在无线通信系统中的自适应信道估计的制作方法

文档序号:7602791阅读:211来源:国知局
专利名称:在无线通信系统中的自适应信道估计的制作方法
技术领域
本发明涉及无线通信系统。具体说,本发明涉及一种用于对无线通信信道的信道情况进行自适应估计的新颖改进方法。
背景技术
在无线电话通信系统中,许多用户在无线信道上进行通信。在无线信道上的通信可以是各种使有限频谱中可有大量用户的多址技术之一。这些多址技术包括时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)。
CDMA技术具有许多优点。在美国专利号4,901,307,名为“Spread SpectrumMultiple Access Communication System Using Satellite Or TerrestrialRepeaters”,1990.2.13公布(已转让给本发明的受让人,并在此引入作为参考)的专利中有对一种示范CDMA系统的描述。在美国专利号5,103,459,名为“SystemAnd Method For Generating Signal Waveforms In A CDMA Cellular TelephoneSystem”,1992.4.7公布(己转让给本发明的受让人,并在此引入作为参考)的专利中有对一种示范CDMA系统的进一步描述。
在上述每个专利中,都揭示了前向链路(基站到移动站)导频信号的使用。在一种典型的CDMA无线通信系统中,例如在EIA/TIA IS-95中所揭示,导频信号是发送恒定零码元的“信标”,并且通过业务承载信号所使用的相同伪噪声(PN)序列进行扩展。导频信号通常用全零Walsh序列覆盖。在初始系统捕获期间,移动站通过搜索PN偏移来定位基站导频信号。一旦它获得导频信号,那么它就能导出稳定相的相位和幅值基准,用于相干解调,例如在美国专利号5,764,687,名为“Mobile Demodulator Architecture For A Spread Spectrum Multiple AccessCommunication System”,1998.6.9公布(已转让给本发明的受让人,并在此引入作为参考)的专利中所描述的那样。
在图1中示出CDMA基站使用的典型已有技术前向链路数据格式化器的功能框图。数据源102可以是,例如可变速率声码器,如在美国专利号5,657,420,名为“Variable Rate Vocoder”,1997.8.8公布(已转让给本发明的受让人,并在此引入作为参考)的专利中所描述声码器。数据源102以数字数据帧形式产生业务信道信息。CRC和尾位生成器104对循环冗余校验(CRC)位和尾位进行计算并附加给由数据源102生成的帧。随后,将帧提供给编码器106,如本领域所熟知,该编码器依据该帧提供前向纠错编码,例如卷积编码。经编码的码元提供给重复生成器120,该生成器对重新排序的码元进行重复来提供合适的调制码元率。随后,将经重复的码元提供给交织器108,该交织器根据预定的交织格式对码元进行重排列。随后,用在业务Walsh覆盖器中的一组正交Walsh序列之一覆盖经重复、交织的码元流,并且在增益单元124中调整增益。应该理解其他的前向链路数据格式化器也为本领域技术人员所熟知。例如,本领域技术人员已熟知重复生成器120可以放置在交织器108之后。
导频信号生成器128产生导频信号,该信号可以是全1序列。随后,用全1的Walsh序列覆盖导频信号,并在组合器136中将导频信号与增益单元124的输出组合。随后,经组合的导频信号以及业务信道数据(可以是+1或-1的序列)在PN扩展器138中使用由PN生成器140所产生的复数PN码进行扩展,并随后由射频发射机142在天线144上发送。在美国申请序列号08/886,604,名为“High RateCDMA Wireless Communication System”(已转让给本发明的受让人,并在此引入作为参考)的申请中有对类似前向链路数据格式化器的揭示。
还存在其他数据格式化技术。例如,在cdma2000的反向链路中,导频信号与功率控制命令进行时分多路复用。另外,在W-CDMA中,前向链路使用与其他信息时分多路复用的专用导频信号。
图2说明了在CDMA移动站中使用的典型已有技术数据解调器的功能框图。接收机202对由图1中发射机42发送的信号进行接收和下变频。使用由PN生成器206所产生的复数PN码在PN去扩展器204中对接收机202的数字基带输出进行去扩展,该复数PN码与由图1中的PN生成器140所产生的复数PN码相同。
随后,使用与图1的业务信道Walsh覆盖器122中相同的Walsh序列在业务信道Walsh去覆盖器208中将经去扩展的信号进行Walsh去覆盖。随后,经Walsh去覆盖的码片在Walsh码片加法器210中累加为Walsh码元,并作为业务信道信号提供给点积电路212。在某些应用中,由于导频滤波器216带来延迟,在Walsh码片加法器210和点积电路212之间导入了附加的延迟元件(未示出)。然而,如果导频滤波器216是随机滤波器,那么这种延迟元件(未示出)就不是必需的。点积电路也称为″共轭点积″电路。它执行下述等效式中某一形式的运作<a,b>=a·b=ab*,其中b*是b的共轭复数。
去扩展的信号也提供给Walsh码片加法器214,在该处它们累加为Walsh码元,并作为导频信道码元提供给导频滤波器216。注意因为导频信道是用图1中Walsh覆盖器134中的全1 Walsh序列进行覆盖,即进行空操作,对应的去覆盖器也是进行空操作。然而,通常情况下,导频信号可以使用任何与覆盖它的Walsh序列相同的序列来进行去覆盖。导频滤波器216用于抑制导频码元中的噪声,提供了点积电路212的基准相位和标量。
点积电路212对与导频滤波器216所生成的导频信道信号同相的业务信道信号分量进行计算,每个码元一次。如在美国专利号5,506,865,名为“Pilot CarrierDot Product Circuit”,1996.4.9公布(已转让给本发明的受让人,并在此引入作为参考)的专利所述,点积对相干解调所需的已接收信号相和标量进行调整。
使用与图1的交织器108所用格式相同的格式在去交织器218中对从点积电路212输出的码元进行去交织。随后,根据图1的编码器106所使用的纠错码在解码器220中对经去交织的码元进行解码。所得的经解码的码元依据质量指示器222逐帧进行分析来确保所述帧经正确解码。如果帧正确解码,那么经解码的帧就进入更进一步的处理。质量指示器222通常将检验帧的CRC部分,但也可以使用其他质量指标例如Yamamoto度量。
典型的导频滤波器是作为等权有限脉冲响应(FIR)滤波器来实现的,该滤波器能在无论信道情况如何,都保持所有定义参数(例如,加权、窗口宽度、窗口中心)不变。或者,可以使用具有固定参数(例如衰减时间常数、定标)的指数衰减无限脉冲响应(IIR)滤波器。换句话说,典型已有技术导频滤波器216的设计者将选择静态滤波器设计,在需要的大多数信道情况下,该设计可以胜任执行每位给定能量与噪声密度比(Eb/N0),但没有对整个情况范围进行优化。
因为移动站(例如蜂窝电话、PCS电话或其他无线远端通信终端)是在陆地环境中移动,其发送和接收的信号将会经历各种类型的衰落。移动环境通常通常以衰落为特征,衰落可以有Rician或Rayleigh特性。也可以是其他类型的衰落。在典型信道信号中的衰落特征是由于信号受许多不同的实际环境地理特征反射而引起的,因而称为多径衰。在通常用于移动无线通信UHF频段中,包括那些蜂窝移动电话系统在内,通过不同路径传送的信号中会产生显著的相位差。伴随着有时会发生深度衰落,可能会导致有信号的相长和相消累加。
多径信道衰落是对移动单元物理位置非常敏感的函数。移动单元位置上的微小变化会改变所有信号传播路径的物理延迟,这会进一步导致每条路径相位不同。这样,移动单元在环境中的移动会导致快速的衰落过程。例如,在850MHz蜂窝网射频段,该衰落对于车辆速度的每英里通常可以达到每秒1次衰落。这种剧烈衰落会对陆地信道中的信号有极大的破坏,会导致不良的通信质量,特别是移动站的速度增加超过150km/hr。
如前所述,典型的固定参数导频滤波器216没有针对这种宽信道情况范围进行优化。它通常设计为适合在从静态到约120km/hr速度下进行工作,或适合移动站需要在高速公路上行驶的汽车中使用时的大致车速。然而,因为信道的衰落特性在慢速移动的移动站和快速移动的移动站之间存在巨大的差异,所以,典型的固定参数导频滤波器216就不可能对这两个极端都进行优化。通常,这会迫使设计者仅能设计出当移动站处于静态或以低于150km/hr速度移动时才工作良好的导频滤波器216,而在超过150km/hr时就会工作欠佳。因为交通工具例如高速列车(bullet train)和飞机都超过这个时速,所以对于移动站用户来说就不太可能获得可靠的通信。即使能工作,通信链路的信噪比(或换句话说,Eb/N0)必须保持能在这些严重衰落情况中进行可靠工作的较高电平上。通信链路的Eb/N0的增加减少了无线系统的总容量,特别是在CDMA系统中,某个发射机的发送包括了对在相同CDMA频带中所有其他发射机的干扰。因此,当面临这种宽信道情况范围时,固定参数电导频滤波器的设计者在选择滤波器参数时通常采用不适宜的折衷办法。
这样,人们就需要一种更优化的导频滤波方法和设备,特别是在无线通信环境中,来避免已有技术中存在的这些缺陷。

发明内容
本发明是一种用于对无线通信系统中导频信道的信道情况进行自适应估计的新颖改进方法和电路。该方法包括估计导频信道的信道统计量,并且响应已估计的信道统计量对导频信道进行自适应滤波。估计是通过对从导频信道获得的信道信号或从检测或解码后去除多义性的任何承载多义性数据获得的信道信号进行滤波实现的。这就确定了估计信道平均值和估计信道协方差。为了执行自适应滤波,本发明根据估计信道统计量将导频信道划分为一个或多个时隙并对每个时隙进行加权。这样,本发明的优势是为了在各种信道状况对导频滤波器性能进行优化,它能自动并持续对导频滤波器的参数进行更新。
在本发明的一个实施例中,在一个或多个无限脉冲响应(IIR)滤波器中对信道信号进行滤波,以确定信道统计量。在本发明的另一实施例中,在IIR和无限脉冲响应(FIR)滤波器组合中对信道信号进行滤波,以确定信道统计量。
在适用于cdma2000系统的实施例中,其中导频信道由具有已知符号的导频信号部分以及具有未知符号的功率控制位部分组成。本发明的方法也可以包括确定功率控制位部分的符号,对功率控制位部分的符号纠错,以及随后将已纠错符号的功率控制位部分与导频信号部分组合来产生信道信号,信道统计量通过信道统计量估值器从该信道信号中进行估计。还是在本发明另一实施例中,该方法包括确定业务信号的符号并生成响应业务信号的信道信号。
还是在适用于cdma2000系统的另一实施例中,其中导频信道由功率控制组序列组成,每个功率控制组具有一个含有已知符号的导频信号和一个含有未知符号的功率控制位部分,时隙具有大致等于导频信号部分持续时间的持续时间。
还在此描述了一种用于执行本发明方法的电路。


本发明的特性、目标和优点通过在下面结合附图进行的详细描述将变得更加显著,其中相同的参考号在全部附图中提供相同识别。
图1是CDMA基站所使用的一种典型已有技术前向链路数据格式化器的功能框图;图2是CDMA移动站中使用的典型已有技术调制器的功能框图;图3是说明在cdma2000反向链路业务信道解调器中实现的本发明第一实施例;图4是说明在cdma2000前向链路功率控制位解调器中实现的本发明第二实施例。
具体实施例方式
本发明将在下面的应用中进行描述,该应用是cdma2000反向链路信号解调的特定应用但并不局限于此。如在提议的IS-2000标准中所述,cdma2000反向链路信号包括业务信道信号和反向链路导频信号。在反向链路导频信道(R-PICH)中插入的是前向链路功率控制子信道,该信道是跨度为每1.25ms功率控制组(PCG)的最后1/4的单个位。这个前向链路功率控制位是从移动站到基站发送器的信号,用于依据移动站在前向链路上的接收质量来增加或减少其发送功率。这种反向链路导频在共同待批的美国专利申请序列号08/886,604,名为“HIGH DATA RATE CDMA WIRELESS COMMUNICATION SYSTEM”(已转让给本发明的受让人,并在此引入作为参考)中有详细描述。
因为基站将R-PICH作为数据解调的相关基准、用于频率跟踪的频率基准和用于功率控制测量的已接收功率基准,在别的确定信号中的前向链路功率控制子信道所导入的不确定性会降低反向链路的性能。换句话说,前向链路功率控制子信道插入到R-PICH中会导致比连续导频信道更差的反向链路性能。例如,如果我们仅使用导频信道的未插入部分来对信道进行估计,那么就会降低由基站所计算的信道估值的信噪比。一种用于解决R-PICH的标志多义性并对其的来源连续导频信号进行重构的方法在共同待批的美国专利申请序列号09/298,394,名为“METHOD AND APPARATUS FOR PROCESSING A PUNCTUREDPILOT CHANNEL”,1999,7.12申请(已转让给本发明的受让人,并在此引入作为参考)中给出。
本领域的熟练技术人员应该理解虽然本发明是参照具有使用插入功率控制子信道的R-PICH的cdma2000系统来进行描述,本发明也可以等同地应用于其他具有未插入导频信道的无线通信系统中。这样,下述附图的目的是作为本发明应用的实例,而不是要将本发明限制在cdma2000系统中。
现在,回到图3,本发明的第一实施例作为在cdma2000反向链路业务信道解调器中实现来进行说明。信道统计量估值器300对信道统计量进行估计,自适应非随机信道估值器302使用该信道统计量来对导频信道进行自适应滤波,这将在下面进行更详细的描述。应该注意在其他实施例中,实际上是在下述图4的实施例中,可以用自适应随机信道估值器或滤波器来替代自适应非随机信道估值器302。而在图3的实施例中,由于当非随机滤波器的延迟可容忍时,非随机滤波器就具有超越随机滤波器的改善特性,所以,就将非随机滤波器用于信道估计。在图3的示范实施例中,自适应非随机信道估值器302是FIR滤波器。而在通常情况下,自适应非随机信道估值器302可以是IIR滤波器或具有FIR和IIR双重特性的混合滤波器。一个简单的实例是一种滤波器,输出有相同时间常数但加权不同的两个指数衰减IIR滤波器的差值,使滤波器的有效脉冲响应具有有限范围。另一实例将是级联FIR和IIR滤波器。
随后,将经滤波的导频信道码元输入给共轭点积电路306和308。共轭点积电路308也将去扩展、Walsh去覆盖和延迟的业务信道作为第二输入进行接收,该信道已经经延迟电路310进行了延迟。延迟电路310将业务信道延迟大致与自适应非随机信道估值器302所引入的延迟相同的量。如本领域所熟知,共轭点积电路308产生用于进一步去交织和解码的业务信道码元(软判决)。
共轭点积电路306作为第二输入接收经延迟的导频信道,该导频信道已经由延迟电路304进行了延迟。延迟电路304将导频信道延迟一定量,该量大致等于自适应非随机信道估值器302所导入的延迟。共轭点积电路306将估值器302输出与含有插入到反向链路导频信道中的功率控制位的延迟导频信道进行共轭相乘。随后,共轭点积电路将结果功率控制位信号发送给过去前向链路(FL)功率控制位(PCB)检测器314。
过去FL PCB检测器314将结果功率控制位信号与阈值进行比较,并由此确定插入的FL PCB的符号。需要注意,术语“过去”是用于描述由过去FL PCB检测器314所执行的操作,因为在任何给定时间检测到的功率控制位是来自过去功率控制组的功率控制位,同样由延迟304和自适应非随机信道估值器302进行了延迟。随后,将由过去FL PCB所确定的FL PCB判决发送给PCB符号校正器316,在该处,如果需要,PCB的符号就经倒转与导频信道(+1)的剩余部分符号匹配。随后,PCB符号校正器316的输出与来自延迟312的增进延迟导频信道一起提供给时分多路复用器(MUX)318。在功率控制组的第_期间,时分MUX 318提供了等同于来自延迟312的增进延迟导频信道的输出,该输出对过去FL PCB检测器314的处理时间进行了补偿。在功率控制组的剩余_期间,时分MUX 318提供了PCB符号校正器316的输出,该输出现在与导频信道的符号(+1)相同。因此,来自时分MUX 318的结果输出信号就是恒定符号的重构导频信道信号。连续导频信道重构的类似技术在上述引入的共同待批申请序列号09/298,394的文件中已给出。
经重构的信道信号提供给信道统计量估值器300,该估值器从此对信道统计量进行估值,如上所述用于设定由自适应非随机信道估值器302所使用的权重因数。信道统计量估值器300的信道统计量生成和自适应非随机信道估值器302的权重因数应用将在下面进行进一步的详细描述。
需要注意图3左手侧的元件(即延迟304、共轭点积电路306、延迟312、过去FL PCB检测器314、PCB符号校正器316和时间MUX 318)单独涉及生成用于信道统计量估值器300的重构信道信号仅对于插入导频信道例如cdma2000反向链路的R-PICH是必需的。这些元件在具有非插入或其他连续导频信道的应用中可以省略。在这种情况下,导频信道信号自身已经足够用于信道统计量估值器300。而且,信道信号也可以使用在共同待批美国专利申请号序列号09/289,073,名为“CHANNEL ESTIMATION IN A CDMA WIRELESS COMMUNICATIONSYSTEM”,1999.4.8申请(已转让给本发明的受让人,并在此引入作为参考)的文献中所描述的方法,从业务信号中含有的附加能量中产生。在所述专利申请中,经解码的业务信号码元依据帧质量指示器进行重编码、重交织、加权,并且与导频信道估值进行组合,在图3中就是从时分MUX 318中输出的重构信道信号。这样,在通常情况下,信道信号的生成,即生成代表信道的信号,可以是来自R-PICH导频部分的基值、来自R-PICH的符号校正FL PCB以及来自一个或更多业务信道的符号校正业务的加权组合。
现在转至图4,本发明的第二实施例作为在前向链路功率控制位解调器中实现来进行描述。在图4中,可以与图3信道统计量估值器300相同的信道统计量估值器400是作为接收信道信号来进行说明,在图3的R-PICH解调器情况下,该信道信号可以是图3的重构信道信号,或在成功经过如上述参考美国专利申请序列号09/289,073中详述的解码、重编码和重交织之后,来自符号校正业务信道的重构信道信号,或是两种信号的组合。在通常情况下,信道统计量估值器400可以不同于信道统计量估值器300。它们都可以使用如下所述基本相同的算法,但它们可以在不同的数据或不同的时隙或甚至是不同的信道信号输入上工作。为了估计信道统计量,使自适应预测随机信道估值器402依据该估值分配滤波器权重系数,如下进一步所述,信道信号由信道统计量估值器400执行操作。在图4的示范实施例中,自适应预测随机信道估值器402是FIR滤波器。而在通常情况下,它是IIR滤波器或是兼具FIR和IIR两者特性的混合滤波器。
自适应预测随机信道估值器402通过延迟404向共轭点积电路406提供信道估值。共轭点积电路406依据信道估值和导频信道(在这种情况下是R-PICH)执行共轭相乘来对插入在R-PICH中的FL PCB进行解调。随后,将结果功率控制位信号发送给当前的FL PCB检测器408来确定当前FL PCB的符号。当前FL PCB检测器408通过将来自共轭点积电路406的功率控制位信号与阈值进行比较来估计有关FL PCB符号的当前FL PCB判决。随后,前向链路发射机(未示出)可以使用当前FL PCB判决来增加或减少其所需的功率。
如上所述,在图3和4中的两个实施例中,信道统计量估值器300和400分别对用于自适应非随机信道估值器302和自适应预测随机信道估值器402的信道统计量进行估计,该统计量用于设定它们各自的滤波系数。为了解释这个处理过程如何发生,将引入下述数学描述。首先,考虑瑞克(Rake)接收机的特定Rake搜寻指所接收的信道信号进入移动站信道统计量估值器300或400的输入。该接收信号具有如下形式y[n]=a[n]+w[n] (1)其中y[n]是时隙为n时,代表实际接收的信道信号的列矢量;a[n]是时隙为n时,将实际信息信号表示为信道真实表示的列矢量;w[n]是时隙为n时,代表信道信号中所含有的实际噪声的列矢量;和n是在时域中的矢量标记,并且因此,可以代表用于对所接收信道信号采样的任意时隙。
因此,列矢量a[n]、w[n]、y[n]的维数或n可以具有的整数值的数目与作为自适应信道估计输入的接收信道信号时隙数相同。在应用于cdma2000 R-PICH中的FL PCB预测估值的第二示范实施例中,每个时隙可以是单个1.25ms功率控制组的_(即导频信道的非插入部分)。这样,如果我们使用信道信号的2 PCG效能作为估值输入,由于n的范围是1和2,y[1]表示导频当前_PCG的接收信道信号,而y[2]表示导频先前_PCG的接收信道信号。这些y[1]和y[2]值可以通过在所述导频_PCG上对导频码元进行简单地平均来得到。其他实施例可以按照权衡计算成本,依据所需要的分辨率和估值精确度来使用更大或更小的时隙。例如,在cdma2000实施例中,插入的FL PCB可以是具有歧号的一个相关时隙,或者,如果需要较好的分辨率,它可以包括几个较小的相关时隙。在通常情况下,时隙可以是不相等的持续时间,但要对每个时隙所接收的信道信号适当地进行加权来对信息信号振幅进行归一化,或依据应用对信噪比进行归一化。在其他实施例中,时隙可以是可配置的参数。如果采用将信道信号划分成较细的时隙,标记n可以在从1到较高数目的范围中。如果需要非随机估值器,如在图3的实施例中,列矢量y[n]、a[n]和w[n]的某些元素也可以表示需要信道估值的系统中关注时间之后的值。
我们必须在给定时刻估计实际信道值x,如下述公式(2)中所示。公式(2)表示了由自适应非随机信道估值器302和自适应预取随机信道估值器402共同执行的运算。在这两种应用之间的不同点是如上所述的信道信号划分成不同时隙。注意,在此的所有估值由(“hat”)符号表示。x是关注时隙时的需要信道值。例如,如图4的示范实施例那样,当y、a和w矢量的标记n具有表示当前和先前PCG期间导频信道的导频部分的值1和2时,x表示在导频信道当前PCB部分处的信道值。x^=m^x+H(y[n]-m^y[n])---(2)]]>其中 是在对应于导频信道PCB部分的时隙处的估计信道值, 是x的估计平均值; 是时隙n时信道信号的估计平均值;H是描述为 的滤波矢量其中 是x和y[n]的估计协方差矩阵; 是矢量y[n]的估计协方差矩阵,并且上标-1表示矩阵求逆操作。
换句话说,H是线性滤波器的矢量表示,当滤波器应用于任意信号z[n]时,从运算所得的输出可以在下述时域标记中描述H(z[k])=Σkh[k]z[k]---(3)]]>其中k是矢量标记。
当需要多种时间实例的信道估值时,也可通过x中填集更多使x变为矢量,特别是如果由于使用计算结构,这可以在某些应用实施例中提供额外的实现便利。这样x^[n]=m^x[n]+H(y[n]-m^y[n])---(2a)]]>H(z[k])=Σkh[j,k]z[k]---(3a)]]>其中H现在表示滤波矩阵,并且j和k分别是行和列的矢量标记,而j是在要估计的矢量x中特定的元素 的标记。
、Kxy和Kyy的值是作为在此提及的估计信道统计量。这些分别是由信道统计量估值器300和400进行估计的值,由自适应非随机信道估值器302和自适应预测随机信道估值器402使用来确定用于估计 的滤波权重。这样,这些信道统计量就是上述公式(2)所需的成分,设实际接收信道信号y[n],已知。
下面,将描述这些信道统计量的生成。信道统计量估值器300和400依据下述关系生成估计信道信号平均值 m^y[n]=g1*y[n]---(4)]]>其中g1是滤波器脉冲响应,通常情况下是FIR或IIR或兼具FIR和IIR特性的混合滤波器;并且运算符*表示在时域上的卷积。
注意y[n]现在表示时间上的信号矢量,而在施加卷积运算的时间标记没有示出。如果示出它, 和y[n]都将具有两个标记,第一个标记(示出)表示时隙(例如,如上述第二示范应用实施例中所使用的“当前PCG”和“先前PCG”),而第二标记(未示出)将矢量值的更新表示为“当前时间”处理内容。
尽管也许在不同的时隙处,但因为 元素正象 的元素所做的那样,表示为估计信道,所以,使用了相同的方法来计算估值 ,从而在相同方法的直接应用之前,仅需要时隙标记的移动。注意信道平均值通常不是经常变化,并且当作为估值输入使用的时隙在时间上靠近在一起,我们可以使用单值来表示 和 中的所有元素,因为它们的值近似,这样就可能节省计算成本。在本发明的另一个已知信道具有零平均值的应用实施例中, 可以为零,这样简化了公式(2)。x^[n]=H(y[n])---(2b)]]>信道统计量估值器300和400依据下述关系生成 、x的估值协方差以及矢量y[n]K^xy[m,n]=g2*(x[m]y*[n])---(5)]]>其中g2是滤波器的脉冲响应,在通常情况下可以是FIR或IIR或兼具FIR和IIR特性的混合滤波器;m和n分别是行和列的矢量标记;并且y*[n]是y[n]的共轭。在其上施加卷积运算的时间标记再次没有示出。
信道统计量估值器300和400根据下述关系生成 、y[n]矢量的估值协方差K^yy[n,m]=g3*(y[n]y*[m])---(6)]]>其中g3是滤波器的脉冲响应,在通常情况下可以是FIR或IIR或兼具FIR和IIR特性的混合滤波器;y*[m]是y[m]的共轭。在其上施加卷积运算的时间标记再次没有示出。本发明也考虑利用 可以是共轭对称的事实,就是K^yy[m,n]=K^yy*[n,m]---(7)]]>这样,仅需要计算矩阵 中一半的值。
另外,如果接收的信道信号矢量y[n]部分具有表示在时间上等同划分的值的相同持续时间的时隙,我们也可以利用协方差函数的位移恒定属性并进一步节省计算成本,即K^yy[m,n]=K^yy[m+k,n+k]---(8)]]>其中k是长度为m+k的任意整数值,而n+k是在矩阵 有效标记范围中,并且上述关于时隙划分的假设成立。
这三种滤波器g1、g2、g3的时间常数通常依据系统参数为手边的具体应用而进行挑选。例如,如果信道统计量没有在约1秒钟的持续时间上改变,滤波器g1、g2、g3的时间常数可以选择为1秒钟或更短。
当使用多个Rake搜索指时,本发明的更加复杂应用可以确保从不同指得到的信道统计量是相同的或近似的,并且将所有来自不同指的信道信号y[n]用于统计估值,由于用于估计信道统计量相同或类似值的可用输入量增加,就能给出更加精确的估值。因此,如在上述数学关系中所见,信道统计量估值器300和400生成信道统计量 和 。它们依次提供给各信道估值器(自适应非随机信道估值器302和自适应预测随机信道估值器402两者,通常也可以称为“导频滤波器”)。随后,图3和图4的信道估值器使用这些信道统计量来执行上述公式(2)所述的运算,即对信道情况进行自适应估值。
本发明的中心在于当移动站在衰落环境中移动时,信道统计量是缓慢但恒定地变化的概念。这些信道统计量由信道估值器300和400不断更新分别用于自适应非随机信道估值器302和自适应预测随机信道估值器402。因为这些信道统计量构成公式(2)自适应滤波运算的基础,所以,自适应非随机信道估值器302和自适应预测随机信道估值器402都响应信道情况的变化来改变它们的滤波器参数。
本发明的优势是,公式(2)给出了一种将估值输出均方误差最小化的估值器。而且,本发明提供了自动计算用于使用这个公式的所有要素的方便、有效的方法。这样,自适应非随机信道估值器302和自适应预测随机信道估值器402都可以分别由信道统计量估值器300和400不断更新,使它们在当时居优的信道情况下进行优化。这就允许自适应非随机信道估值器302和自适应预测随机信道估值器402都生成在各种信道情况下用于给定信道情况的最佳信道估值。与已有技术形成明显对比,本发明依据估值信道统计量的使用,提供一种用于在无线通信系统中自适应对信道情况进行估计来确定信道估值器的滤波参数的方法和设备。这样,本发明总是对当前情况进行优化,导致明显更低的对给定位误码率的通信链路Eb/N0要求。
提供较佳实施例的前述描述是使本领域的熟练技术人员可以制造或使用本发明。对这些实施例的各种修改对于本领域的熟练技术人员来说是显而易见的,并且在不使用创造性技术的情况下,在此所定义的一般原理可以应用于其他实施例。因此,本发明并不局限在在此所示出的实施例中,而是符合与在此所揭示的原理和新颖特征关联的最大范畴。
权利要求
1.一种用于自适应地对无线通信系统中导频信道信道情况进行估计的方法,其特征在于,所述方法包括下述步骤估计所述导频信道的信道统计量;响应所述估计信道统计量对所述导频信道进行自适应滤波;其中所述估计步骤进一步包括对从任意接收的通信信道得到的信道信号进行滤波来确定估计信道平均值和估计信道协方差。
2.如权利要求1所述的方法,其特征在于,对所述导频信道自适应滤波的所述步骤包括下述步骤将所述导频信道划分为一个或多个时隙;依据所述估计信道统计量对每个时隙进行加权。
3.如权利要求2所述的方法,其特征在于,对所述信道信号滤波的所述步骤包括在无限脉冲响应滤波器中对所述信道信号进行滤波。
4.如权利要求2所述的方法,其特征在于,对所述信道信号滤波的所述步骤包括在无限脉冲响应滤波器和有限脉冲响应滤波器的组合中对所述信道信号进行滤波。
5.如权利要求2所述的方法,其特征在于,所述导频信道包括具有已知符号的导频信号部分和具有未知符号的功率控制位部分,所述方法进一步包括下述步骤校正所述功率控制位部分的所述符号;将所述经符号校正的功率控制位部分与所述导频信号部分组合来产生所述信道信号。
6.如权利要求2所述的方法,其特征在于,所述无线通信系统进一步包括业务信道,所述业务信道具有未知符号的业务信号,所述方法进一步包括下述步骤确定所述业务信号的所述符号;响应所述业务信号生成所述信道信号。
7.如权利要求2所述的方法,其特征在于,所述导频信道包括功率控制组序列,每个功率控制组具有已知符号的导频信号部分和未知符号的功率控制位部分,并且其中所述时隙具有大致与所述导频信号部分相同的持续时间。
8.一种用于对在无线通信系统中导频信道的信道情况进行自适应估计的电路,所述电路包括估计所述导频信道信道统计量的信道统计量估值器;响应所述估计信道统计量对所述导频信道进行自适应滤波的自适应导频滤波器;其中所述信道统计量估值器对从所述导频信道获得的信道信号进行滤波来确定估计信道平均值和估值信道协方差。
9.如权利要求8所述的电路,其特征在于,所述信道统计量估值器将所述导频信道划分为一个或多个时隙,并且其中所述自适应导频滤波器依据所述信道统计量对每个时隙进行加权。
10.如权利要求9所述的电路,其特征在于,所述信道统计量估值器包括用于对所述信道信号进行滤波的无限脉冲响应滤波器。
11.如权利要求9所述的电路,其特征在于,所述信道统计量估值器包括用于对所述信道信号进行滤波的无限脉冲响应滤波器和有限脉冲响应滤波器的组合。
12.如权利要求9所述的电路,其特征在于,所述导频信道包括具有己知符号的导频信号部分和具有未知符号的功率控制位部分,所述电路进一步包括用于确定所述功率控制位部分的所述符号的功率控制位符号检测器;用于校正所述功率控制位部分的所述符号的功率控制位符号校正器;用于将所述经符号校正的功率控制位部分和所述导频信号部分组合来产生所述信道信号的多路复用器。
13.如权利要求9所述的电路,其特征在于,所述导频信道包括功率控制组序列,每个功率控制组具有已知符号的导频信号部分和未知符号的功率控制位部分,并且其中所述时隙具有大致与所述导频信号部分相同的持续时间。
14.如权利要求1所述的方法,其特征在于,所述对信道信号滤波的步骤进一步包括下述步骤对第一接收通信信道信号用第一权重因数进行加权;对第二接收通信信道信号用第二权重因数进行加权;将所述第一和第二加权接收的通信信道信号组合来产生所述信道信号。
15.如权利要求1所述方法,其特征在于,所述估值步骤进一步包括将来自多个瑞克接收机搜寻指的多个信道信号进行组合。
16.如权利要求8所述的电路,其特征在于,所述信道统计量估值器对第一接收通信信道信号用第一权重因数进行加权,对第二接收通信信道信号用第二权重因数进行加权,并且将所述第一和第二加权接收的通信信道信号组合来产生所述信道信号。
17.如权利要求8所述的电路,其特征在于,所述信道统计量估值器将来自多个瑞克接收机搜寻指的多个信道信号进行组合。
全文摘要
一种用于自适应地对无线通信系统中导频信道信道情况进行估计的方法。该方法包括对导频信道的信道统计量进行估计(300),并且响应估计信道统计量对导频信道进行自适应滤波。估计通过对从导频信道获得信道信号进行滤波执行,来确定估计信道平均值和估计信道协方差。为了执行自适应滤波,本发明将导频信道划分为一个或多个时隙,并且依据信道统计量对每个时隙进行加权。这样,本发明的优势是为了在各种信道情况对导频滤波器的性能进行优化,能对导频滤波器参数进行自动和不断的更新。
文档编号H04Q7/38GK1377530SQ00811909
公开日2002年10月30日 申请日期2000年8月16日 优先权日1999年8月23日
发明者G·里昂 申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1