将寻呼所用信道数最小化的方法和装置的制作方法

文档序号:7599889阅读:338来源:国知局
专利名称:将寻呼所用信道数最小化的方法和装置的制作方法
背景技术
I.发明领域本发明一般涉及卫星通信系统,尤其涉及使用单个射束的单个寻呼信道寻呼用户终端的方法和装置。
II.相关技术传统基于卫星的通信系统包括网关和一个或多个用于在网关和一个或多个用户终端之间传递通信信号的卫星。网关是具有天线的地面电台,用于发射信号到通信卫星并从中接收信号。网关使用卫星提供通信链路,用于将用户终端连接到其它用户终端或其它通信系统的用户,例如公共交换电话网。卫星是用于传递信息信号的轨道接收机、中继器、和再生器。用户终端是无线通信装置,例如但不限于无线电话、数据收发机和寻呼接收机。用户终端可以是固定的、便携的、或移动的,例如移动电话。
卫星可以从提供的用户终端接收信号并向它发射信号,用户终端在卫星的“照射区域”中。卫星的照射区域是卫星信号范围内地球表面的地理区域。使用射束形成天线,通常将照射区域地理分割成“射束”。每个射束覆盖照射区域中的特定地理区域。射束可以被定向成使不止一束来自同一卫星的射束覆盖相同的地理区域。
一些卫星通信系统使用码分多址(CDMA)扩展频谱信号,如1990年2月13日提交的美国专利号4,901,307题为“Spread Spectrum Multiple AccessCommunication System Using Satellite or Terrestrial Repeaters”的申请和1995年1月4日提交的美国专利申请序号08/368,570题为“Method and Apparatusfor Using Full Spectrum Transmitted Power in a Spread Spectrum CommunicationSystem for Tracking Individual Recipient Phase Time and Energy”的申请中所揭示的,这两个申请都转让给了本发明的受让人,并通过参考结合于此。
在使用CDMA的卫星通信系统中,分离的通信链路用于发射如数据或话务的通信信号到网关,以及从网关发射通信信号。术语“前向通信链路”是指在网关处产生并被发射到用户终端的通信信号。术语“反向通信链路”是指在用户终端处产生并被发射到网关的通信信号。
在前向链路上,信息通过一个或多个射束从网关发射到用户终端。这些射束通常包括覆盖公共地理区域的多个所谓子射束(也称为频分多址(FDMA)信道),每个都占用不同的频带。尤其在传统的扩展频谱通信系统中,在调制到载波信号上用于作为通信信号发射之前,一个或多个预选的伪随机噪声(PN)码序列可用于在预定的频谱带上调制或“扩展”用户信息信号。PN扩展是本领域所熟知的扩展频谱发射的一种方法,它产生带宽远大于数据信号带宽的通信信号。在前向链路上,PN扩展码或二进制序列可用于区别不同网关或通过不同射束发射的信号,以及多路信号。特定子射束中的所有通信信号通常共用这些代码。
在传统CDMA扩展频谱通信系统中,“信道化”代码可用于区别前向链路(有时称为CDMA信道)上卫星子射束中的不同用户终端。也就是说,通过使用唯一的信道化正交代码,每个用户终端在前向链路上具有其自己的正交信道。Walsh函数通常用于实现信道化代码,亦称之为Walsh码。信道化代码将子射束分成正交信道,亦称之为Walsh信道。大多数Walsh信道是提供用户终端和网关间通信的话务信道。剩下的Walsh信道通常包括导频、同步和寻呼信道。通过话务信道发送信号只能被一个用户终端接收。相反,寻呼、同步和导频信道可被多个用户终端监控。
当用户终端不参与通信对话时(也就是用户终端不接收或发射话务信号),网关可以用熟知为寻呼信号(这里也称为寻呼)的信号将信息传递到特定的用户终端。网关通常发送寻呼信号,以建立通信链路,告诉用户终端正进入一个呼叫,答复试图访问系统的用户终端,并用于登录用户终端。例如,当呼叫特定的用户终端时,网关用寻呼信号通知用户终端。此外,如果网关发短消息给用户终端,如用户终端位置更新的请求,那网关可以通过寻呼信号发送这种请求。寻呼信号还可用于分配信道配置和系统总开销信息。寻呼信号通常通过以上概述的寻呼信道发射。每个寻呼信号都包括标识号,所以监听寻呼信道的用户终端知道寻呼信号是否对它们寻址。如果寻呼信号表示多个用户终端,那寻呼信号就包括对应于多个用户终端的标识号。
用户终端可以通过在反向链路(也就是在用户终端开始在网关结束的通信链路)上发送接入信号或接入试探,以响应寻呼信号。接入信号还可用于登录网关、启动呼叫、或确认网关的寻呼请求。接入信号通常如上简述的那样通过特别指定的接入信道发送。反向链路还包括提供用户终端和网关间通信的话务信道。
如果用户终端只发送位置更新,以响应通过寻呼信道从网关接收到的位置更新请求,那么用户终端可以在接入信道上将位置更新信息作为接入试探发送。通过使用寻呼信道和接入信道传递短消息(例如位置更新请求和位置更新信息),可保留前向和反向话务信道用于较长的通信,例如语音呼叫。
当网关将寻呼信号发送到用户终端时,网关通常不知道用户终端的位置。因此,在当代的卫星通信系统中,网关通常在多个寻呼信道上发送寻呼信号,几个射束的每一个中都有一个寻呼信道。在最坏的情况下,网关在每个射束的每个寻呼信道上发送寻呼信号,这些射束由特定用户终端所服务的网关支持。一般不需要在每个子射束中都使用寻呼信道,因为射束中的子射束监控配置通常事先已知,虽然这可以按所需要求来完成。寻呼信号在多个寻呼信道上的发送通常称为扩散式寻呼。扩散式寻呼虽然效率低且较浪费,但是在用于建立语音呼叫时它还是相对廉价的。这是因为用于扩散式寻呼的资源与通常两到三分钟语音呼叫所用的资源相比是相当小的。尤其,用于扩散式寻呼的总容量和功率与支持语音呼叫所用的总功率和容量相比是相当小的。因此,扩散式寻呼虽然效率低,但是证明在语音系统中很有用。然而,当把扩散式寻呼用于建立语音呼叫时,如果例如呼叫建立请求数增加到寻呼信道容量变成不足资源的地步,那扩散式寻呼就变得不能接受了。
在很多其它类型的通信系统中不能接受扩散式寻呼低效率,例如在位置确定系统中,其中寻呼消息的响应可以是相当短的确认消息和/或位置更新消息。这是因为用于扩散式寻呼的资源与响应扩散式寻呼而发送的信息相比是相当大的。尤其,用于扩散式寻呼的总功率和容量与用于支持扩散式寻呼响应(例如确认或位置更新消息)的总功率和容量相比是相当大的。
位置确定在其中特别有用的行业的实例是商业运输业。在商业运输业中需要一个有效、精确的车辆位置确定方法。通过简便地访问车辆位置消息,运输公司总部可获得一些益处。例如,运输公司可以保持对客户通知关于位置、路线、和净载重量到达估计时间。运输公司还可以在路线的效率上使用车辆位置信息和经验数据,以此确定最经济有效的路线和过程。
为了将跟踪卡车位置所用的功率和容量最小化,可以定时地(例如每小时一次)将位置更新请求发送到卡车中的用户终端(在运输业中通常称为移动通信终端或MCT)。为了进一步节省资源,位置更新的收集可以不用话务信道实现。为了实现这一点,在寻呼信道上将位置更新请求消息作为寻呼信号发送。为了进一步将所用的功率和容量最小化,用于发射寻呼信号的寻呼信道数可以由于上述原因而被最小化。
因此,如上所述,需要一种系统或装置和方法,用于减小用于寻呼用户终端的寻呼信道数。虽然减小扩散式寻呼的最初需要是由在位置确定系统中减小扩散式寻呼引起的,但是本发明的系统和方法在任何类型卫星通信系统中都有用,这些卫星通信系统使用信道(与寻呼信道相同或类似)向不涉及通信会话的用户终端传递信息。例如,本发明在通过寻呼信道使用寻呼信号建立语音呼叫的语音通信系统中有用。本发明在由于呼叫建立请求数增加而使寻呼信道容量接近于耗尽的语音通信系统中尤其有用。此外,本发明在公共寻呼信道用于多种应用的系统中有用,该应用包括但不限于建立语音通信和请求位置更新。

发明内容
本发明指出了使用具有网关和一个或多个卫星的卫星通信系统寻呼用户终端(UT)的方法和装置,其中每个卫星产生多个射束,每个射束包括多个信道,其中一个或多个卫星产生射束总数“m”。本发明的方法包括调用UT的位置的步骤,该位置对应于t1时刻已知的UT位置。这可以通过使用存储不同时刻用户终端位置信息的对照表、数据库、或存储单元来实现。该方法还包括确定或选择覆盖t2时刻调用的UT位置的射束组(g1)的步骤,其中g1<n、t2>t1。然后确定t2时刻射束组(g1)中最强的射束。在一个实施例中,通过确定射束组(g1)中哪个射束理论上相对于t2时刻调用的位置具有最高的功率,以选择最强的射束。然后将寻呼从网关发送到最强射束中信道上的UT。因此,本发明可以使用单个射束的单个信道寻呼用户终端。
在本发明的一个实施例中,如果相对于调用位置最强射束理论上的功率比射束组(g1)中每个其它射束高至少预定功率值(例如3或4dB),那寻呼只在t2时刻发送。否则,确定t3时刻,这时覆盖调用位置的一个射束理论上的功率比覆盖调用位置的任何其它射束高至少预定功率值。然后,可以在t3时刻将寻呼通过一个射束的信道发送。
在本发明的一个实施例中,根据t2时刻假设UT所在的区域,确定最强射束。
在本发明的一个实施例中,UT根据其当前位置监控实际最强射束的信道。在另一实施例中,UT根据其当前位置监控理论上最强射束的信道。在再一实施例中,UT根据调用位置监控理论上最强射束的信道。在这些实施例的每一个中,网关可以使用单个射束的单个信道寻呼UT。


本发明的特点、目的和优点将在以下结合附图的详细描述中进一步显现出来,附图中相同的标号到处都标识相应的单元,其中图1A显示了使用本发明的典型无线通信系统;图1B显示了网关和用户终端间的典型通信链路;图2显示了用于用户终端中的典型收发机;图3显示了用于网关中的典型收发机装置;图4显示了典型的卫星覆盖区域;图5A和5B显示了t2时刻典型的卫星照射区域;图6A和6B显示了t3时刻典型的卫星照射区域;图7A和7B是描述本发明实施例高层操作的流程图;图8是根据本发明实施例,描述本发明操作附加特征的流程图;图9和10是本发明另一实施例中,描述用户终端执行另一方法的流程图。
较佳实施例的详细描述I.引言本发明特别适用于使用低地球轨道(LEO)卫星的通信系统,其中卫星相对于地球表面的点不是固定的。然而,本发明还可用于卫星在非LEO轨道中行进的卫星系统,或使用相对高速移动的中继装置的系统。
以下将详细讨论本发明的较佳实施例。虽然讨论了特殊步骤、构造和配置,但是应该理解这只是为了说明的目的。较佳的应用是在CDMA扩展频谱通信系统中。
II.典型卫星通信系统图1显示了使用本发明的典型无线通信系统。要关注的是该通信系统使用CDMA型通信信号,但这不是本发明所需要的。在图1A中所示通信系统100的一部分中,显示了两个卫星116和118、和两个关联的网关、基站或集线器120和122,用于实现与两个远程用户终端124和126的通信。在该系统中网关和卫星的总数依赖于期望的系统容量和本领域中所熟知的其它因素。
用户终端124和126每个都包括无线通信装置,例如但不限于蜂窝或卫星电话、数据收发机、或者寻呼或位置确定接收机,并且根据期望可以是手提的或装配在车辆上的。在图1A中,显示的用户终端124是装配在车辆上的装置,显示的用户终端126是手提电话。然而应该理解本发明的学说可用于期望远程无线服务的固定单元。用户终端有时也可以根据偏爱称为用户单元、移动站、移动单元、或者在一些通信系统中简单地称为“用户”或“订户”。
一般,来自卫星116和118的射束覆盖预定射束图中的不同地理区域。不同频率的射束也称为FDMA信道或“子射束”,它们被定向以覆盖相同区域。本领域熟练的技术人员很容易理解,根据通信系统的设计和提供服务的类型,以及是否获得空间分集,多个卫星的射束覆盖区域或服务区域可以被设计成在给定区域中完全重叠或部分重叠。
已经提议了各种多卫星通信系统,如使用大约48个或更多卫星的典型系统,这些卫星在LEO轨道中的八个不同轨道平面中行进,用于为大量用户终端提供服务。然而,本领域熟练的技术人员将很容易地理解本发明的学说如何用于各种卫星系统和网关结构,包括其它轨道距离和星座图。
在图1A中,显示了用于用户终端124、126与网关120、122之间通过卫星116和118进行通信的一些可能的信号通路。线140、142、144显示了卫星116、118与用户终端124、126之间的卫星-用户终端通信链路。线146、148、150、152显示了网关120、122与卫星116、118之间的网关-卫星通信链路。网关120和122可用作单向或双向通信系统的一部分,或用于简单地将消息或数据传送到用户终端124和126。
图1B提供了通信系统100中网关122和用户终端124之间通信的附加细节。用户终端124和卫星116之间的通信链路通常称为用户链路,网关122和卫星116之间的链路通常称为馈线链路。在“前向”方向上的通信通过前向馈线链路160从网关122到卫星116,然后通过前向用户链路162从卫星116下到用户终端124。在“返回”或“反向”方向上,通信通过反向用户链路164从用户终端124上到卫星116,然后通过反向馈线链路166从卫星116下到网关122。
在典型实施例中,网关122在使用频分或极化复用的前向链路160、162上发射信息。使用的频带被分成预定数量的频率“信道”或“射束”。例如,频带被分成8个单独的使用右旋圆极化(RHCP)的16.5MHz“信道”或“射束”和8个单独的使用左旋圆极化(LHCP)的16.5MHz“信道”或“射束”。这些频率“信道”或“射束”进一步由预定数量的频分复用(FDM)“子信道”或“子射束”构成。例如单独的16.5MHz信道可以依次由13个每个带宽为1.23MHz的FDM“子信道”或“子射束”构成。每个FDM子射束可以包括一般用Walsh码实现的多个正交信道(也称为Walsh信道)。大部分正交信道是提供用户终端124和网关122间通信的话务信道。剩下的话务信道包括导频、同步和寻呼信道。
网关122在前向链路160、162上发射导频信道,并且用户终端124使用导频信道获得最初的系统同步、以及用于获得射束中发射信号的时间、频率、和相位的跟踪或者说是获得子射束(CDMA载波)。
网关122在前向链路160、162上发射同步信道,同步信道包括用户终端124发现导频信道之后可以读取的信息的重复序列。需要该信息使用户终端124与分配给该子射束的网关122同步。网关122通常在前向链路160、162上使用寻呼信道,以建立通信链路、告诉用户终端124正进入呼叫、答复试图接入系统的用户终端、以及登录用户终端。此外,以下将更详细地解释寻呼信道还可用于将如位置更新请求的短消息发送到用户终端124。
当请求通信链路时(例如当发生呼叫时),前向和反向链路上指定了话务信道。消息通过传统的通信链路在用户终端124和网关122间传送,或者使用话务信道实现电话呼叫。
在反向方向上,用户终端124通过用户链路164发射信息到卫星116。卫星116从多个用户终端接收这些信号(通过链路164),并将它们一同频分复用,用于卫星-网关馈线链路166。反向链路164包括话务信道和接入信道。
用户终端124在反向链路164、166中使用接入信道,以“接入”网关122。当用户终端不使用话务信道时,相关领域中所熟知的接入信道提供用户终端到网关的通信。它能够登录系统、实现通信链路、发生呼叫、或网关122发送的确认寻呼。此外,以下将更详细地解释接入信道还可以用于将如位置更新的短消息从用户终端124发送到网关122。一个或多个接入信道通常与寻呼信道成对,以提供更有效的用户终端装置,以选择信道用于响应寻呼。在一些CDMA系统中,不同的PN码区别反向链路上的每个接入信道,如所期望的PN码在长度或码片率上可以与通信系统中扩展通信信号中的其它PN码不同。用户终端124通过在一个关联的接入信道上发射,以响应寻呼消息。类似的,网关通过与接入信道关联的寻呼信道上的消息,响应特定接入信道上的发射。
III.用户终端收发机图2显示了用户终端124和126中使用的典型收发机。收发机使用至少一个用于接收通信信号的天线210,该信号被传送到模拟接收机,在其中它们被下变频、放大、并数字化。双工器单元212通常用于允许同一天线执行发射或接收功能。然而,一些系统使用分离的天线用于在不同的发射和接收频率上工作。
模拟接收器214输出的数字通信信号被传送到至少一个数字数据接收机216A,和至少一个搜索器接收机218。对相关领域熟练的技术人员显而易见的是,附加的数字数据接收机216B-216N可以根据收发机复杂性的可接受等级,用于获得信号分集的期望等级。
至少一个用户终端控制处理器220耦合到数字数据接收机216A-216N和搜索器接收机218。控制处理器220在其它功能中提供基本信号处理、定时、功率和越区切换控制或协调、以及用于信号载波的频率的选择。控制处理器220通常执行的其它基本控制功能为伪噪声(PN)码序列或用于处理通信信号波形的正交函数的选择或操作。控制处理器220执行的信号处理可以包括确定相对信号强度和计算各种相对信号参数。这种信号参数的计算,如定时或频率,可以包括使用附加或分离的专用电路,以提高测量中的效率或速度,或改进控制处理资源的分配。
数字数据接收机216A-216N的输出耦合到用户终端中的数字基带电路222。用户数字基带电路222包括用于传送去向和来自用户终端的消息的处理和显示单元。也就是信号或数据存储单元,如暂时或长期数字存储器;输入和输出装置,如显示屏、扬声器、键盘终端、和手柄;A/D单元,声码器和其它语音和模拟信号处理单元;以及使用本领域中所熟知单元的用户数字基带电路222中类似的、所用形式的部件。如果使用分集信号处理,那用户数字基带电路222可以包括分集组合器和解码器。这些单元中的一些还可以在控制处理器220的控制下,或结合控制处理器220工作。
当作为用户终端启动的输出消息或通信信号而准备语音或其它数据时,用户数字基带电路222用于接收、存储、处理并另外准备发射的期望数据。用户数字基带电路222将该数据提供给在控制处理器220控制下工作的发射调制器226。发射调制器226的输出被传送到功率控制器228,功率控制器将输出功率控制提供给发射功率放大器230,发射功率放大器最终将输出信号从天线210发射到网关。
收发机200在发射通路中还可以使用预纠正单元232,以调节输出信号的频率。这可以使用熟知的发射波形的上或下变频技术实现。在另一实施例中,预纠正单元232可以形成频率选择或控制机构的一部分,该机构用于用户终端中的模拟上变频和调制级(230),使得适当调节的频率可以一步将数字信号转换成期望的发射频率。收发机200还可以在发射通路中使用预纠正单元232,以调节输出信号的定时。这可以使用熟知的在发射波形中加入或减去延迟的技术实现。
数字接收机216A-N和搜索器接收机218都被构造成带有用于解调和跟踪特定信号的信号纠正单元。搜索器接收机218用于搜索导频信号,或其它相对固定模式的强信号,数字接收机216A-N用于解调与检测到的导频信号关联的其它信号。然而可以指定数据接收机216跟踪捕获后的导频信号,以精确确定信号码片能量与信号噪声的比值,并将导频信号强度公式化。因此,可以监控这些单元的输出,以确定导频信号或其它信号的能量或频率。这些接收机还使用频率跟踪单元,频率跟踪单元可被监控以向控制处理器220提供当前频率和定时信息,用于解调信号。
当被适当地定标成相同频带时,控制处理器220使用这种信息确定接收信号从振荡器频率偏移到什么范围。与频率误差和多普勒频移有关的这种和其它信息可以如期望地存储在存储器或存储单元236中。
IV.网关收发机图3显示了网关120和122中使用的典型收发机装置300。图3中显示的网关120、122部分具有一个或多个连接到天线310的模拟接收机314,用于接收通信信号,然后使用本领域中所熟知的各种方案将通信信号下变频、放大、并数字化。一些通信系统中使用了多个天线310。模拟接收机314输出的数字化信号作为至少一个数字接收机模块的输入,该模块一般表示为虚线框324。
每个数字接收机模块324对应于用于管理网关120、122与一个用户终端124、126之间通信的信号处理单元,虽然本领域中熟知了某些变化。一个模拟接收机314可以提供多个数字接收机模块324的输入,多个这样的模块通常用于网关120、122中,以容纳所有的卫星射束和在任何给定时刻处理的可能分集模信号。每个数字接收机模块324具有一个或多个数字数据接收机316和搜索器接收机318。搜索器接收机318一般搜索导频信号之外信号的适当分集模式。在通信系统中实现时,多个数字数据接收机316A-316N可用于接收分集信号。
数字数据接收机316的输出提供给随后的基带处理单元322,该单元中包括的装置在本领域中是熟知的且在此不再进一步详细说明。典型的基带装置包括分集组合器和解码器,用于将多路信号组合成每个用户的一个输出。典型的基带装置该包括接口电路,用于向数字交换机或网络提供输出数据。各种其它已知的单元,例如但不限于声码器、数据调制解调器、以及数字数据交换和存储部件,可以形成基带处理单元322的一部分。这些单元运行以控制或指引数据信号传送到一个或多个发射模块334。
每个将被发射到用户终端的信号都耦合到一个或多个适当的发射模块334。传统的网关使用多个这样的发射模块,用于每次向多个用户终端124、126,以及每次向几个卫星和射束提供服务。网关120、122所用发射模块334的数量由本领域中所熟知的因素确定,包括系统复杂性、可见卫星数量、用户容量、选择的分集程度等等。
每个发射模块334包括将数据扩展频谱调制用于发射的发射调制器326。发射调制器326的输出耦合到数字发射功率控制器328,它控制用于输出数字信号的发射功率。数字发射功率控制器328为了减少干扰和资源分配应用最小的功率电平,但是当需要补偿发射通路中的衰减或其它通路传送特征时,应用适当的功率电平。发射调制器326在扩展信号中使用至少一个PN产生器332。该代码产生还可以形成网关122、124中所用的一个或多个控制处理器或存储单元的操作部分。
发射功率控制器328的输出被传送到求和器336,在其中它与其它发射模块的输出相加。那些输出是以与发射功率控制器328之输出相同频率且在相同的射束中发射到其它用户终端124、126的信号。求和器336的输出提供给模拟发射机338用于数模转换,转换成适当的RF载频,进一步放大并输出到一个或多个向用户终端124、126辐射的天线340。根据系统的复杂性和结构,天线310和340可以是同一天线。
至少一个网关控制处理器320耦合到接收机模块324、发射模块334、和基带电路322;这些单元彼此间可以是物理分离的。控制处理器320提供指令并控制信号,以有效地执行功能,例如但不限于信号处理、定时信号产生、功率控制、越区切换控制、分集组合、和系统接合。此外控制处理器320配置PN扩展码,正交码序列,和用户通信中所用的特定发射机和接收机。
控制处理器320还控制导频、同步、和寻呼信道信号的产生和功率以及它们到发射功率控制器328的耦合。导频信道是不用数据调制的简单信号,并可以使用重复不变的图形或不变的帧结构类型(图形)或音调类型,作为发射调制器326的输入。也就是用于形成导频信号信道的正交函数、Walsh码一般为恒定值,例如全为1或0,或者是熟知的重复图形,例如交替的1和0的结构图形。这有效地导致了只发射PN产生器332应用的PN扩展码。
虽然控制处理器320可以直接耦合到如发射模块324或接收模块334的模块中的单元,但是每个模块一般都包括控制该模块中单元的特定模块处理器,如发射处理器330或接收处理器321。因此,如图3所示,在较佳实施例中,控制处理器320耦合到发射处理器330和接收处理器321。用这种方式,单个的控制处理器320可以更有效地控制大量模块和资源的工作。发射处理器330控制导频、同步、寻呼信号、话务信道信号、和任何其它信道信号产生和信号功率,以及它们分别耦合到功率控制器328。接收机处理器321控制搜索、用于解调的PN扩展码、和监控接收功率。
对于某些运作,如共享资源功率控制,网关120和122接收信息,如接收信号强度、频率测量值、或来自用户终端通信信号中的其它接收信号参数。该信息可以由接收处理器321从数据接收机316的解调输出中导出。另一种方案是,当在控制处理器320或接收处理器321监控的信号中的预定位置处出现时,可以检测到该信息,并将该信息传送到控制处理器320。控制处理器320使用该信息控制信号的定时和频率,并使用发射功率控制器328和模拟发射机338发射和处理该信号。
V.卫星射束图形一般,来自卫星116和118的射束以预定射束图形覆盖不同的地理区域。对相关领域中具有一般技能的技术人员显而易见的是,卫星射束例如由相控阵射束形成天线形成。图4显示了典型的卫星射束图形,亦所谓照射区域。如图4中所示,典型的卫星照射区域400包括十六个射束401-416。尤其,卫星照射区域400包括内部射束(射束401)、中间射束(射束402-407)、和外部射束(射束408-416)。每个射束401-416覆盖特定的地理区域,虽然通常有一些射束重叠。这些特定的地理区域可以横跨几百英里。此外,不同频率的射束、也称为FDM信道,CDM或CDMA信道、或“子射束”可以被定向以覆盖相同的区域。根据通信系统的设计和提供服务的类型,以及是否获得空间分集,多个卫星的射束覆盖或服务区域可以被设计成在特定区域中完全或部分重叠。
在本发明的较佳实施例中,不同的射束图形用于前向和反向通信链路。1996年9月30日提交的现已授权的美国专利申请序号08/723,723,题为“Ambiguity Resolution For Ambiguous Position Solutions Using SatelliteBeams”的申请中说明了典型的另一前向和反向链路射束图形的实例,通过参考结合于此。然而,不脱离本发明的精神和范围,前向和反向通信链路的射束图形可以相同。
VI.本发明的较佳实施例以下详细讨论本发明的较佳实施例。虽然讨论了特定的步骤、结构和配置,但是这应该被理解为只是为了说明的目的。相关领域中熟练的技术人员将理解不脱离本发明的精神和范围,还可以应用其它步骤、结构和配置。本发明能够较佳地用于各种无线信息和通信系统中,包括那些用于位置确定的系统。
如上所述,需要一种系统或装置和方法用于减小用于寻呼用户终端或类似装置的寻呼信道数量。寻呼信道可用于将信息发送到不在通信会话中的用户终端。例如,网关122通常在前向链路160、162上使用寻呼信道,以建立通信链路,告诉用户终端124有呼叫进入、答复试图接入系统的用户终端,以及登录用户终端124。在较佳实施例中,寻呼信道可用于将位置更新请求消息从网关122发送到用户终端124。
这里参考图5A、5B、6A和6B描述了本发明中减小用于寻呼用户终端的寻呼信道数量的方法和系统。图5A显示了在t2时刻卫星116和530的射束覆盖区域。在较佳实施例中,卫星116和530按预定的时刻表基础移动,并在不同时间点上照射地球表面的不同区域。尤其,在较佳实施例中,卫星116和530是多卫星系统中的两个卫星,在该系统中卫星沿轨道飞行,使得它们相对于地球表面上的点不是固定的。本发明还可用于同步卫星通信系统中,在该系统中卫星可以长期覆盖实质相同的地理区域。
假设在t1时刻网关与用户终端124通信,因此知道t1时刻用户终端124的位置。以下将更详细地讨论网关122如何确定用户终端124在t1时刻的位置。现在,假设网关122在t2时刻需要寻呼用户终端124,其中t2时刻在时间上晚于t1时刻。寻呼的目的可以是上述的任何用途,包括通知用户终端124有呼叫进入或请求用户终端124的位置更新。如上所述,在传统卫星通信系统中,因为网关122不知道用户终端124在t2时刻的位置,所有它可以通过在多个、所有可能的寻呼信道上发送寻呼,以进行扩散式寻呼。也就是说,根据所知的用户终端正监听哪个FDMA信道,在所有卫星(服务于用户终端)所有射束上的特定频率、信道上发射寻呼。本发明通过利用知道用户终端124在先前时间点t1时刻位置的网关122,避免了这种扩散式寻呼。在更详细地讨论本发明之前,以下是网关122如何确定用户终端124在t1时刻位置的概述。
网关122可以用多种方法确定用户终端124在t1时刻的位置。例如,网关122可以根据用户终端124发送到网关122的信息,计算用户终端124在t1时刻的位置。例如当用户终端124登录网关122、用户终端122试图启动呼叫,等等的时候,该信息可以从用户终端124发送到网关122。1992年6月30日公开的美国专利号5,126,748题为“Dual Satellite Navigation System AndMethod”的申请中,1998年6月23日提交的美国专利申请号08/732,725题为“Unambiguous Position Determination Using Two Low-Earth OrbitSatellites”的申请中,1996年9月30日提交的美国专利申请号08/732,722题为“Passive Position Determination Using Two Low-Earth OrbitSatellites”的申请中,和1996年9月30日提交的美国专利申请号08/723,751题为“Position Determination Using One Low-Earth Orbit Satellite”的申请中揭示了可用于确定用户终端位置的系统和方法的实例,以上每个申请都转让给了本发明的受让人,并通过参考结合于此。这些专利和申请讨论了使用诸如发射到和来自用户终端的通信信号特征和卫星的已知位置和速度的信息,确定用户终端的位置。要注意到这里使用的术语“位置”和“方位”是可以交换的。
此外,用户终端124向网关122提供了它在t1时刻的位置。用户终端124使用可用的方法确定其在t1时刻的位置。在一个实施例中,用户终端124包括本领域中所熟知的全球定位卫星(GPS)接收机。使用GPS接收机,用户终端124可以确定并发送其位置到网关122。用户终端124还使用任何其它系统或方法,如传统的LORAN-C系统,确定其位置。用户终端124可以将位置信息发送到网关122,作为接入信道上嵌入其它信号中的接入试探,或作为分离信号。在较佳实施例中,用户终端124在确认接收到寻呼的同一接入试探中发送位置信息。本发明以下特征的建立不考虑网关122如何知道用户终端124在t1时刻的位置。
再次参考图5A,照射区域400和500分别显示了在t2时刻卫星116和530的射束覆盖区域。如上所述,照射区域400包括十六个射束401-416,照射区域500包括十六个射束501-516。为了清楚起见,与照射区域400重叠的照射区域500的部分用虚线表示。位置520(表示为“X”)是用户终端124在t1时刻的位置。如上所述,网关122已经知道位置t1。
如图5A所示,在t2时刻位置520在射束406(卫星116的)和射束511(卫星530的)的射束覆盖区域中。通过只显示射束406、511和503,图5B使显示更清晰。如果卫星116和530是同步卫星,那么在t1和t2时刻照射区域400和500的覆盖实质上是相同的。然而,如上所述如果卫星116和530是非同步卫星,那么在t1时刻照射区域400和500的覆盖与图5A和5B中所示的是不同的。此外,根据t1时刻和t2时刻之间的时间,卫星116(照射区域400)和卫星530(照射区域500)的射束覆盖区域在t1时刻可能没有重叠位置520。
本发明利用知道用户终端124在先前时间点位置的网关122。尤其,通过已知用户终端124在t1时刻的位置520,并通过假设用户终端124在t1和t2之间的时间段内只行进有限的距离,网关122可以假设在t2时刻哪个射束覆盖用户终端124。例如,如果t1时刻在t2时刻之前一小时,那可以假设用户终端124从它在t1时刻的位置起向任何方向的行进不会超过80英里。也就是说,网关122可以根据调用到的用户终端124在t1时刻的位置,假设t2时刻用户终端在某一区域内。使用这种假设,网关122可以假设在t2时刻哪个射束覆盖用户终端124。假设在t2时刻覆盖用户终端124的射束在这里被称为第一射束组,表示为g1。如上所述,本发明指出了在单个射束的单个信道上寻呼用户终端124的系统和方法。尤其,一旦网关122确定了第一射束组,然后网关就确定第一射束组中的最强射束。然后网关122可以在最强射束的寻呼信道上将寻呼发送到用户终端124。
从用户终端124的观点来看,在射束信道上发送的接收信号的实际强度可以根据用户终端124的位置(在网关122接收用户终端124所在的区域中)而变化。此外,在信号从网关122向用户终端124的发射期间,各种环境因素会减小信号功率。因此,网关122(或与网关122通信的设备)确定的所谓“最强射束”实际上是相对于特定位置或区域(例如,用户终端124的调用位置)理论上的最强射束。例如,理论上相对于位置520的最强射束是网关122确定的最有可能向位置520处的用户终端提供最强信号的射束。
在一个实施例中,网关122在“理论最强”射束的寻呼信道上发送寻呼。如果射束包括多个寻呼信道,网关122可以根据用户终端124的唯一标识号确定使用哪个寻呼信道,如相关领域中所熟知的。
在一个实施例中,用户终端124确定覆盖用户终端124的射束中“实际最强”射束。用户终端124可以通过例如测量在不同射束信道上接收到信号的信号强度,而实现上述操作。然后用户终端124监控实际最强射束的信道。在一个实施例中,用户终端124监控实际最强射束的寻呼信道,如以下图7B描述中所述的。如果网关122确定的“理论最强”射束与用户终端确定的“实际最强”射束相同,那么用户终端124在t2时刻理论最强射束的寻呼信道上接收网关122发送的寻呼。这是因为用户终端124将监控网关122用于发送寻呼的射束信道。然而,如果网关122确定的理论最强射束与用户终端124确定的实际最强射束不同,那么用户终端将不接收t2时刻发送的寻呼。
为了增加理论最强射束和实际最强射束是相同射束的概率,如果必要网关122可以等待,直到一个射束的理论功率比覆盖网关122假设用户终端124所在区域中的任何其它射束高至少预定功率值,才发送寻呼。以下参考图7A和8中的流程图描述本发明中该特征的更特殊细节。
在另一实施例中,网关122和用户终端124每个都独立确定理论最强射束。用户终端124连续监控理论最强射束的寻呼信道,该最强射束可以随时间变化。如果用户终端124和网关122使用同样的算法和同样的变量(输入算法的值),那用户终端124可以接收网关122发送的寻呼。然而,如果用户终端124和网关122使用同样的算法,不同的变量,那用户终端124和网关122可能确定或选择不同的理论最强射束。当用户终端124和网关122使用同样的算法,但不同的变量时,本发明的特征增加了用户终端124和网关122确定相同理论最强射束的概率。以下参考图9和10中的流程图描述本发明这些
A.用户终端监控实际最强射束的信道图7A和7B提供了本发明一个实施例的高层描述。为了示范,参考图5A、5B、6A和6B描述图7A和7B的方法。图5A和5B分别表示在t2时刻卫星116和530照射区域。图6A和6B分别表示在t3时刻相同的照射区域,其中t3在时间上晚于t2。网关122或与网关122通信的设备执行图7A的步骤。用户终端124执行图7B的步骤。
尤其,在本发明的实施例中用户终端124执行图7B的步骤,其中用户终端监控实际最强射束的信道。在步骤724中,用户终端124确定相对于当前位置的实际最强射束。用户终端124可以通过测量在覆盖用户终端124的各种射束信道上接收到信号的信号强度,执行该操作。在步骤726中,用户终端124监控步骤724中确定的实际最强射束的信道。用户终端124连续执行这些步骤,使得它一般监控相对于其当前位置实际最强射束的信道。
参考图7A,网关122(与网关122通信的设备)执行的第一个步骤,步骤704,是调用用户终端124在t1时刻的位置。这可以通过在储存在一个或多个存储单元或电路中的表格、列表、或数据库中执行查找而实现,存储单元和电路用于存储用户终端在不同时间点的位置信息。用户终端124在t1时刻的位置在这里被称为调用位置520。可以使用包括上述方法的任何方法确定调用位置520。
在步骤706中,使用卫星星座的知识,包括卫星在不同时间点的射束覆盖区域,确定在t2时刻哪个射束覆盖调用位置520。在t2时刻覆盖调用位置520的射束在这里可称为第一射束组,表示为g1。如上所述,如果卫星星座是同步的,那么在t1时刻覆盖调用位置520的相同射束在t2时刻也将覆盖调用位置520。如果卫星星座是非同步的,那么与t1时刻相比,在t2时刻可能是不同的射束覆盖调用位置520(除非t2时刻和t1时刻之间的间隔很短,例如几秒中,或者只要允许卫星完成轨道的遍历)。
第一射束组可以包括一个射束或多个射束。此外,第一射束组可以由同一卫星或多个卫星产生。例如,如果调用位置520位于同一卫星产生的两个射束的边缘,第一射束组可以包括同一卫星的两个射束。此外,如果不同卫星的覆盖区域重叠,如图5A和5B中所示,那第一射束组可以包括不同卫星产生的射束。对于图5A和5B中的实例,第一射束组包括射束406(卫星116产生的)和射束511(卫星530产生的)。
在步骤708中,一旦确定在t2时刻哪个射束覆盖调用位置520(也就是确定第一射束组),网关就确定第一射束组中的最强射束。
在一个实施例中,确定的最强射束是在t2时刻相对于调用位置520理论上具有最高功率的射束。图5B显示了射束406和511的理论相对功率。可以看出射束的信号功率在射束中心处最强,在射束边缘处最弱。通常,在每个射束边缘处的信号功率比每个射束中心处的功率小大约3dB(半功率)。参考图5B,射束406是第一射束组中相对于调用位置520的理论最强射束。尤其,相对于位置520,射束406的理论功率比射束511高2.5dB(-2.0dB与-4.5dB之间的差)。
然后可以在步骤708确定的最强射束的信道上发送寻呼。然而,如果最强射束例如只比下一最强射束高2dB,那就有相当大的可能性用户终端124(它监控在当前位置的实际最强射束)不监控步骤708中确定的理论最强射束的信道。这是因为相对于用户终端124在t2时刻的实际位置,另一射束可能具有比理论最强射束高的功率。当从多个卫星中查找射束时,各种可能在信号从网关122到用户终端124的发射期间减小信号功率的环境因素可能使卫星对于特定位置的“理论最强”射束和该位置接收到的(来自其它卫星)“实际最强”射束不同。本发明包括附加的特征以增加网关122在用户终端124监控的信道上发送寻呼的概率。尤其,在步骤710中,确定步骤708中确定的最强射束的功率在理论上是否比阈值高至少预定功率值,该阈值一般设置为相对于调用位置520第一射束组中每个其它射束的功率。可以通过相对于调用位置520,为第一射束组中的每个射束确定理论功率,以实现该步骤。
假设确定功率值的该阈值例如为3dB。也就是说,如果步骤708中确定的最强射束在理论上比第一射束组中每个其它射束的理论功率高至少3dB,那么用户终端124监听步骤708中确定的理论最强射束的概率就很高。因此,如果步骤710的回答为是,那么在步骤712中在步骤708中确定的最强射束的寻呼信道上将寻呼从网关122发送到用户终端124。
如上所述,最强射束406的信号强度或功率相对于t2时刻的调用位置520在理论上只比射束511强2.5dB。因此,对于该实例步骤710中获得的回答为否。
如果步骤710的回答为否,那么在步骤714中确定t3时刻。t3时刻是又一时间点(在时间上晚于t2),这时覆盖调用位置520的一个射束的功率理论上比任何其它覆盖调用位置520的射束高至少预定功率值(对于该实例为3dB)。在一个实施例中,该射束选自包括步骤708中确定的最强射束的第一射束组。在另一实施例中,该射束选自通信系统100中所有卫星产生的总数为‘m’的射束中的任何射束。通过等待,直到一个射束的功率在理论上比覆盖调用位置的每个其它射束高预定功率值,以增加发送寻呼时用户终端124实际监控一个射束的信道的概率。
在网关122处或与网关122通信的其它一些设备处,如通信系统100的一个或多个中央指令或控制中心,可以确定t3时刻。使用卫星星座的知识,包括在不同时间点卫星射束的覆盖区域,可以确定t3时刻。例如通过设置t3-t2=t2-t1,可以确定t3时刻。如果在该时间点寻呼失败了,那可以类似地确定t4时刻,等等。
如果发射射束的卫星相对于地球表面的点是不固定的,那射束的覆盖区域随时间变化。如上所述,图6A和6B显示了在又一时间点t3时刻卫星118(照射区域400)和卫星530(照射区域500)所发射射束的覆盖区域。当图6A、6B与图5A、5B比较时,可以看出照射区域400和500相对于彼此并相对于调用位置520移动。图6A和6B显示了在t3时刻仍然只有射束406和511覆盖调用位置520。然而,可以看出在t3时刻调用位置520更接近于射束406的中心,并更接近于射束511的边缘。尤其,参考图6B,在t3时刻相对于调用位置520射束404的强度在理论上比射束511高6dB(0dB和-6dB之间的差)。因此,在t3时刻射束406的功率在理论上比覆盖调用位置520的任何其它射束高至少预定功率值(在该实例中为3dB)。因此如果网关122等到t3时刻才通信射束406的信道发送寻呼,那就增加了用户终端124实际监控射束406的信道的概率。
因此,在步骤716中,网关122等到t3时刻才在一个射束的寻呼信道上将寻呼发送到用户终端124,其中确定该射束的功率或信号强度在理论上比覆盖调用位置520的任何其它射束高至少预定值。对于图5A、5B、6A和6B的实例,网关122在t3时刻在射束406的信道上发送寻呼。
要注意到从网关122向用户终端124发送寻呼的步骤(步骤712和716)不包括用户终端124接收寻呼的步骤。此外,步骤712和716并不意味着用户终端124肯定位于能接收到寻呼的地理区域中(也就是说,寻呼信号可能在用户终端的范围外)。步骤712和716中所发生的是网关122在网关122假设用户终端124正监控的射束信道上发送寻呼。因此网关122不知道用户终端124是否接收到寻呼,直到用户终端向网关122发送消息确认接收到寻呼。
还要注意到不脱离本发明的精神和范围,预定功率值的阈值可以是3dB以外的值。
参考图8描述图7A方法的另外和更多的详细步骤。如以上所提到的,第一相对于包围调用位置520的区域确定第一射束组,而非只相对于调用位置520。步骤805和806中说明了该点,它详述了如何确定第一射束组(g1)。以下参考图5A、5B、6A和6B描述图8的方法。
第一步骤804调用用户终端124在t1时刻的位置。这与步骤704相同。
步骤805和806详述了在步骤706中如何确定第一射束组(g1)。在步骤805中,根据调用位置520确定区域522。该区域522表示用户终端124在t2时刻可能位于其中的地理区域。区域522可以具有从调用位置520开始定义的半径524。半径524可以是固定的预定值,如100英里。另一种情况是半径524可以是t1时刻和t2时刻间时间间隔的函数。定义半径524的典型算法是R=(t2-t1)×D其中R是半径524;t2-t1是从用户终端124位于第一位置520起的时间间隔(小时);和D是假设用户终端124在一个小时内能够行进的最大距离(例如以每小时60英里的速度)。
使用该典型的算法,如果t1时刻和t2时刻之间的时间间隔是2个小时,假设D为每小时60英里,那么R就是120英里。当然,D可以是另外的预定值,或者可以根据每个用户终端而不同,如本领域熟练的技术人员所能理解的。
确定了区域522之后,在步骤806中选择或确定在t2时刻具有覆盖区域覆盖区域522中所有位置的射束。如上所述,这使用卫星星座的知识确定,包括在不同时间点卫星的射束覆盖区域。这些射束可以被称为第一射束组(g1)。第一射束组表示可用于在区域522中的任何位置寻呼用户终端124的那些射束。对于图5A和5B的实例,对于射束组只包括射束406。即使射束503和511也覆盖调用位置520,但它们不覆盖区域522中的所有位置。如上所述,区域522表示用户终端124在t2可能位于其中的地理区域。位置526和528是区域522中位置的两个非确定编号。如从图5B中所见的,只有射束406覆盖位置526和528。相反,射束511和503每个只覆盖两个位置526和528中的一个(也就是射束511只覆盖位置526,射束503只覆盖位置528)。因此,如果射束511的信道用于寻呼用户终端124,那如果用户终端124位于位置528,它将接收不到寻呼。
一旦确定了第一射束组,在步骤808中网关122确定第一射束组中的最强射束。在一个实施例中,确定的最强射束是在t2时刻相对于区域522中的大部分位置理论上具有最高功率的射束。图5B显示了射束406、503和511的理论相对功率。参考图5B,在t2时刻相对于区域522中的大部分位置(实际上是所有位置)射束406具有最高的功率。
在步骤809中,确定第二射束组(g2)。该第二射束组包括所有覆盖区域覆盖区域522中“任何位置”的射束。换句话说,第二射束组包括具有覆盖区域覆盖(或相交)区域522中至少一部分的任何射束。该射束组表示如果用户终端124实际位于区域522中(如假设的一样)那用户终端124可以监控的那些射束。参考图5A和5B,第二射束组包括射束406、503和511。
在步骤810中,确定步骤808中确定的最强射束的功率相对于区域522中的所有位置是否比第二射束组中的每个其它射束高至少预定功率值。可以通过相对于区域522中的所有位置为第二射束组中的每个射束确定理论功率,以实现该步骤。
再次假设预定功率值为3或4dB。如果步骤808中确定的最强射束相对于区域522中的所有位置在理论上比第二射束组中每个其它射束的功率强至少3dB,那么用户终端124正监控步骤808中确定的射束的概率就很高。因此,如果步骤810的回答为是,那么在步骤812中在步骤808中确定的最强射束的寻呼信道上将寻呼从网关122发送到用户终端124。
对于图5B中显示的实例,最强射束406相对于区域522中的每个位置在理论上没有比射束503和511强至少3dB。例如,在位置526处,t2时刻射束406在理论上只比射束511强2dB(-4dB和-2dB之间的差)。因此,对于该实例步骤810中的回答为否。
要注意到不脱离本发明的精神和范围,本发明方法的步骤可以用不同的次序和/或组合执行。例如步骤808和810可以组合成一个步骤。也就是说,不必特别确定第一射束组中的理论最强射束,而确定步骤806确定的第一射束组和步骤809确定的第二射束组(g2)。然后,在步骤808和810的组合步骤中,确定t2时刻第一射束组中单个射束的功率在区域522中所有位置处是否在理论上都比第二射束组中的任何其它射束高至少预定功率值。如果存在该单个射束,那么在步骤812中该单个(最强)射束用于寻呼用户终端124。
如果步骤810的回答为否,那么在步骤814中确定t3时刻。t3时刻在时间上晚于t2时刻,这时覆盖区域522中所有位置的一个射束的功率在区域522中所有位置处在理论上都比任何其它射束高至少预定功率值(例如,3dB)。步骤814类似于上述步骤714,除了确定射束的理论功率在区域522中所有位置处而非只在调用位置520处高至少预定功率值。特别参考图6B,可以看出在确定的t3时刻相对于区域522中的所有位置射束406比射束511强至少3dB。
要注意到如果时刻t2和t3之间的差很大,那么假设用户终端124位于其中的区域522可能增大。也就是说,假设随着时间的过去,用户终端可以移动得离先前已知的位置更远。因此,在本发明的一个实施例中,区域522的大小随着t2和t3之间的时间间隔而增加。
接着,在步骤816中,在t3时刻在一个射束(步骤814中确定的)的寻呼信道上将寻呼从网关122发送到的用户终端124。在一个实施例中,该射束选自包括步骤808中确定的最强射束的第一射束组。在另一实施例中,该射束选自通信系统100中所有卫星产生的总数为“m”射束中的任何射束。通过等待直到一个射束的功率在区域522中的所有位置处在理论上比覆盖区域522中任何位置的任何其它射束高预定功率值,那就增加了发送寻呼时用户终端124(不考虑它在区域522中的位置)实际监控该射束的寻呼信道的概率。
在一个实施例中,在图8所述的方法中,用户终端124执行与上述图7B描述中相同的步骤。也就是说,用户终端124连续监控相对于其当前位置实际最强射束的信道。如果用户终端124实际上位于区域522中(在步骤805中由网关122确定),那么用户终端124应该正监控与步骤812或步骤814中网关122用于发送寻呼的相同射束的信道。
在以上实施例中,如果处理延伸的时间间隔变得过分或不能接收地长,例如t3(或随后的时间)也失败了,那么寻呼可以恢复或变成使用扩散型寻呼或在至少几组多个信道(射束)上进行寻呼,以确保到达UT。因此,单个或减少数量的信道寻呼可用于在大部分时间到达大部分UT或与之建立链路,而多射束寻呼只在小部分时间使用,以显著地减少寻呼中能量或容量的浪费。
B.用户终端监控理论最强射束的寻呼信道假设t2时刻用户终端124在三个射束的覆盖区域中。在本发明的上述实施例中,用户终端124监控用户终端124确定实际提供最强信号功率的射束的信道(如寻呼信道)。网关122通过相对于地球表面位置确定射束的理论功率以猜测用户终端124正监控哪个信道。
在本发明的另一实施例中,用户终端124实质上执行与网关122所执行的相同的算法。也就是使用卫星星座的知识,包括在不同时间点卫星的射束覆盖区域,用户终端124可以确定哪个射束在t2时刻覆盖其当前位置(或调用位置520)。用户终端124可以通过监控时常广播这种信息的信道以接收关于卫星星座的信息。在另一些实施例中,用户终端124监控理论最强射束的信道,而非实际最强射束的(这不是说理论最强射束必须与实际最强射束不同)。用这种方式,如果网关122和用户终端124确定同一射束在理论上具有最高功率,那么用户终端124将接收网关122发送的寻呼。这不考虑哪个射束是相对于用户终端124当前位置的实际最强射束。在应该实施例中,用户终端124可以确定相对于其当前位置的理论最强射束。另一种情况是如果用户终端124保留其最后与网关122通信的轨迹,那么用户终端124可以确定相对于调用位置的理论最强射束。
图9和10提供了本发明另一实施例的高层描述。尤其,图9和10包括能够代替图7B中步骤的用户终端124执行的步骤。对于图7B中的步骤是真的,用户终端124可以用图7A中所述的方法或图8中所述的方法同时执行图9和10中的步骤。
首先参考图9,在步骤904中用户终端124确定相对于其当前位置理论上具有最高功率的射束。在步骤906中,用户终端124监控步骤904中确定的理论上最强射束的信道。用户终端124连续执行执行步骤,使得它总是监控相对于其当前位置理论上最强射束的信道。如果用户终端位于步骤805中网关确定的区域522中,那么用户终端124应该监控与步骤812或814中网关122用于发送寻呼的相同射束的寻呼信道。
参考图10,在步骤1004中,用户终端124确定相对于调用位置的理论最强射束。在应该实施例中,调用位置是用户终端124与网关122最后通信时它所在的位置。在图5A和5B的实例中,如果t1时刻用户终端124最后与网关122通信,那么调用位置是位置520。在步骤1006中,用户终端124监控步骤1004中确定的理论最强射束的信道。
在每个上述的实施例中,如果用户终端124接收到寻呼,它就发送确认消息到网关122表示它已接收到寻呼。在较佳实施例中,用户终端124在接入信道上将该确认消息作为接入信号或接入试探发送,该接入信道与用户终端124接收寻呼的寻呼信道关联。
如上所述,网关122可以根据确认消息的特征和/或确认消息中包括信息计算用户终端124的位置。一旦网关122确认了用户终端124的位置,就可以更新包括不同时间点用户终端位置的信息表格或数据库。此外,位置信息可以被发送到另一设备,如卡车调度设备或中央系统控制器。
当然还可以为了请求位置更新之外的理由发送寻呼,例如通知用户终端124正进入语音呼叫。如果是这种情况,一旦网关122接收到来自用户终端124的确认,网关就可以发送指示用户终端124切换成特定的话务信道以接收语音呼叫或其它通信的附加寻呼。相关领域熟练的技术人员能够理解不脱离本发明的精神和范围寻呼还可用于其它目的。
本发明与传统扩散式寻呼技术相比可以将用于寻呼用户终端的寻呼信道数量减小一个数量级或更多。传统卫星通信系统通常在大约三十个寻呼信道上寻呼用户终端。本发明可以使用单个信道寻呼用户终端。此外,与结合于此的“Apparatus And Method For Paging”中所揭示寻呼的先前改进相比,该技术还可以将使用的寻呼信道数进一步减小大约2或3倍。
提供了较佳实施例的以上描述,使本领域熟练的技术人员能够制造或使用本发明。虽然参考本发明的较佳实施例具体显示并描述了本发明,但是本领域熟练的技术人员应该了解不脱离本发明的精神和范围可以进行形式和细节上的各种变化。
权利要求
1.在卫星通信系统中将寻呼发送到用户终端(UT)的方法,该系统中具有至少一个网关和一个或多个卫星,其中每个卫星产生多个射束,每个射束包括多个信道,卫星产生总数为m的射束,其特征在于,该方法包括以下步骤(a)调用UT的位置,该位置对应于UT在t1时刻的已知位置,;(b)确定t2时刻覆盖UT的所述调用位置的射束组(g1),其中g1<n且t2>t1;(c)确定t2时刻所述射束组(g1)中的最强射束;和(d)在所述最强射束的信道上将寻呼从网关发送到UT。
2.如权利要求1所述的方法,其特征在于,步骤(c)包括确定在t2时刻所述射束组(g1)中的哪个射束相对于所述调用位置在理论上具有最高功率。
3.如权利要求2所述的方法,其特征在于,只有当所述最强射束的功率相对于所述调用位置在理论上比所述射束组(g1)中的每个其它射束高至少预定值时,才执行步骤(d)。
4.如权利要求3所述的方法,其特征在于,还包括步骤(e)确定t3时刻,其中t3>t2,这时覆盖所述调用位置的一个射束的功率在理论上比覆盖所述调用位置的任何其它射束高至少所述的预定功率值;和(f)在t3时刻在所述一个射束的信道上发送寻呼;其中只有当t2时刻所述最强射束的功率在理论上不比所述射束组(g1)中的任何其它射束高至少所述预定功率值时,才执行步骤(e)和(f)。
5.如权利要求4所述的方法,其特征在于,所述一个射束选自包括所述最强射束的所述射束组(g1)。
6.如权利要求4所述的方法,其特征在于,所述一个射束选自一个或多个卫星产生的总数为m的射束中的任何射束。
7.如权利要求1所述的方法,其特征在于,所述最强射束的所述信道包括寻呼信道。
8.如权利要求1所述的方法,其特征在于,步骤(b)包括根据所述调用位置,确定假设UT在t2时刻位于其中的区域;和确定所述总数为m的射束中哪个的覆盖区域覆盖所述区域中的所有位置。
9.如权利要求8所述的方法,其特征在于,所述区域具有从所述调用位置开始定义的半径,其中步骤(b)还包括确定t1时刻和t2时刻之间的时间间隔;和确定所述的定义半径为所述时间间隔的函数。
10.如权利要求8所述的方法,其特征在于,步骤(c)包括确定在t2时刻所述射束组中的哪个射束相对于所述区域中的大部分位置在理论上具有最高的功率。
11.如权利要求8所述的方法,其特征在于,步骤(c)还包括确定第二射束组(g2),其中g2<m,所述第二射束组(g2)包括具有的覆盖区域覆盖所述区域中任何位置的所有射束;和确定在所述区域中的所有位置处所述最强射束的功率是否在理论上比所述第二射束组(g2)中的任何其它射束高至少预定功率值。
12.如权利要求11所述的方法,其特征在于,只有当在所述区域中的所有位置处所述射束组(g1)中单个射束的功率在理论上比所述第二射束组(g2)中任何其它射束高至少所述预定功率值时,才执行步骤(d)。
13.如权利要求12所述的方法,其特征在于,还包括以下步骤(e)确定t3时刻,其中t3>t2,这时在所述区域中的所有位置处覆盖所述区域中所有位置的一个射束的功率在理论上比覆盖所述区域中任何位置的任何其它射束高至少所述的预定功率值;和(f)在t3时刻在所述一个射束的信道上发送寻呼;其中只有当t2时刻在所述区域中的所有位置处所述最强射束的功率在理论上不比所述第二射束组(g2)中的任何其它射束高至少所述预定功率值时,才执行步骤(e)和(f)。
14.如权利要求13所述的方法,其特征在于,所述一个射束选自包括所述最强射束的所述射束组(g1)。
15.如权利要求14所述的方法,其特征在于,所述一个射束选自一个或多个卫星产生的总数为m的射束中的任何射束。
16.如权利要求13所述的方法,其特征在于,所述一个射束的所述信道包括寻呼信道。
17.如权利要求1所述的方法,其特征在于,步骤(a)到(d)由网关或与网关通信的设备执行,以下步骤由UT执行连续测量覆盖UT的m个射束中每个的强度,其中覆盖UT的射束可以随时间变化,其中每个射束的所述强度也可以随时间变化;连续确定覆盖UT的射束中的实际最强射束,其中所述实际最强射束可以随时间变化;和连续监控所述实际最强射束的信道。
18.如权利要求13所述的方法,其特征在于,步骤(a)到(f)由网关或与网关通信的设备执行,以下步骤由UT执行连续测量覆盖UT的m个射束中每个的强度,其中覆盖UT的射束可以随时间变化,其中每个射束的所述强度也可以随时间变化;连续确定覆盖UT的射束中的实际最强射束,其中所述实际最强射束可以随时间变化;和连续监控所述实际最强射束的信道。
19.如权利要求1所述的方法,其特征在于,步骤(a)到(d)由网关或与网关通信的设备执行,以下步骤由UT执行连续确定用户终端的当前位置,其中所述当前位置可以随时间变化;根据所述当前位置,连续确定理论最强射束,其中所述理论最强射束可以随时间变化;和连续监控所述理论最强射束的信道。
20.如权利要求13所述的方法,其特征在于,步骤(a)到(f)由网关或与网关通信的设备执行,以下步骤由UT执行连续确定用户终端的当前位置,其中所述当前位置可以随时间变化;根据所述当前位置,连续确定理论最强射束,其中所述理论最强射束可以随时间变化;和连续监控所述理论最强射束的信道。
21.如权利要求1所述的方法,其特征在于,步骤(a)到(d)由网关或与网关通信的设备执行,以下步骤由用户终端在t2时刻执行调用UT在t1时刻的位置;根据所述调用位置,确定理论最强射束;和监控t2时刻所述理论最强射束的信道。
22.在卫星通信系统中将寻呼发送到用户终端(UT)的方法,该系统具有一个网关和一个或多个卫星,其中每个卫星产生多个射束,每个射束包括多个信道,一个或多个卫星产生总数为m的射束,其特征在于,该方法包括以下步骤(a)调用UT的位置,所述调用位置对应于UT在t1时刻的已知位置;(b)根据所述调用位置,确定假设UT在t2时刻位于其中的区域;(c)确定t2时刻具有的覆盖区域覆盖所述区域中所有位置的射束组(g1),其中g1<m且t2>t1;(d)确定所述射束组(g1)中的最强射束,在t2时刻所述最强射束相对于所述调用位置在理论上具有最高功率;其中步骤(a)到(d)由网关和UT一同执行;(e)在UT处监听所述最强射束的特定信道;和(f)t2时刻在所述最强射束的所述特定信道上将寻呼从网关发送到UT。
23.如权利要求22所述的方法,其特征在于,所述区域具有从所述调用位置开始定义的半径,其中步骤(b)还包括确定t1时刻和t2时刻之间的时间间隔;和确定所述的定义半径为所述时间间隔的函数。
24.在卫星通信系统中将寻呼发送到用户终端(UT)的系统,所述卫星通信系统具有一个网关和一个或多个卫星,其中每个卫星产生多个射束,每个射束包括多个信道,一个或多个卫星产生总数为m的射束,其特征在于,该系统包括调用UT位置的装置,所述调用位置对应于UT在t1时刻的已知位置;确定t2时刻覆盖UT所述调用位置的射束组(g1)的装置,其中g1<m且t2>t1;确定t2时刻所述射束组(g1)中最强射束的装置;和在所述最强射束的信道上将寻呼从网关发送到UT的装置。
25.如权利要求24所述的系统,其特征在于,所述最强射束是所述射束组(g1)中相对于所述调用位置在理论上具有最高功率的射束。
26.如权利要求25所述的系统,其特征在于,只有当所述最强射束的功率相对于所述调用位置在理论上比所述射束组(g1)中的每个其它射束高至少预定功率值时,在t2时刻所述发送寻呼的装置才发送寻呼。
27.如权利要求26所述的系统,其特征在于,还包括确定t3时刻的装置,其中t3>t2,这时覆盖所述调用位置的一个射束的功率在理论上比覆盖所述调用位置的任何其它射束高至少所述的预定功率值,其中只有当t2时刻所述最强射束的功率在理论上不比所述射束组(g1)中的任何其它射束高至少所述预定功率值时,在t3时刻所述发送寻呼的装置才在所述一个射束的信道上发送寻呼。
28.如权利要求27所述的系统,其特征在于,所述一个射束选自包括所述最强射束的所述射束组(g1)。
29.如权利要求27所述的系统,其特征在于,所述一个射束选自一个或多个卫星产生的总数为m的射束中的任何射束。
30.如权利要求27所述的系统,其特征在于,所述最强射束的所述信道包括寻呼信道。
31.如权利要求24所述的方法,其特征在于,确定所述射束组(g1)的所述装置包括根据所述调用位置,确定假设UT在t2时刻位于其中的区域的装置;和确定所述总数为m的射束中哪个的覆盖区域覆盖所述区域中所有位置的装置。
32.如权利要求31所述的系统,其特征在于,所述区域具有从所述调用位置开始定义的半径,其中所述定义半径是t1时刻和t2时刻之间时间间隔的函数。
33.如权利要求31所述的系统,其特征在于,在t2时刻所述最强射束是所述射束组(g1)中相对于所述区域中的大部分位置在理论上具有最高功率的射束。
34.如权利要求31所述的系统,其特征在于,还包括确定第二射束组(g2)的装置,其中g2<m,所述第二射束组(g2)包括其覆盖区域覆盖所述区域中任何位置的所有射束;和确定在所述区域中的所有位置处所述最强射束的功率是否在理论上比所述第二射束组(g2)中的任何其它射束高至少预定功率值的装置。
35.如权利要求34所述的系统,其特征在于,只有当t2时刻在所述区域中的所有位置处所述最强射束的功率在理论上比所述第二射束组(g2)中任何其它射束高至少所述预定功率值时,在t2时刻发送寻呼的所述装置才发送寻呼。
36.如权利要求35所述的系统,其特征在于,还包括确定t3时刻的装置,其中t3>t2,这时在所述区域中的所有位置处,覆盖所述区域中所有位置的一个射束的功率在理论上比覆盖所述区域中任何位置的任何其它射束高至少所述的预定功率值,其中只有当t2时刻在所述区域中的所有位置处所述最强射束的功率在理论上不比所述第二射束组(g2)中的任何其它射束高至少所述预定功率值时,在t3时刻发送寻呼的所述装置才在所述一个射束的信道上发送寻呼。
37.如权利要求36所述的系统,其特征在于,所述一个射束选自包括所述最强射束的所述射束组(g1)。
38.如权利要求36所述的系统,其特征在于,所述一个射束选自一个或多个卫星产生的总数为m的射束中的任何射束。
39.如权利要求36所述的方法,其特征在于,所述一个射束的所述信道包括寻呼信道。
40.如权利要求24所述的系统,其特征在于,UT包括连续测量覆盖UT的m个射束中每一个强度的装置,其中覆盖UT的射束可以随时间变化,其中每个射束的所述强度也可以随时间变化;连续确定覆盖UT的射束中实际最强射束的装置,其中所述实际最强射束可以随时间变化;和连续监控所述实际最强射束的信道的装置。
41.如权利要求36所述的系统,其特征在于,UT包括连续测量覆盖UT的m个射束中每一个强度的装置,其中覆盖UT的射束可以随时间变化,其中每个射束的所述强度也可以随时间变化;连续确定覆盖UT的射束中实际最强射束的装置,其中所述实际最强射束可以随时间变化;和连续监控所述实际最强射束的信道的装置。
42.如权利要求24所述的系统,其特征在于,UT包括连续确定用户终端当前位置的装置,其中所述当前位置可以随时间变化;根据所述当前位置,连续确定理论最强射束的装置,其中所述理论最强射束可以随时间变化;和连续监控所述理论最强射束的信道的装置。
43.如权利要求36所述的系统,其特征在于,UT包括连续确定用户终端的当前位置的装置,其中所述当前位置可以随时间变化;根据所述当前位置,连续确定理论最强射束的装置,其中所述理论最强射束可以随时间变化;和连续监控所述理论最强射束的信道的装置。
44.如权利要求24所述的系统,其特征在于,UT包括调用UT先前位置的装置;根据所述调用位置,确定理论最强射束的装置;和监控所述理论最强射束的信道的装置。
全文摘要
本发明涉及在卫星通信系统中寻呼用户终端(UT)(124、126)的方法和装置,该卫星通信系统具有至少一个网关(120、122)和一个或多个卫星(116、118),其中每个卫星产生多个射束(401-416,501-516),每个射束包括多个信道,其中一个或多个卫星(116、118)产生总数为m的射束。本发明方法包括调用UT的位置的步骤(704),该位置对应于UT在t1时刻的已知位置。该方法还包括确定在t2时刻覆盖UT调用位置的射束组(g1)的步骤(706),其中g1<n,t2>t1。然后确定在t2时刻射束组(g1)中最强的射束(708)。在一个实施例中,通过确定在t2时刻射束组(g1)中哪个射束相对于调用位置在理论上具有最高的功率,以选择最强射束(710)。然后,在最强射束寻呼信道上将寻呼从网关发送到的UT(126、128)。因此,本发明可以使用单个射束的单个信道寻呼用户终端。
文档编号H04B7/185GK1390399SQ00809938
公开日2003年1月8日 申请日期2000年5月3日 优先权日1999年5月4日
发明者L·N·希夫 申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1