新分为三个子波段BB,RB1,RB2,分别放大各子波段的信号,如果需要重新构造此宽带WDM信号,它将增加或减少一些信道。
进一步说明,线路站点400将分布于线路300沿线上,根据通过该点的线路部分,各站点位于合适的位置,在任何需要的时候,放大该WDM光信号或者更一般的来说,改进WDM光信号的特性。
第二终端200接收宽带信号并利用预放大部分140将其放大,它优先将WDM信号再次分为三个子波段信号BB,RB1和RB2。去复用部分150接收三个子波段信号并将它们分开成为单波长信号170。
由于线路站点400会增加或者减少部分信道,输入信道160的信道数目或许与输出信道170的信道数目不同。
图1c为一放大器的光谱辐射曲线,简要说明了下面所说实例的三个子波段。尤其是,第一子波段BB最好包括了1529nm-1535nm波长的信号,第二子波段RB1最好包括1541nm-1561nm的波长信号,而第三子波段最好包括1575nm-1602nm波长的信号。
信道的优先配置方案是,16信道分配给第一子波段,48信道分配给第二子波段,64信道分配给第三子波段。
在共有128信道的系统中相邻信道可以方便的具有50GHz的频率间隔。
从图1c中的曲线可以看出,与RB1和RB2波段相对平滑的曲线相比,子波段BB的光谱有一中心波峰,因此此子波段的放大器可以很方便的利用均衡装置平滑此区域的光谱发射曲线。
图1b更具体地显示了第一终端点100的输入部分。除了复用部分110和放大部分120,此站点还包括一线路终端部分410(OLTE)和波长转换部分420(WCM)。
线路终端部分410对应终端装置,例如根据SONET,ATM,IP或者SDH标准中的一个。它包括了一定数量的发射器或接收器,该发射器和接收器对应传输信道。沿着这些线路传输信号。在描述的实例里,OLTE有128个发射器或接收器。OLTE可以传输多个信道,每一个均有其自己的波长。
利用构成WCM420的部分的波长转换器WCM1-WCM128,可以改变上述波长以期它们与远距离通信系统兼容。正如本申请人申请的美国专利5267073中所介绍,转换器WCM1-WCM128可以接收一般波长的信号并将它们转换到预先确定的波长。
每一个WCM波长转换器优先方案应该包括一个光电二极管、一个激光源和一个电光调制器,二极管用来将光信号转换为电信号,调制器的实例有Mach-Zehnder类型,用它来在用光电二极管转换的电信号的预定波长下,调制激光源产生的光信号。
作为另外一个选择,此转换器可以包含一个光电二极管,和一个激光二极管,激光二极管直接由光电二极管的电信号调制,用这种方法转换光信号为预定的波长。
光电二极管和调制器之间,和/或光电二极管和直接调制激光器之间可以插入诸如放大器、再计时器,和/或一个信号平方器等装置。而且,还提供了前向纠错FEC(forward error correction)传输模块的连接,将此模块加于信号信息的时间帧上,使得接收器可以纠正线路上发生的错误,由此可以改善误码率(BER)。
作为进一步的选择,转换器可以包括一接收器,(例如,根据前面提到的某一标准),以接收光信号并将它转换为相应的电信号,和用激光源和光电调制器一起,利用接收器的电信号,调制激光源在预定波长处产生的光信号。
申请人以符号WCM、RXT、LEM表示在市场上销售所提到的波长转换器的类型。
在所有情况下,位于第一终端100处的波长转换器或者光信号发生器产生相应的操作光信号,信号波长处于系统后续的放大器操作带宽内部的相应信道内。
复用部分110最好包括三个复用器430,440和450。对于128信道的系统第一复用器430以形成第一子波段BB的方式,优先组合第一个16路转换器WCM1-16的信号,第二复用器440以组成第二子波段RB1的方式组合转换器WCM17-64的信号,第三复用器450以形成第三子波段RB2的方式组合转换器WCM65-128的信号。
复用器430,440,450是无源光装置,工作方式将传输于相应光纤的光信号叠加于单个光纤;这种装置包括熔融光纤或者平面光纤耦合器,Mach-Zehnder装置,AWGs,极化滤波器,干扰滤波器,微光子滤波器等。
作为实例,本申请人将8WM或者24WM的组合器推入市场。
放大部分120能够放大子波段的信号电平,方法是将信号值提高至一有效值,使其能够通过放大新装置前面光纤的后续部分,在终端仍然维持足够的功率电平以保证需要的传输质量。在此功率放大器之后,利用带通组合滤波器将这些带通信号组合在一起,方法是他们进入光线路的第一部分300,该光线路一般包括适合插入光缆内的单模光纤,此光纤一般有数十(或者数百)千米,例如100千米。
上面所介绍的用于连接类型的光纤一般为散射偏移类型。
然而,在相邻信道存在交调干扰时,尤其是在散射偏移光纤以及相邻信道距离比较近的情况下,具有阶跃折射率光纤则能有效的消除或减小此种非线性的影响。
阶跃折射率光纤对于1550nm区域附近的信号具有大约17ps/mm km的散射。足以表现出可忽略的交调现象的更小一些的散射指数可以用公知的NZD光纤得到,例如“ITU-T建议G.655”中所介绍的NZD光纤所具有的散射指数为1.5-6ps/km。
在上述光纤线路300a第一部分的终端是第一线路站点400,能够接收传输过程中已经衰减过的多波长信号(或WDM信号),也能够将它们放大至一足够的电平,然后提供给光纤第二部分300b,此部分的特性与前面各部分相同。
一般插入相应的缆线内部的后续的线路放大器以及光纤的相应部分,覆盖了所需的传输距离,一直达到第二终端。
对于去复用部分150,所使用元件可以与复用部分110中的类型相同,以相反的结构安装,同时在输出光纤处配备以相应的带通滤波器。
市场上流通所示类型的带通滤波器,例如由(Micron-Optics)微米公司提供。
例如,作为公知的24WD或8WD的适用于此目的另外一种可供选择的去复用部分150包括、矩阵波导光栅AWG(array waveguide grating),由本申请人已将其推向市场。
已经介绍过的结构使用得当的话,可以例如每一信道以诸如10Gbits/s或者更高的速度高速在超过大约500千米数量级的距离上传输。
在已经介绍过的系统中,方便地做成多级结构的线路放大器,设计其总输出光功率大约为22dBm。
而且,功率放大器120一般具有与线路放大器相同的结构。
人们已经发现上述传输系统的结构尤其适用于为具有波长复用的多信道传输提供所需性能,尤其是存在部分线路放大器的某些特性的选择面前或者考虑到所选波长的传输能力不受其它的影响的情况时。
尤其是通过使用设计使它们在级联操作时具有对各种波长有基本均匀或(平坦)的响应的线路放大器,在放大器适合级联操作的情况下在1529-1602nm或者1529-1535nm或者1542-1561nm波段范围内可以保证所有的信道一致的特性。
放大器的结构根据它所要放大的波段的不同而不同。例如上面所提到的波段分别由下面介绍的不同类型的放大器来放大。
根据本发明,用于放大波段BB和RB1内信号的放大器具有如图2所示的结构。
在放大器130有第一部分和随后的部分,在的第一部分线路中的所有信号一起放大,而在下一部分中先前定义的波段BB和波段RB1的信号则分别放大。
第一部分包括第一放大级10,此级包括有源掺铒光纤12,和对应连接泵激光源14的双向耦合器13。
在说明的例子(并非必须)中,泵激光器14的连接方式应使得其所提供的泵能量的方向与光纤12的信号方向平行。
在第一级10后,利用微光子技术制作的波段分路干扰滤波器21,可以将光信号分为最近定义的子波段BB(蓝带)和RB1(红带1)的信号。
波段BB的信道被送入第二放大级20,此级包括含有分色耦合器23的有源光纤22,它连接于泵激光器24。其中分色耦合器输出端有一光隔离器25。
RB1波段的信道被送入第三放大级30,此级包括含有一相应分色耦合器33的有源光纤32,它连接于泵激光源34。
作为另外一个选择,所述第一级10和所述第三级30可由两有源光纤共享的单一泵激光源提供。
所述RB1波段的信道由第四放大级40进一步放大,其中放大级40包括含有分色耦合器43的有源光纤42,该耦合器连接于泵激光器44。此第四级输出端有光隔离器45。
泵激光器14,24,34,44可以是量子型激光器,具有以下特性辐射波长λP=980nm;最大输出光功率Pu=110mW。
本申请人可以制作所示类型的激光器。
最后一个级可以选择性的利用多个不同波长的的泵激光器提供,这些激光器的信号可以利用一WDM耦合器耦合在一起以产生更大的泵功率。
最好是,可以有两个泵激光器,一个具有976nm的辐射波长,另一个具有985nm的辐射波长。
分色耦合器13,23,33,43可以是融熔光纤耦合器,由980nm的单模光纤组成。在1525-1605nm波段则将泵激光器的信号和放大级输入端的信号耦合入有源光纤。
此种分色耦合器可以商业购置,例如E-Tek Dynamics Inc公司就可以生产此类产品。
为了在多波长系统的放大器中使用,本申请人已经制造了不同类型的掺铒有源光纤,详细介绍参见本申请人的欧洲专利EP677902。
一般来说,杂质一般为稀土元素,能够在传输带宽内放大光信号。
各种光纤中的优选的光纤组成以及特性如表1所示。
表1.
其中%w=氧化物在光纤的芯子中所占比重(平均)%mol=氧化物摩尔数在光纤的芯子中所占比重(平均)NA=数值孔径λc=截止波长(LP11截止)利用联合扫描电子显微镜的(SEM Hitachi)微探针,可以对组合物的性能进行分析(在光纤拉制之前)。
分析的完成是在直径上分布的离散点以1300的放大倍数展开,每个间隔为200μm。
所述光纤是在石英玻璃管中用在汽相化学沉淀的方法制成。锗作为杂质,在合成阶段被结合进光纤芯子的SiO2点阵列里,此时铒、铝、镧也利用已知的"溶液搀杂"的方法结合入光纤芯子,即塑坯预塑熔凝前,正处于微粒状态时,杂质氯化物的水溶液与合成光纤芯的材料接触。
其中在美国专利5.282.079详细描述了溶液搀杂的方法。
线路放大器在上述第三放大级30和第四放大级40之间有一衰减元件50’。另外有一衰减元件50位于上述第二放大级20之前。衰减元件50,50’在线路放大器中有不同的功能。
例如,上述衰减元件可以包括一个数射补偿器,以补偿连接中间放大站与下一级间的光纤线路中的分色散射现象;一个为线路增加或者减少信道数目的元件(增加或减少站点);一均衡滤波器或更一般的一滤波器;一固定的或者可变衰减器;一在信道之间("交叉连接"站点)或信道和光隔离器之间交换数据的装置。—般说来,它包括的装置会对经过放大器中间级的的光信号产生影响。
这个元件的衰减值—般为0.5dB至12dB。不同的信道可能会具有不同的衰减值。
例如,光隔离器产生0.5dB-1dB的衰减,而散射补偿器产生10dB-12dB的衰减。
在上面所介绍的系统中,根据放大器的具体的性质,来自不同信号源的信号用基本一致的方式放大。
上述的衰减元件也会发生光功率的变化,将会影响通过他们的的光信号。
举例说明,如果增加或者减少了信道数目,使得输入端的当前信道数与输出端的不同,则增加或者减少站点将会引起信道总功率的变化。
根据本发明的一个观点,增益稳定电路与上面所介绍的放大器(或者与它等同的另一个)一起使用。此电路利用放大了的自发辐射(以后均称之为ASE信号),如上所述是由放大器产生,具体的是在由激光器14,24,34,44分别泵激的有源光纤12,22,32,42中。ASE信号被叠加于当前信道的光谱上。图8说明了示例所用光纤中自发辐射的光谱。
此电路包括位于上述第一放大级10的前面第一选择性反射滤波器16,及随后的第二选择性反射滤波器17,第三选择性反射滤波器26位于所述第二放大级20后面,第四选择性反射滤波器46位于所述第四放大级40的后面。
一般说来,为了适用于本发明,术语"在波长λ,,处的选择性反射滤波器"是指能够反射中心波长为λ的预定波段的基本部分的辐射,和传输此预定波段以外波长的幅射的基本部分的光元件。
所介绍的此类选择性反射滤波器,例如,可以是Bragg光纤光栅,此类光栅在希尔(P.C.Hill)等发表在94年7月7日的电子文学第14期第30卷1172页至1174页中(Electronics Letters,vol.30,no.14,07/07/94,pp.1172-1174)的文章中有介绍。所说的滤波器类型由JDS或Sumitomo标以GRAF-符号,由Photonetic S.A(FR)推入市场。
为了简便起见,下面选择性反射滤波器将简写为选择性滤波器。
具体地说,实例中所说的光栅最好是反射99%的波长λ处的光功率。
对每一波段,增益稳定电路都包括一附加的ASE信号的双向通道,使得ASE信号可以不通过RB1子波段的衰减元件50’和BB子波段的衰减器50,而在各级之间通过。这个通路对两个波段是一样的,在第一方向上,分别包括三端口光环行器52或52’,选择性滤波器53或53’,光耦合器54或54以及光隔离器55或55’。
所说的三端口光环行器,具有第一端口521或521’,第二端口522或522’和第三端口523或523’的元件。进入所述第一端口的光信号仅仅能够从所述第二端口传送出来,进入所述第二端口的光信号仅仅能够从所述第三端口传送出来。而且,进入所述第三端口的信号并不从所述第一或者所述第二端口送出。
适用于此的光环行器的实例有Photonics Technologies公司制造的HALO-1550_Q3。
BB或者RB1波段的信号进入所述第一端口521或521’;光环行器522或522’的所述第二端口连接于选择性滤波器53或53’,后面是所述衰减元件50或50’。
滤波器53和53’优选Bragg光纤光栅,它可以反射工作波长的99%的光功率。
光隔离器55或者55’位于衰减元件的输出端。
光环行器523或523’的所述第三端口和光隔离器55或55’的输出端连接于光耦合器54或54’,此耦合器耦合来自这两个元件的光信号。耦合器54或54’的优选耦合比例为90/10来自光隔离器55或55’的90%信号和来自环行器第三端口的10%信号在耦合器54或54’的单一输出端组合。
光隔离器的优选类型是不受传输信号极化的影响,最好是分隔度大于35dB,反射率小于-50dB的类型。
比较适用的隔离器的实例如前面曾经提到过的E-Tek Dynamics制造的PIFI1550型。
ASE的返回通路1234,1234’包括每一耦合器54或54’后面的分路器56或56’,衰减器57或57’,衰减器最好是具有可变衰减电平类型。
分路器56或56’将输入到第一输出端口562或562’和第二输出端口563或563’间的输入端口561或561’的信号按照预先定好的分配比例分配。
分路器56’具有的优选分配比是使从来自所述第四放大级40接收的光功率的10%送入衰减器57’。
衰减器56具有优选分配比是使从第二放大级20接收的光功率10%的送入所说的衰减器57。
衰减器,可以是一单模低反射衰减器,实例有JDS公司制造的VA5或者MV47型号。
可以方便得将前面提到过的光隔离器58或58’置于ASE1234或者1234’的回通路中。
在ASE信号的通路方向上,利用一对彼此串连的融熔光纤耦合器59和59’,前述子波段BB和RB1的通路被再次引入线路。
这些耦合器的优选耦合比例是来自上述通路信号的10%被接收。
作为一个整体,放大器操作方法如下放大器输入端的多波长信号在第一级10处放大,然后供给滤波器21,将WDM信号分配成为上述两个子波段的信号,并将它们沿两个不同的分枝传输。BB波段的信号在所述第二放大级20进一步放大,而波段RB1的信号在所述第三放大级30放大和然后由所述第四放大级40进一步放大。
由激光器泵激的有源光纤具有如图8所示的自发辐射光谱,它们被叠加于当前信道的光谱之上。
在适当的条件下,如下面所定义的那样,有源光纤、ASE信号的双向附加通路、前述选择性滤波器为每一波段组成一激光器环路系统,振荡波长位于ASE信号光谱内,且与传输信道中的信号波长不同。
滤波器对16,26和17,46用来反射放大器在预定波长处的自发辐射。具体地说,光栅对16,26决定了再循环ASE信号在波段BB处的波长,光栅对17,46决定了再循环ASE信号在波段RB1处的波长。在此例子中,波段BB处的波长为1536nm,RB1处的波长为1541nm。因此,在此特例中,波段RB1的ASE信号波长比信道波长低,而波段BB的信号波长则高于信道波长。
一般来说,ASE信号的波长应选择在放大器的增益带宽内,信道带宽附近,或者如果需要,亦可位于信道带宽内部。
增益稳定电路操作方法如下当放大器输入端存在所有传输信道时,提供给放大级有源光纤的泵功率用于信号的放大,而相应的ASE电平则保持相对较低;放大级的特性,尤其是有源光纤中搀杂铒,有源光纤的长度,提供的泵功率均是预先决定,因此它们都工作于此条件(在放大器输入端,所有传输信道都存在,且对于每一信道,具有预定功率值)下线路的典型设计值。
具体地说,本示例所用的有源光纤,在第一级有5m的长度,总的输出功率的数量级大约为6-8dBm,第二级的长度为5m,第三级的长度为3.2m,第四级的长度为7m。
当关闭一个或多个信道时,例如由于传输系统的重新构造或者由于某个错误,则在有源光纤中信号总功率电平将变低;这将导致较低的泵功率损耗(缺少的信道的放大将不再吸收功率),因此可获得的泵功率增加,将导致有源光纤中的ASE信号的辐射增大。利用光栅对,此过剩功率被再次引入有源光纤,其中光栅对16,26用于波段BB,而17,46用于波段RB1,它们将光栅反射波长附近的ASE信号基本部分反射出去。此ASE信号叠加于当前信号,它在有源光纤中的放大除去了当前传输信道放大用的泵功率,因此限制了这些信道的增益。
当缺少的信道被再次引入之后,它们在有源光纤中的放大消耗掉了此泵功率,导致再循环ASE信号电平的相应减少。
当衰减器57,57’的衰减值适当地选择时,即使在放大器中存在可变数目的信道,所有信道的增益保持基本不变。
在或者是BB或者是RB1的波段内,衰减元件50或50’应该是带通的,以便各级之间ASE信号的相同部分进行再循环。因此,此元件对于ASE信号的影响为零,同时BB波段的再循环ASE信号能够通过第一级10和第二级20,而RB1波段的再循环ASE信号能够通过第三级30和第四级40。
在前述附加通路第一方向,ASE信号利用开放环行器对52或52’和滤波器53或53’旁路衰减元件50和50’。滤波器53或53’的反射波长分别和滤波器对16,26或17,46相同。
ASE因此旁路衰减元件50或50’,然后经过耦合器54或54’重新进入下一级的输入端。
在第二方向,由于环行器52或52’的防止,ASE信号在相反方向上不能流过相同的传输通路。
用另一种形式,环行器52或52’可以是具有三个端口的闭合环行器,即它可以允许光信号从第三端口523或523’进入第一端口521或521’,这使得ASE可以在同一通路X或X’中双向传输。在这种情况下,用来调整增益的衰减器57或57’位于此通路中,而通路1234和1234’将被忽略。
分路器56或56’将部分ASE信号转入不同的通路,该通路旁路衰减元件,并利用耦合器59和59’将ASE信号返回到为两个波段共有的第一级的输出端。
在上述通路中,可变衰减器57或57’经过适当的校准,其值决定了放大器的增益。
循环ASE信号的电平以基本自动的方式得到调整,作为包含上述的通路环路的结果,在此环路中,ASE信号循环值的大小与当前信道数量有关。如果缺少任何信道时,ASE信号吸收可用的过剩泵功率,致使在所有情况下,剩余信道的可用泵电平基本稳定。
图3a至7模拟了图二中放大器为何对信道数目的变化不敏感以及具有稳定增益的。
图3a和图3b中,显示了图2中隔离器25和45输出端的功率谱。此时相应于波段RB和BB均在开环情况下,即光通路1234和1234’不连续。
图4a和4b显示了两个波段处在的闭环和所有信道都存于两波段情况下,两个波段BB和RB的功率谱图,BB波段的衰减器57的衰减电平设定为40dB,BB波段衰减器的衰减电平设定为35dB。
本申请人已经观察到不同信道的放大电平在开放环路条件下具有并不明显的变化(数量级大概为1-1.5dB)。
图5a和5b显示了闭合环路条件下两个波段RB和BB的功率谱图,其中衰减与图4a和4b相同,但是在BB波段有一个信道(λ大约为1530nm),RB1波段有一信道(波长λ大约为1559nm)。
图4a和4b的信道的放大电平具有不明显的变化(数量级为1dB)。
申请人还观察到在这些图中,放大器输出端的ASE尖峰基本低于信道中两波段的信号(波段BB波长为1536nm的ASE信号和RB波段波长为1541nm的ASE信号)。
图6在一张图中结合了处于闭合环路和有先前所述的衰减器的放大器的RB1和BB两个波段,在RB1波段中具有48个传输信道,而在BB波段没有一个信道。
图7在一张图中结合了处于闭合环路和有先前所述的衰减器的放大器的RB1和BB两个波段,在RB1波段中没有传输信道,而在BB波段没有16个信道。
图6和图7中都可以看到两个波段ASE信号的峰值。
在这种情况下,应当注意到不同信道的放大电平基本稳定。
本发明的另一个实施方案应用于光远距离通信系统,此时需要在前面定义的波段RB2中放大信号。
另外,此构造可用于应用于不分子波段的系统,此时放大器操作的波段为对应RB2波段的红外线波段。
此类实施方案如图9所示。它显示了具有第一放大单元60和第二放大单元70的多级放大器1000,每一单元包括至少一有源光纤和至少一利用分色耦合器连接于该有源光纤的泵激光器。
由于在RB2波段中有关有源光纤长度的增益因子远低于波段RB1和BB的,此放大波段的有源光纤比波段BB和RB1中的光纤要长。
第一放大单元60,例如,可以包括由单个激光串连泵激(两个串行光纤)的两级,此激光器在与放大的信号相同传播方向上为第一级提供能量,为第二级提供的信号方向相反。一光隔离器最好位于两级之间阻止反向反射现象进入信号放大的有源光纤中。
第二放大单元70,例如,有包括一有源光纤和利用一分色耦合器耦合它的泵激光源的放大级。
上述泵激光源,例如,可以是量子类型的激光器,具有以下特性散射波长λP=1480nm;最大输出光功率Pu=140mw。
所示的此种类型的激光器由Sumitomo公司生产。
适用于此目的的有源光纤是搀铒铝硅酸盐光纤,称为OLA1-230(数值孔径0.23,截止波长920nm,在上述传输带宽内的尖峰损耗8.4dB/m),本申请人可以制造此类光纤。
在前述的实施例中,有同样的参考数值50的衰减元件位于两个放大单元之间。
衰减元件与图2所示的实施例中描述的类型相同,并且具有相同的衰减特性。具体地说,在本说明的下面部分,同样类型的元件以及在上述方案中与它们具有相同功能的元件将采取与前面相同的标识数。
根据本发明的一个方面,增益稳定电路与上面所说的放大器(或其替代元件)相关联的。此电路利用了上述放大器的自发辐射,尤其是激光器泵激的有源光纤中的放大器的自发辐射。ASE信号被叠加于当前信道光谱上。自发辐射的光谱如图17所示。
此电路包括位于第一放大单元60之前的第一选择性反射滤波器66和位于上述第二放大单元70后面的第二选择性滤波器76。
增益稳定电路还包括ASE信号的附加的双向通路82,使得上述自发辐射信号不通过衰减元件50。此通路包括三端口光环行器52,选择滤波器53和光耦合器54。
将要被放大的信号进入环行器52的第一端口521;环行器的第二端口522连接于选择性滤波器53,其后面是所述衰减元件50。
上述滤波器53优选Bragg光纤光栅,反射工作波长的99%的光功率。
环行器523的第三端口和衰减元件50的输出端连接于光耦合器54,它将两个元件的信号耦合入第二放大单元70。耦合器54的优选耦合比是来自衰减元件50的信号占70%,来自环行器第三端口的信号占30%。
另一个光隔离器58位于上述衰减元件50的后面。
光隔离器的优选类型不取决于传输信号的极化,最好具有是大于35dB的隔离度以及小于-50dB的反射度。
比较适用的隔离器,例如,可以是前述的E-Tek Dynamics公司制造的PIFI1550型。
ASE信号的通路还包括位于隔离器58和耦合器54之间的分路器56。
分路器56根据预定的分配比将信号分配输入第一输出端口562和第二输出端口563间的输入端口561。
上述输入端口561连接于耦合器54的输入端,上述输出端口562连接于通路81,优选类型为可变电平衰减的衰减器57亦连接于此通路,上述第三端口563连接于光隔离器58的输出端。
衰减器应优选具有低反射的单模衰减器,例如JDS公司制造的型号为VA5或MV47。
分路器具有的优选分配比应该是从端口561接收的光功率的20%发送入衰减器57。
通路81的信号通过衰减器57利用光环行器65被重新送入第一单元60的输入端。此环行器,类型与环行器52相同,具有连接于衰减器57的第一端口651,连接于滤波器66的第二端口652,连接于第一个放大单元60的第三端口653。
另一个光隔离器77位于滤波器76之后。
放大器的整个操作方法如下放大器输入端的多波长信号在第一单元60处放大后,在所述第二放大单元70处进一步放大。
由激光器泵激的有源光纤具有图17所示的自发辐射谱,它被叠加于当前信道的光谱上。
在下面所定义的适当的条件下,有源光纤,再循环ASE信号的附加通路以及前述光栅组成激光器环路系统,振荡波长位于ASE信号谱内且与传输信道波长不同。
滤波器对66,76优选BRAGG光纤光栅对,用于反射放大器在预定波长处的自发辐射。具体地说,滤波器对66,76决定了ASE信号的波长。上面所介绍的实例中的波长为1561nm。
在此具体实例中,ASE信号的波长小于信道波长。自发辐射波长的选择影响了放大器的动态范围,由于它决定由泵激光器提供的光功率的大小。此泵激光器用于放大自发辐射信号,而不是传输信号。
增益稳定电路按照下面方式工作。
当放大器输入端有所有传输信道存在时,提供给放大级的有源光纤的泵功率则用于信号的放大,而相应的ASE信号则相对较低;放大级的特点,尤其在有源光纤的杂质中,有源光纤的长度和提供的泵功率是预先决定的,因此它们能够在这种条件下(放大器输入端的所有传输信道存在)以典型的设计值上运行。
在本示例中,有源光纤,在第一放大单元60有长度110m,在第二放大单元有长度60m。
当关掉一个或多个信道时,有源光纤中的总信号功率比较低,导致了较低的泵功率损耗(缺少的信道的放大不再吸收),结果是可以获得的泵功率更大的利用率,从而导致了有源光纤中ASE信号的辐射增大。利用光栅对66,76将过剩光功率重新注入有源光纤,其中光栅对66,76反射了具有光栅波长的部分ASE信号。此ASE信号被叠加于当前信号上,它在有源光纤中的放大消除了当前传输信道的放大所需用的光功率,因此限制了这些信道的增益。
当关掉的信道被重新引入,它们在有源光纤中的放大消耗了可获得的泵功率,这导致了再循环ASE信号电平的相应减少。
甚至在放大器当前信道数目变化时,所有信道的增益基本保持稳定。
为了ASE信号能够在一级与另一级之间再循环,衰减元件50被旁路。因此它对ASE信号影响等于零,所以ASE在第一单元60的再循环直接与ASE在第二单元70的再循环直接相关。
在附加的通路上,利用通路82,ASE信号旁路衰减元件50,环行器52和滤波器53。滤波器53反射了与滤波器对66,76波长相同的信号。
ASE信号旁路衰减元件50,并经过耦合器54再次进入下一级的输入端。
在相反方向上,分路器56将ASE信号转向进入旁路衰减元件50的通路81,利用环行器65将ASE信号返回至第一单元60。
在上述通路81中,可变衰减器57经过适当的校准到一个值,其值决定了放大器的增益特性。
循环ASE信号根据当前信道数,在包含了上述通路的环路中,以基本自动的方式调整其电平。如果缺少任何信道,ASE信号将吸收多余的泵功率,使得送入当前信道的有用泵电平在所有情况下基本稳定。
此种类型的放大器在具有试验用放大器的平台上已经完成测试。
图1O显示了这种放大器1000的构造,它和图9中的放大器相同。
输入信号包括64个信道,每一个信道具有自己的辐射波长,由上面所说类型的同样数目的接口单元I1-I64产生。光信号复用器83将这64路信号组合成为多波长单路信号送入第一放大单元60。
第二放大单元的输出由光谱分析仪80读入。
复用器83是由平面光学分路器构成的单元,它是以适当的方式将分路器相互组合而成的,将64路单波长信号复用为一多波长信号。具体地说,所说的复用器包括一个1×32分路器,一个1×16分路器和两个1×18分路器,所有的都是做减平面光的结构。
所用光谱分析仪是由Anritsu(JP)公司制造的MS9710A型号。
具体地说,图11示出了在一个具有64信道以及具有由该元件允许的最小衰减值(大约为2dB)衰减器的放大器输出端存在的光谱。图12-14显示了在前述的各种情况下,放大器输出端的光谱。图12是在1575nm附近具有4传输信道,图13是在1590nm附近具有4传输信道,图14是1600nm附近具有4传输信道。这些图的对比明确显示了上述信道的增益基本稳定(在上述所有情况下仅有1dB的不同)。
图15是表示图9中放大器在1601nm的一个信道中的增益与作为环路衰减A的不同输入功率值,以及作为衰减器的衰减值的函数曲线。此图中,抽取的自发辐射波长为1561nm。
申请人已经看到,环路中的衰减和由此衰减器引入的衰减电平是变化的,这就可以获得不同输入功率(信道数及其功率)时的增益(不同曲线的平滑区域)稳定。当环路中衰减减少时,由于再循环ASE信号的增大,可以使较低的放大器增益增加稳定。
图16显示了图9中放大器在1601nm的一个信道中的增益在dB衰减值的情况下与环路衰减A的一些输入功率值和两个自发辐射波长值的函数曲线,换言之"发出激光"波长。
申请人还注意到,通过选择再循环自发辐射波长,通过选择光栅66,76和33,可以改善增益的稳定性能。这是由于本曲线中,抽取1565nm波长处的自发辐射比抽取1560nm波长处的自发辐射能够获得更好的稳定性能。因此,如果自发辐射波长与信道波长相近时,在低放大电平处可以获得更好的增益控制(更大的平滑区域)。具体地说,在低增益时,放大器的动态范围增加。
本申请人还注意到,由于耦合器各端口之间的光功率分离比决定了再循环ASE信号的质量和如前所述还决定了放大器的动态范围,影响本发明的放大器增益稳定性的进一步参数是耦合器54和56的选择。
而且,在ASE信号的再循环通路中旁路衰减元件,避免将此元件引入ASE的再循环中的问题,和防止了由于老化引起的衰减变化和防止衰减元件的各种操作条件引起在ASE通路中激发条件的变化,和从而引起的放大器增益的变化。
更一般而论,放大器的增益应与衰减元件的选择及其衰减值无关。
而且,由于不存在峰值ASE信号,从而防止了ASE信号与衰减元件中的信号间的差拍。
衰减元件的旁路可能使它具有一单个增益稳定电路,与放大器的级数目无关,使得作用于单个衰减器的稳定程度更加容易调节。
申请人还看到,根据所有实施方案中放大器的构造,衰减元件后面的单个或者多个放大级在有源光纤中双向接收ASE信号。
如果衰减元件是一个将光信道加入线路或者从线路中去掉它们(加/减)的装置,只要增加和减少的信道数的差数不超过总信道数的30%,尽管增加的信道和没有被去掉的信道具有相同的功率,增益控制将继续有效。
权利要求
1.光远距离通信系统包括至少一个能够传输包含至少两路预定波长的多波长信号的传输站;一光纤传输线路;至少一个接收站,所说的光纤线路连接到所说的传输和接收站;位于所述传输站和所述接收站之间的光信号放大站,包含至少一个第一放大部分和至少一个第二放大部分以及一个增益稳定电路,所说的放大站还包括一个位于上述两部分之间的衰减元件,其特征在于上述增益稳定电路包含一个自发辐射的再循环电路,所说的电路为所述第一和所述第二放大部分所共有。
2.根据权利要求1的系统,其中所说的自发辐射的再循环电路包含一个自发辐射波长的选择装置。
3.根据权利要求2的系统,其中所说的波长选择装置是位于第二部分后面的波长选择滤波器。
4.根据权利要求3的系统,其中所说的波长选择装置至少包含一对滤波器(66,76;16,26;17,46),其中一个位于第一放大部分(10;60)之前,另一个位于第二放大部分(20,40;70)之后。
5.根据权利要求4的系统,上述自发辐射再循环电路包括第一通路(82),在该通路中位于上述第一放大部分和衰减元件之间抽取所说的自发辐射和提供给上述第二放大部分。
6.根据权利要求5的系统,其中所说的自发辐射再循环电路在放大部分中有两个传输方向,一个与传输信号方向相同,另一个则相反,所说的传输方向在所述第一通路中相同,其中所述自发辐射循环的电路还包括第二通路,在所说的第二通路中,在所说的第二放大部分和所说的衰减元件之间抽取相反方向的自发辐射;和将其提供给所述第一放大部分。
7.根据权利要求5的系统,其中第一通路包括具有三个端口(52,52’)的光环行器,其第一端口(521,521’)连接于所述第一放大部分之后,第二端口(522,522’)连接于位于所述衰减元件(50,50’)前面的选择性光栅(53,53’),第一光耦合器(54,54’),它耦合来自所述衰减元件和来自光环行器第三端口(523,523’)的光信号。
8.根据权利要求6的系统,其中所说的第二通路包括一个光环行器(65),它的第一端口(651)连接于可变的衰减器(57),它的第二端口(652)连接于位于所述第一放大部分前面的所述滤波器(66),它的第三端口(653)连接于所述第一放大部分,一个光分路器(56),它位于第二放大部分前面,它将来自第二部输入端的信号的一部分送入可变衰减器(57)。
9.根据权利要求6的系统,其中所说的第二通路包括一个光分路器(56,56’),位于上述第二放大部分前面,它将来自所述第二部输入端的信号的一部分送入所述可变衰减器(57,57’)。第二光耦合器(59,59’),将所述可变衰减器(57,57’)的信号送入所述滤波器(16,17)。
10.根据权利要求7的系统,其中所说的光耦合器(54,54’)耦合了来自所述衰减元件信号的至少60%的光功率。
11.根据权利要求8或9的系统,其中所说的光分路器(56,56’)至少将5%的光功率送入所述可变衰减器(57,57’)。
12.根据权利要求9的系统,其中上述耦合器(59,59’)至少将5%的所述可变衰减器(57,57’)的光功率耦合进所述滤波器(16,17)。
13.根据权利要求1的系统,其中所说的自发辐射再循环电路包含一个不通过所述衰减元件的通路。
14.根据上述权利要求的系统,其中所说的自发辐射波长选择装置选择和信道波长光谱相近的自发辐射波长。
15.多波长信号的光放大器,包括至少一个第一放大部分,至少一个第二放大部分,和一个增益稳定电路,所说的放大站还包括位于上述两部分之间的衰减电路,其特征在于上述增益稳定电路包括自发辐射再循环电路,所说的电路为上述第一放大部分和第二放大部分所共有。
16.光远距离通信方法,包括以下步骤在预定波长处产生至少两个不同的光传输信号;将上述光信号在一单路传输线路中复用,形成的多波长光信号包括所说的光传输信号;通过传输线路传送所述多波长光信号;沿传输线路放大所述光信号;将上述光信号送入至少包括一个接收器的接收站;其特征在于放大上述光信号的步骤包括以下步骤在第一放大部分放大所说的信号;利用衰减元件处理所说的放大了的光信号;在第二放大部分放大所说的处理过的光信号;从所述放大的光信号中抽取部分所述第一和第二放大部分的自发辐射信号;所述的自发辐射的部分信号不经过所述衰减元件,再循环进入所述第一和第二放大部分。
17.根据权利要求16的方法,其特征在于所述再循环步骤还包括衰减所述部分自发辐射信号的步骤。
18.稳定光放大器增益的方法,包括以下步骤在放大器的第一放大部分放大光信号;利用衰减元件处理上述放大了的光信号;在放大器的第二部分放大上述处理过的光信号;其特征在于它还包括下述步骤从所述放大了的信号中抽取部分放大器本身的自发辐射信号;将上述第一和第二放大部分的所述部分自发辐射信号不通过所说的衰减元件进行再循环。
19.根据权利要求18的方法,其特征在于再循环步骤还包括衰减所说的部分自发辐射信号的步骤。
全文摘要
光远距离通信系统包括:一个传输站,它能够传输至少包括两个预定波长的多波长光信号;一个波分复用器,它将对应的传输信号送进光纤线路;还有一个接收站,它用来接收信号。系统还包括位于上述传输站和接收站之间的光信号放大站,它至少包括一个第一放大部分和第二放大部分以及一个增益稳定电路。所述的放大站还应包括位于上述两部分之间的一个衰减元件。上面所说的增益稳定电路包括一个自发辐射的再循环电路,此电路为第一和第二放大部分所共有。
文档编号H04B10/04GK1285668SQ0012273
公开日2001年2月28日 申请日期2000年6月30日 优先权日1999年6月30日
发明者法斯拖·墨里, 法布里兹欧·帝·帕斯奎尔, 基欧番尼·萨琦, 斯尔法·图罗拉 申请人:皮雷利·卡维系统有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1