回音消除的制作方法

文档序号:7894836阅读:555来源:国知局
专利名称:回音消除的制作方法
技术领域
本发明一般涉及一种远程通信系统的回音的消除,尤其涉及用于回音消除的线性滤波器的自适应调整。
背景技术
对于电话系统提供商来说,话音质量是重要因素。来自客户的需求使得不断改进系统的努力变得至关重要。作为原始传送的延迟形式的回音被视为对说话者的严重干扰,如果该延迟较长的话。对于小于约20ms的短程往返延迟,说话者将不能够区别回音与听筒中的侧音。然而,对于诸如卫星通信的长距离通信来说,远程生成的回音信号经常有相当大的延迟。此外,数字无线电通信系统中必需的、以及用于因特网协议的电话(简称为IP电话)的话音和频道编码还导致显著的延迟,其使得相对近的距离生成回音,使说话者不能清楚地听到。由此,为了保持话音质量,消除回音是必需的。
电话系统中会出现不同类型的回音。一类为网络回音,其来源于公共交换电话网(PSTN)中使用的混合电路电路中的阻抗不匹配。使用混合电路是为了PSTN系统中的两线链路和四线链路之间的连接。由于实践上不可能完美地调整该混合电路,所以阻抗不匹配将导致一些输入话音以原始话音的延迟和失真版本被反射回到说话者。将反射的话音表示为网络回音。图1和2中图示了网络回音的出现。
另一类回音为来源于通过外部扬声器和麦克风使用免提设备,称其为声学回音。此类回音具有这样的性质,其中由于环境的改变而造成回音路径不断改变。通话期间,使用电话通话的人最有可能至少在某种程度上改变位置。由于场所和诸如扬声器的设备的特点的缘故,所以回音路径也是高度非线性的。图3图示了声学回音的出现。
随着端到端IP电话的引入,引入网络回音的交换中的混合电路消失了。可以预见,如果可能的话,这将花费可观的时间,直到所有电话都被IP电话取代。到那时之前,将有必要使回音消除器移除PSTN网络中生成的网络回音。此外,只要数字无线电通信网络与PSTN网络互联,则将必须移除PSTN网络中生成的回音。而且,由于其物理连接的缘故,所以将总是残留声学回音。
回音消除器通常包括线性滤波部件,其本质上为尝试适应回音路径的自适应滤波器。这样,可产生回音的复制品,可从来源于回音源位置端的接收信号将其移除,由此消除回音。生成回音复制品的滤波器具有有限或无限冲击响应。其最通常为自适应线性有限冲击响应滤波器(FIR),其带有很多延迟线和对应数目的系数、或滤波器延迟抽头。该系数为当和滤波器输入信号的延迟版本相乘时,生成回音估计的值。滤波器为适应的,即更新的,以便该系数收敛到最优值。消除回音的传统方法为使用规格化的最小均方(NLMS)算法更新有限冲击响应(FIR)滤波器,尽管存在各种可替换算法。
下面的事实引起了问题,其中整个回音路径响应包括由形成纯延迟的信号传播时间、话音和频道编码等造成的一部分,以及由实际回音源造成的一部分。因此,如果回音复制品滤波器将要模拟回音路径的整个冲击响应,则为了还处理所包括的纯延迟,将需要大量系数。这将随之提出对用于实现滤波器和其操作的存储器和计算能力的非常高且经常不现实的需求。而且,这样的滤波器的系数将非常慢地收敛到其最优值。
因此,在回音消除期间,期望回音消除器以下面这样的方式估计回音路径的整个冲击响应的纯延迟,其中滤波器系数适应于来源于实际回音源的整个回音的某部分。可将此过程描述为滤波器对回音源的时间调整。这样,滤波器的系数的数目可保持在合理且可行的水平。
美国专利4582963公开了一种用于回音消除的方法,其中从自适应滤波器延迟分别地提供整体(bulk)延迟。描述了用于选择适合的整体延迟的不同方法。一个方法为,检测回音源的接收线上传送的信号的回音多久出现在回音源的传送线上。提供了整体延迟的很多估计,并通过与其它估计最紧密地聚合的估计给出了所选整体延迟。另一个方法为,反复增加整体延迟,其中每个延迟值与滤波器相结合,以给出适应的测定。随后,选择整体延迟作为自适应的测定接近峰值的延迟。
美国专利5920548公开了这种方式的自适应滤波器的配置,其中仅将两个抽头端点之间的滤波器抽头的范围包括到回音消除操作中。在回音消除期间,小于第一边界抽头的所有抽头起到缓冲器的作用。选择第一边界抽头作为小于定位的抽头的某个数目的抽头,其中所述定位的抽头具有带有大于某个预定值的预定因子的值。

发明内容
本发明的一个目的在于,提供一种方法和设备,其具有低数值复杂度,不断地监测包括在回音信号中的反射的纯延迟,并且在消除回音时,根据此纯延迟调整线性滤波器系数的使用。
根据本发明,通过根据权利要求1的回音消除器的方法、根据权利要求18的计算机可读介质、根据权利要求19的回音消除器、根据权利要求30的系统设备、以及根据权利要求31的回音消除器的使用,实现了此目的和其它目的,所述权利要求表示本发明的不同方面。
根据本发明,不断地确定是否应当尝试增加包括在回音复制品信号中的反射复制品延迟,其中由信号缓冲器提供该延迟,以及不断地确定是否应当尝试减小反射复制品延迟,以提供一反射复制品的延迟,其对应于包括在回音路径上接收的回音信号中的对应反射的纯延迟。
通过不断监测回音反射延迟并确定是否应当增加、或是否应当减小复制品延迟,并且如果应当,则增加或减小当前复制品延迟,这样以有效的方式使用线性滤波器的系数,且减少了需要系数的数目、以及由此需要的存储器。此外,通过此操作,将减少对于滤波器和其系数的收敛时间。
在电话通话期间,例如由于通话传输的缘故,回音的回音路径可能改变。而且,回音源自身可在通话期间改变。例如,由于通话期间电话装置的改变、第三方连接到该通话、使用的该装置中的混合电路的改变(例如,受温度影响)等缘故。声学回音期间,该回音将受到场所中装置的移动、以及装置的扬声器和麦克风之间的距离改变等的影响。
而且,如果使用了基于PC的终端,则回音还可受到主要由PC声卡使用的A/D和D/A器件中的时钟偏移的影响,或者如果由于给正在同一PC环境中运行的其它应用程序更高的优先级、而造成没有给该应用程序分配足够的处理器时间的话,受到PC环境中的电话应用程序延迟的影响。
由于滤波器通过以递增和平滑方式来不断地增加或减小当前复制品延迟,将不断且快速地适应回音路径延迟中的改变、或回音源或其环境引起的回音的改变,所以本发明是有利的。此平滑延迟调整、或滤波器的重调整,也具有如下优点,即,由重调整造成的生成的回音复制品的失真被最小化。因此,在由于回音延迟的改变而造成的滤波器的重调整的期间,滤波器系数的收敛时间将极为有效地执行,而同时最小化由重调整造成的任何失真。而且,本发明执行延迟调整,而不必须监测过多数目的滤波器系数,由此使数值复杂度保持较低。
本发明的另一个优点在于,不断地监测使得本发明的回音消除过程能够更好的处理将高能量电平集中到一些独立的部分的回音,由此形成一些独立的能量集中。这些独立的能量集中可为回音源的特性、或分布的回音路径的结果,其中回音来源于多重反射。本发明使滤波器的系数能够覆盖主要部分,其中在回音消除期间,通过以下面的方式调整用于估计纯延迟的缓冲器延迟,回音响应的能量被集中,其中所述方式为,滤波器延迟抽头以更理想的方式覆盖这些部分。
例如,通过回音冲击响应中的两个独立的能量集中部分,可以这样的方式调谐延迟,其中对应于长延迟的滤波器系数将以高能量电平来覆盖回音信号的第二部分,而提供短延迟的滤波器抽头将以高能量电平来覆盖第一部分回音信号的尽可能多的能量,由此余下来自滤波器的第一部分的最开头。
根据本发明的实施例,回音消除基于两个或更多的线性滤波器,每个滤波器生成包括在基于来自缓冲器的对应延迟输入信号的回音中的、对应反射能量集中的复制品。因此,回音消除器的不同滤波器适应于不同的反射能量集中的不同延迟。这样,本发明能够更为先进地进行对包括两个或更多独立能量集中的回音的消除。
根据另一个实施例,用于增加由缓冲器提供的复制品延迟的基础是,作为滤波器系数的平方和、与短延迟相关的滤波器的开始的平方和测定的能量和全长度滤波器的能量,即估计的回音回程损耗之间的关系。如果在滤波器的开始中测定的能量较低,则增加延迟。对应地,如果对滤波器的尾部的系数测定的能量相比全长度滤波器的能量较低,则减小延迟。通过分别测定滤波器系数的开始和尾部,例如,第一和最后四分之一,而不是分别测定例如前一半和后一半,使本发明的调整过程达到更佳的分辨率。此外,在重调整之前,本发明的调整过程将知道如果增加/减小操作从回音复制品中排除掉系数的开始/结尾部分,那么将损耗多少能量。如果认为将要排除的此能量较高,则简单地,不重调整滤波器。与如果此过程将基于例如回音复制品和真的回音冲击响应之间的最大相关测量相比,这还提供了控制重调整过程的改进方式。
再一个优点在于,在滤波器系数的调整和重调整期间,根据本发明的回音消除的操作不需要任何对函数最大值的搜索、或相关计算。


图1和2图示了网络回音的出现;图3图示了声学回音的出现;图4示出了典型公知的回音消除器,其形成用于本发明的示范实施例的基础;图5示出了根据本发明的实施例的回音消除器的示意图;图6示出了图示当根据本发明的实施例消除回音时,控制延迟的总体操作的状态图;图7和8图示了根据本发明,在已被调整到回音冲击响应之后,线性滤波器及其系数的示范配置;图9示出了示范了图5中指明的滤波器的带有有限冲击响应的线性滤波器;图10、11以及12图示了实现图6中示出的状态图的示范判定逻辑;和图13示出了本发明的实施例,其中使用了多个短线性滤波器。
具体实施例方式
图1-3示范了不同类回音,可通过本发明具有优势地将其消除。
图1和2图示了网络回音的出现。图1示出了来源于用户通过双线线路方式与其连接的混合电路的回音,即来自于用户与其连接的公共交换电话网(PSTN)线路接口的回音。图2示出了通过一个或更多网络互连的两个PSTN电话,如通过卫星传输路径、IP网络或无线电网络。来自用户A的信号在混合电路B处被部分反射,并作为网络回音回到用户A。如果用户A直接连接到IP网络或无线电网络,如数字蜂窝通信网络,则其也将接收网络回音。
图3示出了由听筒或免提设备的扬声器和麦克风之间的串话而造成的声学回音的出现。
图4示出了典型公知的回音消除器,其一般结构和操作也形成用于本发明的示范实施例的基础。
通过参照图4,回音消除器由线性滤波部件100和非线性部件200组成。将在远端生成并被传送到近端的远端信号190输入到滤波部件100。滤波部件100本质上为自适应滤波器,其尝试适应于回音路径。这样,可产生回音140的复制品110,其可从返回信号120中被移除。回音消除器还包括控制单元230,其监控线性滤波器100的更新、非线性滤波器部件200以及人工噪声生成器220的操作。
即使很好的收敛,滤波部件100也不能够完美地描述混合电路210的特征。因此,在滤波部件之后,将有一些包括在130表示的信号中的残留回音。即使回音的衰减较高,例如25分贝,对于远端说话者来说,也将可以听到该回音。为了对此进行处理,设计作为非线性处理器(NLP)使用的非线性部件200以移除残留的回音。因此,当剩余回音是可以听到的时,NLP应当检测并移除信号130中的残留回音。通过来自混合电路(hybrid)的回音140和回音复制品110之间的不同给出剩余回音。当然,NLP不应当影响来源于近端说话者的近端信号170,必须通过NLP 200没有失真地传送该信号。NLP通常估计不同信号之间的相关性,并且,这样获得是否有任何要移除的回音的判定。
在简化描述中,NLP可为中心削波器(center clipper),其简单地切掉低能量剩余回音。因此,在残留回音已被NLP移除之后,在残留信号150中将有部分静音。由于此原因,构造类似于来自近端的信号170的背景噪声的人工噪声160,并通过人工噪声生成器220插入到信号150的静音周期中。随后,在注入噪声160与信号170的真实背景噪声具有相同特征的假定下,认为结果信号180听起来良好。
控制单元230监控滤波器更新方案、NLP和人工噪声注入的操作。由此,其具有对回音消除器的总体性能的显著影响。无论选择了下面的哪个滤波器更新方案,控制逻辑都判定何时允许滤波器100中的滤波器参数的更新。通过参照图4,控制单元所获知的信号为误差信号130、估计回音110、远端信号190、以及包含回音信号140和近端话音信号170的近端返回信号120。从这些测定中可估计出远端和近端的能量电平。还分别需要远端和近端的噪声电平。非常重要的是,控制单元能够检测双向通话(double talk),即在电话连接的所有两端的同步的说话者行为的出现。
基本上,控制逻辑的功能如下。当满足下面所有条件时,允许线性滤波器100的自适应-远端信号190具有足够量的能量;以及-近端信号170为低电平。
此外,当满足下面之中的任意条件时,禁止自适应-远端信号190为低电平;-近端信号170中的话音为高电平;-出现双向通话,即近端和远端说话者的同步说话行为的出现;或者-近端信号170中的背景噪声为高电平。
通过参照图5,示出了根据本发明的实施例的回音消除器的示意图。回音消除器包括线性滤波器500、缓冲存储器、或信号缓冲器510和控制逻辑部件520。通常出现在回音消除器中的任意非线性滤波部件或人工噪声生成器、或其它元件没有在图5中示出,但是,仍然可能包括。该图中也描述了混合电路530,其生成将要消除的回音。
图5中描述了控制逻辑部件520,其为了控制通过缓冲存储器510传输到滤波器500的输入端、作为延迟信号195的远端信号190的延迟的目的,而连接到所述缓冲器。控制逻辑部件520包括第一控制逻辑电路和第二控制电路,其被设计为部分用于确定是否应该做出增加传输到滤波器500的信号195的延迟的尝试,部分用于控制增加延迟的实际操作。对应地,控制逻辑部件520还包括第二控制逻辑电路,其被设计为部分用于确定是否应该做出减小传输到滤波器500的信号195的延迟的尝试,部分用于控制减小延迟的实际操作。
优选地,将第一和第二控制电路设计为当表示“误差”的信号超过各自预定的阈值时,尝试分别增加和减小延迟。如上所述,此误差信号表示接收的回音信号120和滤波器500产生的回音复制品信号110之间的不同。作为替换的,或另外的,第一和第二控制电路尝试以一个或更多所包括的定时器定义的规则间隔来增加/减小延迟。
第一控制电路包括电路部件,用于计算与短延迟相关的第一组滤波器系数的平方和(sum-squares),如该系数的开始四分之一,并将此测定与计算的表示全滤波器的第二组系数的平方和相关,其通常对应于回音返回损耗。如果此相关性低于第一预定的阈值,则控制输入到滤波器500的信号195的延迟逐渐地增加。
对应地,第二控制电路包括电路部件,用于计算与长延迟相关的第三组滤波器系数的平方和,如该系数的尾部四分之一,并将此测定与计算的回音返回损耗相关。如果此相关性低于第二预定的阈值,则控制输入到滤波器500的信号195的延迟逐渐地减小。
应当理解,描述的第一和第二控制电路适合通过数字信号处理器(DSP)或一些其它适合的处理硬件部件,如微处理器或一个或更多特定应用的集成电路来实现,其中设计并配置所述硬件用于运行程序指令,以便根据本发明的方法操作。此外,用于通过适当的存储器电路来将信号延迟到线性滤波器的线性滤波器和缓冲存储器的实现,对于本领域的技术人员来说是公知的。
另外,通过参照图6,状态示了控制由信号缓冲器510提供到滤波器500的输入的信号195的延迟的总体操作。该操作遵循通常具有用于控制滤波器布置的三个不同状态的状态图,所述三个不同状态即增加状态600、减小状态610以及空闲状态620,其中每个状态表示操作的对应模式。根据图10、图11和图12中示出的流程图,示范实施例中确定了不同状态之间的转换。
只要状态机处于空闲模式620,便不采用自适应调整滤波器的操作。基于定时器或是否检测出了某些事件,来分别确定从空闲模式620到增加模式600和减小模式610的转换,或模式切换。这样的事件的典型例子是可能与回音路径延迟的改变相关联的任意事件,如检测出的接收回音信号120和生成的回音复制品信号110之间的不同。如果检测出了回音路径改变,则状态机根据图10的过程重新初始化。作为图10的过程中的测试,可实现回音路径改变的检测,即计数器(COUNTER)值测试710之前合并的测试。最初,为了加速回音消除器的初始化工作,将状态机强制到增加模式可能是有利的。
只要状态机处于增加模式600,本发明的控制逻辑电路520便测试是否可以相对于远端信号190而增加信号195的延迟。增加相对于远端信号190的信号195的延迟,直到达到了由缓冲器510的大小确定的最大预置延迟(通过图11中测试750中的标量MAXDELAY(最大延迟)来设置)、或直到在自适应滤波器500中的第一组系数中测定了能量(图11中的测试715)、或直到某个时间周期期满(图10中的测试710)。根据图6,状态机随后切换回到空闲模式620。
只要状态机处于减小模式610,本发明的控制逻辑电路520便测试是否可以相对于远端信号190而减小信号195的延迟。减小相对于远端信号190的信号195的延迟,直到达到了由缓冲器510的大小确定的最小预置延迟(通过图11中测试740中的标量MINDELAY(最小延迟)来设置)、或直到在自适应滤波器500中的最后一组系数中测定了能量(图11中的测试715)、或直到某个时间周期期满(图10中的测试710)。根据图6,状态机随后切换到空闲模式620。
显然,表示相对于远端信号190的信号195的最小延迟的标量MINDELAY大于或等于零。标量MAXDELAY大于MINDELAY,并通常对应于命令的延迟,即64到256ms。
为了允许真延迟的更快时间跟踪,如果剩余误差的大小或功率超过了某个阈值,则使定时器的阈值减小,这样可能是有利的。例如,可在图12中的测试760之前放入这样的测试。如果测试为肯定的,即剩余误差的大小超过了某个阈值,则将VALUE(值)4减小一半。滤波器的适当调整之后,将VALUE4重置为其初始值。如果剩余误差的这个测定超过了较高阈值,则可认为回音路径突然改变。随后,重新初始化回音消除器,即该过程再次在图10中的步骤700开始。
再次参照图5,回音消除器利用计算的回音返回损失(ERL)的测定,其描述由混合电路530的属性造成的回音的衰减。对于分贝表示的电平为Px的远端信号190,由差值Px-ERL[dB]粗略地给出回音140的电平。线性滤波器500的平方和滤波器抽头、或系数产生了ERL的估计。
通过参照图9,更详细地示出了对其输入延迟信号195的线性滤波器。对于本领域的技术人员来说,此滤波器的设计本身上是公知的。通过滤波器权重h
、h[1]、......的平方的和,即滤波器系数的平方和给出ERL的估计。利用求和算子(operator)的线性,可将ERL的估计计算为三项的和,其中-第一项是第一组平方的滤波器抽头的和。下面,此第一项表示为SUB_ERL_HEAD。
-第二项是一组平方的滤波器中间的滤波器抽头的和。
-第三项是第三组平方的滤波器抽头的和。下面,此项表示为SUB_ERL_TAIL。
通过作为平方和的滤波器的第一部分的滤波器抽头的第一项,其对应于滤波器的头部的能量,该部分与短延迟相关。因此,如果第一项接近于零,即意味着第一组滤波器权重均接近于零,则有理由假定滤波器的第一部分(头部)适应于纯延迟。因此,可根据下面的不等式来形式化图11中的测试725ERL>THRESHOLD1*SUB_ERL_HEAD其中,ERL为估计的回音返回损耗,THRESHOLD1为预定的阈值,而SUB_ERL_HEAD为第一组平方的滤波器系数的和。
典型的说,图5和图9中描述的滤波器500中的滤波器抽头的数目处于256到1024的范围(8kHz采样率下的32到128ms),而基于32个滤波器抽头(8kHz采样率下的4ms)来计算SUB_ERL_HEAD。THRESHOLD1典型为128,意味着滤波器的开始中的能量为大约ERL之下的21db。如果满足了上面的条件,则滤波器的头部中没有能量,并且计数器COUNTER_INCREASE(计数器增加)加一(图11中的操作726)。如果对COUNTER_INCREASE已经依次更新了VALUE3次(图11中的测试728),则自适应调整滤波器,以便由图5中的缓冲器500确定的整体延迟增加同样或较小的数量,即作为用于在控制逻辑520的控制之下计算SUB_ERL_HEAD的延迟数。显然,具有由测试750确定的最大可允许延迟的上限。
上述滤波器调整/重调整过程将增加缓冲器提供的延迟,直到在滤波器的开始中检测出了相对于回音返回损耗的某个数量的能量。此量通过预定的阈值THRESHOLD1来控制,或直到标量MAXDELAY确定的最大预置延迟。通过参照图5,该过程试图最大化缓冲器510中的延迟。
对于本领域的技术人员来说,显然,为了减小延迟以适当地重调整滤波器,可使用类似的方法,即通过将滤波器的尾部的平方和抽头与带有第二预定阈值(THRESHOLD2)的ERL相比较。在优选实施例中,通过图11中的测试715、717、以及740对此进行描述。
通过滤波器500中的系数的延迟移动,平滑地执行滤波器的重调整。通过指明滤波器产生的冲击响应的矢量h,即h=[h(0),...,h(N-1)]接下来,用下面两个步骤执行用于增加延迟的平滑转换a)冲击响应的下移(downshift),即h[l]=h[l+VALUE],其中VALUE为引入延迟。对于所有整数l执行此操作,以使得l=1,...,N-VALUE-1。
b)将N-VALUE最后的值重置为零,即对于l=N-VALUE,...,N-1来说,h[l]=0.0。
对于相反的操作,即为了减小缓冲延迟,优选下面方案的两个步骤a)冲击响应的移动,即h[l]=h[l-VALUE],其中VALUE为延迟减小的值。对于所有整数l执行此操作,以使得l=N-1,...,N-VALUE。这里注意,更新h[l],以减小l的值。
b)将N-VALUE第一个系数重置为零,即对于l=0,...,N-VALUE-1,h[l]=0.0。
通过参照图7和8,图示了当根据本发明在已被调整到回音冲击响应之后图示了“回音消除器的窗口”时、描述的滤波器系数的示范配置。这些例子中,如图所描述的,滤波器具有256个系数。因此,使得在图中明确指明的系数的数目仅为图示性的。
图7中可以看出,没有与纯回音路径延迟相关的滤波器系数,即回音消除器的窗口不覆盖此纯延迟,而由缓冲器510根据本发明的方案来估计该纯延迟。图7中也指明了滤波器开始中的一组系数,描述为SUB_ERL_HEAD,以及滤波器尾部的一组系数,描述为SUB_ERL_TAIL。在调整期间,这些SUB_ERL_HEAD和SUB_ERL_TAIL部分的平方和已与表示全滤波器的系数相关,即图7中作为ERL指明的回音返回损耗。
图8中可以看出,已调整了滤波器,以便覆盖包括两个独立的能量集中的回音冲击响应。应当注意,根据本发明的方案,已增加了延迟,以便完全覆盖第二能量集中,同时由于回音冲击响应的最开始部分具有非常低的能量电平,所以不考虑此部分。应当理解,此例子经过加工以使本发明更清楚,并且与使用的全长滤波器相关,该例子显然依赖于能量集中的位置,本领域的技术人员应当理解,也可将本发明的方案用于所谓的两个路径模型或双滤波器结构,其中使用了两个滤波器。以这样的建立,前景和背景滤波器使用不同的控制逻辑布置来模拟回音路径,因此使回音消除器对双向通话更健壮。对于本领域的技术人员来说,这样的双滤波器结构的使用是公知的。
回音消除器的复杂度经常与自适应滤波器的有效系数的数目直接成比例。滤波器需要的长度(系数的数目)取决于回音路径中的混合电路(hybrids)或场所声学特性。优选地,回音消除器应当允许多重反射,该情况中,由于经常不可能选择覆盖所有反射的一个纯延迟,所以一个纯延迟估计经常是不够的。
专注于复杂度方面的解决方案为,使用多个短滤波器取代较长的滤波器。此应用中概述的延迟估计方法在下面的场合中非常有用。例如,长度为256的滤波器可能不能提供好的结果,但是长度为64的两个滤波器可能提供非常好的结果。因此,类似于安排一个滤波器去处理一个纯延迟,分别安排多个滤波器去处理分布的回音路径,其中回音来源于各自的多重反射。图13中示范了这样的结构,其中将远端信号190输入到表示为滤波器1..M的多个滤波器,而信号110为生成的回音复制品信号。从附图标记中可明显看出,为了示范多个滤波器结构所包含的滤波器,FILTER2(滤波器2)330也更为详细地包括在附图中。此方面中,可通过包含延迟和反射的第一部分、包含另一个延迟和反射的第二部分等来模拟回音路径。一旦已识别了第一整体延迟和回音路径,并且滤波器由此已被调整,便可以类似的脉络来实现接下来的调整。
因此,显然,上面概述的方法可用于控制并调整多个滤波器以及单个滤波器。由于受到计算能力的限制,调整这样的滤波器的方法的另一个例子将用最大长度的一个滤波器开始。接下来增加延迟,直到发现最大延迟。滤波器随后被分割为两个独立的滤波器,每个使用独立的延迟估计和调整。一般地,滤波器被分成两半。如果提出的方法也用于调整第二滤波器,则估计的相关第二延迟将增加,直到发现第二反射。有必要加入条件,以避免滤波器的重叠。
因此,本发明不仅能够通过缓冲数据来处理静态的纯延迟,其还能够自适应地增加及减小缓冲器大小,以及通过独立的能量集中来处理回音路径,并分配滤波器系数,以消除分布的回音。
即使已通过参照本发明的具体的示范实施例来描述了本发明,但对于本领域的技术人员来说,显然可有很多不同替换、修改等。因此描述的实施例不试图限制本发明的范围,其由所附的权利要求来定义。
权利要求
1.一种回音消除器的方法,该回音消除器包括线性滤波器,用于从延迟抽头的滤波器系数以及到该滤波器的输入信号生成回音复制品信号,所述方法包括以下步骤a)将在回音源的方向传送的信号作为输入信号施加到信号缓冲器,该信号缓冲器将延迟的输入信号提供给该滤波器的输入,该延迟的信号具有受到回音消除器包括的控制逻辑所控制的延迟,其特征在于,重复执行下面的步骤b)基于预定的第一模式切换条件,确定是否应当尝试增加对该滤波器的输入信号的延迟,并且如果满足第一模式切换条件,则进入增加模式,其中如果基于第一组滤波器系数的计算测定和基于第二组滤波器系数的计算测定之间的关系低于第一预定阈值,则控制该缓冲器,以增加输入信号的延迟;以及c)基于预定的第二模式切换条件,确定是否应当尝试减小对该滤波器的输入信号的延迟,并且如果满足第二模式切换条件,则进入减小模式,其中如果基于第三组滤波器系数的计算测定和基于第二组滤波器系数的计算测定之间的关系低于第二预定阈值,则控制该缓冲器,以减小输入信号的延迟。
2.如权利要求1所述的方法,其中,回音消除器包括第二线性滤波器,用于生成来自回音源的反射的第二能量集中的复制品,第二反射的该复制品包括在回音复制品信号中,所述信号缓冲器将第二延迟输入信号提供到第二滤波器的输入,该第二延迟输入信号具有通过所述控制逻辑、根据步骤b)和c)来控制的延迟,由此生成包括两个独立的反射能量集中的回音复制品信号。
3.如权利要求2所述的方法,其中,一个或更多附加线性滤波器包括在回音消除器中,用于基于一个或更多来自于信号缓冲器的对应的附加延迟输入信号,生成回音复制品信号,其中该信号缓冲器具有根据步骤b)和c)控制的延迟,回音复制品信号包括一个或更多对应的附加反射能量集中。
4.如权利要求1-3中的任一个所述的方法,包括对于与回音路径的改变相关的事件,基于所述第一和所述第二模式切换条件。
5.如权利要求1-4中的任一个所述的方法,包括定义当接收的回音信号和滤波器产生的回音复制品信号之间的差值超过了第一误差阈值时要满足的所述第一和所述第二模式切换条件。
6.如权利要求1-5中的任一个所述的方法,包括定义在一个或更多定时器的控制下、以某些间隔满足的所述第一和所述第二模式切换条件。
7.如权利要求1-6中的任一个所述的方法,其中所述第一组滤波器系数包括与短延迟相关的系数;所述第三组滤波器系数包括与长延迟相关的系数;以及所述第二组滤波器系数表示滤波器的全长。
8.如权利要求1-7中的任一个所述的方法,其中,计算的测定为各组滤波器系数的平方和形式的能量。
9.如权利要求1-8中的任一个所述的方法,其中,所述线性滤波器为双滤波器结构的自适应背景滤波器,包括拷贝所述滤波器系数到双滤波器结构的非自适应前景滤波器的步骤,该前景滤波器生成所述回音复制品信号。
10.如权利要求1-9中的任一个所述的方法,其中,所述线性滤波器为有限冲击响应(FIR)滤波器。
11.如权利要求1-10中的任一个所述的方法,其中,在用于电话的终端用户设备中执行该方法,以消除由扬声器和麦克风之间的串话、或由终端用户设备所处环境的反射产生的声学回音。
12.如权利要求1-10中的任一个所述的方法,其中,在操作地连接到用于电话的终端用户设备的本地电话交换机中执行该方法。
13.如权利要求1-10中的任一个所述的方法,其中,在操作地连接到本地电话交换机的电话交换机中执行该方法。
14.如权利要求1-10中的任一个所述的方法,其中,在操作地连接到本地电话网络的远程电话交换机中、或在通过这种操作连接使用的网关中执行该方法。
15.如权利要求1-10中的任一个所述的方法,其中,在操作地连接到电话网络的诸如移动交换中心的移动通信网络中、或在通过这种操作连接使用的网关中执行该方法。
16.如权利要求1-10中的任一个所述的方法,其中,在操作地连接到电话网络的分组交换网络中、或在通过这种操作连接使用的网关中执行该方法。
17.如权利要求16所述的方法,其中,所述分组交换网络为因特网协议网络。
18.一种存储可生成回音消除器的计算机可运行的组件的计算机可读介质,该回音消除器包括至少一个线性滤波器,用于生成回音复制品信号;以及延迟缓冲器,用于将传送到回音源的信号作为延迟输入信号传输到所述至少一个线性滤波器中的每个,以当在回音消除器所包括的通用计算机上运行该计算机可读组件时,执行权利要求1-18中的任一个中所述的步骤。
19.一种回音消除器,包括线性滤波器,用于从延迟抽头的滤波器系数以及到该滤波器的输入信号生成回音复制品信号,该回音消除器还包括缓冲存储器,其与传输线互联,用于在回音源和滤波器输入的方向传送信号;以及控制逻辑部件,其连接到缓冲存储器,用于控制缓冲存储器传输到滤波器的输入的信号的延迟,其特征在于,该控制逻辑部件包括第一控制电路,用于基于预定的第一模式切换条件,反复确定是否应当尝试增加对该滤波器的输入信号的延迟,并且如果满足第一模式切换条件,则进入增加模式,其中如果基于第一组滤波器系数的计算测定和基于第二组滤波器系数的计算测定之间的关系低于第一预定阈值,则控制该缓冲,以增加输入信号的延迟;以及第二控制电路,用于基于预定的第二模式切换条件,反复确定是否应当尝试减小对该滤波器的输入信号的延迟,并且如果满足第二模式切换条件,则进入减小模式,其中如果基于第三组滤波器系数的计算测定和基于第二组滤波器系数的计算测定之间的关系低于第二预定阈值,则控制该缓冲,以减小输入信号的延迟。
20.如权利要求19所述的回音消除器,包括第二线性滤波器,用于生成来自回音源的反射的第二能量集中的复制品,第二反射的该复制品包括在回音复制品信号中,安排所述缓冲存储器,以将第二延迟输入信号传输到第二滤波器的输入,该第二延迟输入信号具有通过所述第一和所述第二控制电路来控制的第二延迟,由此提供包括两个独立的反射能量集中的回音复制品信号。
21.如权利要求20所述的回音消除器,包括一个或更多附加线性滤波器,用于基于一个或更多来自于信号缓冲器的对应附加延迟输入信号,生成回音复制品信号,其中该缓冲存储器具有通过所述第一和所述第二控制电路控制的延迟,回音复制品信号包括一个或更多对应的附加反射能量集中。
22.如权利要求19-21中的任一个所述的回音消除器,其中,安排所述第一和第二控制电路,以对于与回音路径的改变相关的事件,基于所述第一和所述第二模式切换条件。
23.如权利要求19-22中的任一个所述的回音消除器,其中,安排所述第一和第二控制电路,以确定当接收的回音信号和滤波器产生的回音复制品信号之间的差值超过了第一误差阈值时,满足所述第一和所述第二模式切换条件。
24.如权利要求19-23中的任一个所述的回音消除器,包括一个或更多用于控制间隔的定时器,该间隔定义了何时满足所述第一和所述第二模式切换条件。
25.如权利要求19-24中的任一个所述的回音消除器,其中所述第一组滤波器系数包括与短延迟相关的系数;所述第三组滤波器系数包括与长延迟相关的系数;以及所述第二组滤波器系数表示滤波器的全长。
26.如权利要求19-25中的任一个所述的回音消除器,其中,计算的测定为各组滤波器系数的平方和形式的能量。
27.如权利要求19-26中的任一个所述的回音消除器,包括带有自适应背景滤波器和非自适应前景滤波器的双滤波器结构,该背景滤波器由所述线性滤波器形成,并且该控制逻辑包括用于拷贝所述滤波器系数到前景滤波器、以生成所述回音复制品信号的装置。
28.如权利要求19-27中的任一个所述的回音消除器,其中,所述线性滤波器是有限冲击响应(FIR)滤波器。
29.如权利要求19-28中的任一个所述的回音消除器,其中,通过数字信号处理器、通用微处理器、或一个或更多特定应用的集成电路来实现带有其第一和第二控制电路的控制逻辑部件。
30.一种系统设备,包括下面装置中的任一个终端用户装置,用于电路交换或分组交换网络的电话;本地电话交换机,操作地连接到用于电话的终端用户装置;电话交换机,操作地连接到本地电话交换机;移动通信网络的移动交换中心,操作地连接到电话网络;或网关,将分组交换网络或移动通信网络互联于电话网络,并且还包括根据权利要求19-29的回音消除器,作为该设备或连接到该设备的一部分。
31.如权利要求19-29中的任一个所述的回音消除器的使用,用于消除由电话的终端用户装置的扬声器和麦克风之间的串话、或由终端用户装置所处环境的反射产生的声学回音。
32.如权利要求19-29中的任一个所述的回音消除器的使用,用于消除由本地电话交换机中的电路产生的回音信号。
全文摘要
本发明涉及一种远程通信系统的回音消除,尤其涉及用于回音消除的线性滤波器(500)的自适应调整。根据本发明,通过控制逻辑(520),不断地确定是否应当尝试增加包括在回音复制品信号(110)中的反射复制品延迟,其中由信号缓冲器(510)提供该延迟。类似地,不断地确定是否应当尝试减小反射复制品延迟。这样,有可能提供这样的反射复制品的延迟,其对应于包括在回音路径上接收的回音信号(120)中的对应反射的纯延迟。由于滤波器(500)通过以递增和平滑方式来不断地增加或减小当前复制品延迟,将不断且快速地适应回音路径延迟中的改变,所以本发明是有利的。
文档编号H04B3/23GK1650537SQ03809441
公开日2005年8月3日 申请日期2003年4月25日 优先权日2002年4月26日
发明者彼得·汉德尔, 乔恩·伯根海姆, 苏珊妮·雷姆勒 申请人:环球Ip音响欧洲公司, 环球Ip音响公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1