在基站分发帧同步信息的设备和方法

文档序号:7605471阅读:160来源:国知局
专利名称:在基站分发帧同步信息的设备和方法
技术领域
本发明涉及实现在至少两个不同标准的空中接口的基站分发帧同步信息的方法以及实现至少两个不同标准地空中接口的基站。
背景技术
基站,或者说基站收发信台或节点B(欧洲电信标准协会(ETSI)所用的术语),是移动网络内负责向移动台发射无线电和从移动台接收无线电的网元。基站提供基站系统的收发机功能。一个基站可以包括一个或多个收发机。在第三代网络内,基站端接有一个对一个无线电网络控制器(RNC)的Iub接口。
传统的基站仅实现一个遵从诸如GSM(全球移动通信系统)或UMTS(通用移动通信系统)之类的某个标准的空中接口。在这样的基站内,分发帧同步信息通常使用总线内的连续帧时钟信号。这种分发实现起来是不成问题的,因为在总线上传输的只有一个标准的帧同步信息。
然而,同时实现至少两个不同标准的空中接口的当前基站越来越普遍。在这样的多标准基站分发帧同步信息比在传统的基站分发复杂得多。

发明内容
本发明的目的是提供一种得到改善的在一个实现至少两个不同标准的空中接口的基站内分发帧同步信息的方法。
按照本发明的一个实施例,所提供的是一种在实现至少两个不同标准的空中接口的基站分发帧同步信息的方法,所述方法包括在时钟单元中产生至少两个空中接口标准的帧同步信息;使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,通过串行总线将含有帧同步信息的同步突发串从时钟单元传送给处理单元;以及在至少一个处理单元中从相应空中接口标准的接收的同步突发串中提取帧同步信息。
本发明还寻求提供一种得到改善的实现至少两个不同标准的空中接口的基站。
按照本发明的另一个实施例,提供了一种实现至少两个不同标准的空中接口的基站。这种基站包括时钟单元,被配置成产生用于至少两个空中接口标准的帧同步信息;不同空中接口标准的处理单元,其中至少一个处理单元被配置成从相应空中接口标准的接收的同步突发串中提取帧同步信息;以及连接时钟单元和处理单元的串行总线,被配置成使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,将含有帧同步信息的同步突发串从时钟单元传送给处理单元。
本发明提供了一些优点。例如,即使在一个多标准基站内也只需要一个用于帧同步信息的串行总线。由于使用时分多路复用和突发串(burst)(即非连续信号),从而降低了对其他信号的干扰。这种解决方案还是可扩展的;在将来出现某个新标准的处理单元时,也不需要改变同步总线结构。


以下将结合优选实施例和附图对本发明进行详细说明,在这些附图中
图1为例示基站的时钟单元、串行总线和处理单元的简化方框图2例示了射频接收单元和基带处理单元两种不同处理单元的内部结构;
图3例示了射频处理单元在上行链路和下行链路方向上进行处理的内部结构;
图4例示了处理射频数据和基带数据的专用单元的内部结构;
图5例示了同步突发串结构的一个例子;
图6为例示在一个实现至少两个不同标准的空中接口的基站分发帧同步信息的方法的流程图;以及
图7例示了多标准处理单元的内部结构。
具体实施例方式
下面结合图1说明基站结构的一个例子。这个基站实现至少两个不同标准的空中接口,因此它包括不同空中接口标准的处理单元104、106、108、110、112、114、116、118。
在这里,标准是指任何具有不同的帧同步要求的空中接口标准。这样的标准的例子包括代表第二代无线电系统的GSM;基于GSM的无线电系统,这种系统用EDGE(全球化增强数据率)技术提高数据传输速率,也可以用来在一个GPRS(普通分组无线电系统)系统内实现分组传输,代表2.5代无线电系统;以及至少已知为IMT-2000(国际移动电信2000)和UMTS(通用移动通信系统)的无线电系统,这种系统采用WCDMA(宽带码分多址)技术,代表第三代无线电系统。然而,实施例并不局限于这些系统,但是熟悉该技术领域的人员也可以将这些实施例应用于其他可以使用多标准基站的无线电系统。
在我们的例子中,空中接口标准是GSM和UMTS。处理单元104、106、108和110遵从GSM标准,而处理单元112、114、116和118遵从UMTS标准。
基站需要一个精确的时钟信号,以保证在空中接口上有高的频率稳定度和精确的定时。高精度可以通过将来自国家基准时钟的时钟信号作为沿着国家电话主干网的一个脉冲串沿着无线电系统基本设施例如移动通信交换中心(MSC)、基站控制器(BSC)或无线电网络控制器(RNC)直到基站传送来实现。此外,也可以用其他的原子钟或GPS(全球定位系统)时钟作为精确的时钟信号源。基站的时钟单元100设计成产生至少两个空中接口标准的帧同步信息。时钟单元100可以做成维护系统时钟和帧时钟,也可以只维护帧时钟,而系统时钟由另一个单元维护。时钟单元100也可以合并入某个其他单元,诸如基站的主控单元。在一个实施例中,时钟单元100设计成产生帧同步信息的帧时钟。
在一个实施例中,时钟单元100被配置成产生帧同步信息的帧序号。一个GSM TDMA(时分多址)帧包括8个时隙,每个时隙的长度为577微秒,因此一个帧的长度为8×577微秒=4.616毫秒。一个GSM的超帧包括2715648帧,因此帧序号在3小时28分53.760秒内从开始排到结束。一个UMTS帧包括15个时隙,每个时隙的长度为666微秒,而在UMTS内系统帧序号(SFN)是一个12比特的数字。一些过程,诸如处理横跨多个帧的基带和射频信号之类,使用帧序号。
基站还包括一个将时钟单元100与处理单元104、106、108、110、112、114、116、118连接起来的串行总线102。串行总线102被配置成通过对发往不同空中接口标准的处理单元的各同步突发串的时分多路复用将含有帧同步信息的同步突发串从时钟单元102传送到处理单元104、106、108、110、112、114、116、118。这意味着GSM标准的同步突发串发给处理单元104、106、108和110,而UMTS标准的同步突发串发给处理单元112、114、116和118。时分多路复用是将一些信号在时间上交织后通过一个公共信道发送的数字信息传输技术,在我们的例子中就是将一些同步突发串在时间上交织后通过公共的串行总线102发送。
不同空中接口标准的处理单元104、106、108、110、112、114、116、118各被配置成从接收到的各自的空中接口标准的同步突发串中提取帧同步信息。因此处理单元104、106、108和110各从GSM标准的同步突发串中提取同步信息,而处理单元112、114、116和118各从UMTS标准的同步突发串中提取同步信息。
分发帧同步信息可以在基站启动期间、按请求和/或每隔预定时间执行。在一个实施例中,时钟单元100被配置成按请求执行帧同步信息分发。在一个实施例中,处理单元104、106、108、110、112、114、116、118被配置成向时钟单元100请求帧同步信息。处理单元104、106、108、110、112、114、116、118可以被配置成在处理单元启动期间进行请求。在一个实施例中,时钟单元100被配置成在基站启动期间执行帧同步信息分发。
时钟单元100被配置成通过广播(单向向一些用户)或组播执行向处理单元104、106、108、110、112、114、116、118的帧同步信息分发。组播(Multicasting)可以定义为向处理单元的一个子集广播,即,它可能需要使用在串行总线102内的路由器。因此在时钟单元100与这些处理单元之间有一个点到多点的连接。处理单元内部,可以使用点到点的连接,如以下所说明的那样。
图1中的这些处理单元可以列为用于上行链路接收的GSM标准的射频接收单元104,用于上行链路检测、解码和解密的GSM标准的基带处理单元106,用于下行链路发送的GSM标准的射频发送单元108,用于下行链路编码和加密的GSM标准的基带处理单元110,用于上行链路接收的UMTS标准的射频接收单元112,用于上行链路检测的UMTS标准的基带处理单元114,用于下行链路发送的UMTS标准的射频发送单元116,以及用于下行链路编码和调制的UMTS标准的基带处理单元118。所谓上行链路是指移动台发送、基站接收的传输方向,而下行链路是指相反的传输方向。
下面,结合图2说明称为射频接收单元200和基带处理单元202的两个不同处理单元的内部结构。射频接收单元200和基带处理单元202包括从串行总线102接收同步突发串的帧时钟接收器210、230。处理单元200、202还包括系统时钟212、232。系统时钟212、232接收总线250上的定时信息。定时信息可以是一个连续的频率基准。在一个实施例中,时钟单元100被配置成将一个用帧时钟锁相的系统时钟分发给处理单元200、202。而处理单元200、202可以被配置成用从系统时钟212、232得出的采样率对串行总线102采样。帧时钟与系统时钟之间的同步使得实现以足够高的定时精度分发帧同步信息更为容易。
在一个实施例中,处理单元200、202被配置成将提取的帧同步信息用于同一个空中接口标准的不同处理单元200、202之间的空中接口帧同步。在图2这个例子中,射频接收单元200和基带处理单元202包括将提取的帧同步信息用于空中接口帧同步的帧定时块214、234。如图2所示,射频接收单元200包括由帧定时块214控制的射频处理块218,而基带处理单元202包括由帧定时块234控制的基带处理块242。射频处理块218使用帧定时基准将上行链路样值封装成总线消息。这些消息使用一个承载给基带处理块242的空中接口定时信息的时戳(timestamp)。
在一个实施例中,处理单元200、202被配置成将提取的帧同步信息用于同一个空中接口标准的不同处理单元200、202之间的总线204同步。如图2所示,处理单元200、202包括控制在总线204两端的总线接口222、238的总线定时块216、236。
通常,处理单元200、202被配置成产生锁定到所提取的同步信息上的独立同步信息,即帧定时块214、234和总线定时块216、236独立地维护同步信息。应指出的是,帧定时块214、234和总线定时决216、236可以共同维护同步信息。用单块实现帧定时块214、234和总线定时块216、236也是可行的。帧定时块214、234内可以用计数器来产生帧序号。
在射频处理块218与总线接口222之间可以有一个FIFO(先进先出,即到达的实体它们按到达的次序处理的排队规则)块220,而在总线接口238与基带处理块242之间可以有一个FIFO块240。可以用维护读、写地址的环形缓冲器实现FIFO块220、240。
在图1和2中示出的是上行链路和下行链路方向处理单元分开的实现方式。然而,也可以是在上行链路和下行链路两个方向上用一个处理单元处理。下面,结合图3说明这样一个处理单元300的内部结构。处理单元300是一个射频收发单元,但是同样的原理也可以用于基带处理单元302(为了清晰起见在这里就不再对它的内部结构进行说明)。处理单元300包括接收串行总线102上的同步突发串的帧时钟接收器210。帧时钟接收器将接收到的同步信息分发给帧定时块316和总线定时块318。帧定时块316控制上行链路射频处理块310和下行链路射频处理块320内的帧同步。总线定时块318控制上行链路总线接口314和下行链路总线接口324的总线同步。上行链路总线接口314向上行链路总线330发送,而下行链路总线接口324从下行链路总线332接收。在这两个链路方向上具有独立的FIFO块312、322。
在图4所示的一个实施例中,与空中接口标准有关的处理单元包括射频收发块404和基带处理块408,而这两个块包括在基站的一个专用单元400内。这个专用单元400处理射频数据和基带数据。专用单元400还包括帧时钟接收器210和帧定时块402,但是它不一定需要总线定时块,这当然取决于发送给总线410的输出信号的定时要求。专用单元400可以在射频收发块404与基带处理块之间有一个FIFO块406。图4的专用单元400用于上行链路方向,但是也可以是一个为下行链路方向设计的专用单元。一个体现图3和4的功能的专用单元也是可行的;这样的专用单元于是将具有用于上行链路和下行链路方向的射频收发块和基带处理块。
在图7所示的一个实施例中,示出了一个多标准处理单元的内部结构。两个不同的空中接口标准的处理单元包括在基站的一个多标准单元内。在我们的例子中,多标准处理单元是一个基带处理单元700,能处理从GSM上行链路射频接收单元104得到的基带信号和从UMTS上行链路射频接收单元112得到的基带信号。
基带处理单元700包括接收在串行总线102上的GSM空中接口标准和UMTS空中接口标准的同步突发串的帧时钟接收器702。基带处理单元700包括总线定时块704、GSM帧定时块706和UMTS帧定时块708。基带处理单元700还包括由GSM帧定时块706控制的GSM基带处理块714和由UMTS帧定时块708控制的UMTS基带处理块716。总线定时块704控制入局总线722和724的总线接口710和出局总线726的总线接口718。入局总线接口710能处理GSM和UMTS基带信号。在我们的例子中,在入局总线接口710与基带处理块714、716之间还有一个能使GSM和UMTS基带信号排队的FIFO块712。
图7还例示了基带处理能力分配给一些串行连接的基带处理单元的实施例。在我们的例子中,所需的基带功能分配给由总线726连接的两个基带处理单元700、720。同样的原理也可以用于射频处理单元。
时钟单元100和处理单元104、106、108、110、112、114、116、118与图1至4和7所示的所有变形通常各用安装在电路板上的一个或多个专用集成电路(ASIC)实现。这些单元还可以包括其他硬件部分,诸如微处理器及其他集成电路,例如时钟电路和总线接口。有些功能也可以用在一个微处理器上运行的软件实现。这些结构块因此包括硬件部件、ASIC块和软件模块。在选择实现配置中,熟悉该技术领域的人员将会考虑例如对设备的尺寸和功耗的要求、所需的处理能力、生产成本和生产量。
下面将介绍实现帧定时块214、234和总线定时块216、236的一个例子。每个块维护一个内部“Mode(模式)”寄存器和“State(状态)”寄存器。接收一个同步突发串的操作取决于“Mode”和“State”寄存器,情况如下
IF"Mode"in burst=ASIC Block modeTHEN  IF"State"=Synchronized  THEN do"Compare"Operation   IF Compare resultis"Not OK",   THEN  set"State"to"Not Synchronized"  result register="Compare Not OK"  ELSE  Result register="Compare OK"   END IF Compare   ELSE   IF Control is"Synchronize",   do"Synchronize"Operation   set"State"to"Synchronized"  END IF Control<!-- SIPO <DP n="8"> --><dp n="d8"/>   END IF State  ELSE   Do Nothing  END IF MODE
注意,如果同步在某个界限内(例如在±1或±2个ASIC时钟周期内)正确,“Compare(比较)”将返回“OK”。“State”寄存器将由ASIC加电和由“Compare”操作作为它的比较结果返回“Compare Not OK”而设置为“Not Synchronized”。
图5例示了同步突发串结构的一个例子。各个部分内给出的数字作为这些部分的比特长度的例子。时钟单元100被配置成在同步突发串中插入一个开始部分500、一个指出同步突发串是用于某个空中接口标准的帧同步还是用于总线同步的模式部分502和一个末尾部分508。在一个实施例中,同步突发串还包括一个系统帧序号504。在一个实施例中,同步突发串还包括一个检错码506。所说明的非连续同步突发串可以是90比特长。如果串行总线102的速率为3.84兆比特/秒,同步突发串就为25微秒长。
开始部分500表示将有一个新的同步突发串来临。在我们的例子中,在可以识别开始比特前需要至少89个相继的零。
每个处理单元104、106、108、110、112、114、116、118,确切地说每个处理单元的帧时钟接收器210、230,根据模式部分502只接收要给它的那些同步突发串,而忽略其他模式的同步突发串。模式部分502开始于LSB(最低有效位)。在处理单元用ASIC技术实现时,ASIC块的模式保存在一个寄存器内,于是就可以将这个寄存器的值与接收到的模式部分502相比较。
系统帧序号504开始于端部比特,即LSB比特首先出现,而未使用的比特具有值零。在总线同步模式,没有帧序号,因此所有的比特的值都为零。在UMTS/TDD模式,有一个12比特的帧序号。UMTS/TDD模式是需定义的。在GSM/EDGE模式,有以下这些值T1(11比特0-10),T2(5比特11-15),以及T3(6比特16-21)。在CDMA2000模式,系统时间在一些20毫秒的帧(33比特)内。对于其他模式,需定义这些比特。
可以使用CRC(循环冗余校验),例如用生成多项式x16+x12+x5+1,作为检错码506。CRC 506是对模式部分502和系统帧序号504计算得出的。CRC 506以LSB为开始发送。
末尾部分508指出本同步突发串结束。在一个实施例中,处理单元104、106、108、110、112、114、116、118被配置成在一个偏离同步突发串的一个预定点预定偏移量处改变帧序号。这个预定点可以例如是同步突发串的端点。预定偏移量也可以具有值零。
下面,给出数据率和时钟频率的值的一些例子,串行总线102内的数据率为在时钟单元100从19.2MHz(兆赫)的时钟得出的3.84兆比特/秒。每个处理单元以接收到的19.2MHz系统时钟对串行总线102重新计时/采样。处理单元的ASIC块可以以它们的76.8MHz的内部ASIC时钟对串行总线102计时/采样,只要ASIC时钟速度为76.8MHz。ASIC块于是可得到表示精确的帧边界时间的末尾部分508的下降沿(如ASIC时钟所重新计时的)。
在表1(FDD=频分双工,TDD=时分双工,IS-95=第二代码分多址标准,由电信工业协会编制)中,列出了模式部分502的的一些例子,其中比特值用十六进制数表示。
表1
下面,结合图6说明在一个实现至少两个不同标准的空中接口的基站分发帧同步信息的方法。所说明的方法可以用如上面所说明的技术实现,但是其他类型的实现方式也是可行的。
方法从600开始执行。在一个实施例中,在基站启动期间执行帧同步信息分发。在另一个实施例中,如602所示,按请求执行帧同步信息分发。在一个实施例中,处理单元向时钟单元请求帧同步信息。在一个实施例中,在处理单元启动期间请求。也可以是在处理单元正常操作期间例如每隔一定时间或者在处理单元检测到需要校正同步后提出请求。在一个实施例中,每隔预定时间执行帧同步信息分发,而不需要任何专用消息。
在604,在一个时钟单元内产生至少两个空中接口标准的帧同步信息。
在一个实施例中,在同步突发串中插入一个开始部分、一个指出同步突发串是用于一个专用空中接口标准的帧同步还是用于总线同步的模式部分和一个末尾部分。在一个实施例中,在同步突发串中插入一个系统帧序号。在一个实施例中,在同步突发串中插入一个检错码。
在一个实施例中,为帧同步信息产生帧时钟。
在一个实施例中,为帧同步信息产生帧序号。
在一个实施例中,在偏离同步突发串的一个预定点预定偏移量处改变帧序号。因此,可以在同步突发串的末端改变帧序号。
然后,在606,在一个串行总线上用对发往不同空中接口标准的处理单元的各同步突发串的时分多路复用将含有帧同步信息的各同步突发串从时钟单元传送给一些处理单元。
最后,在608、610,在每个处理单元内从所接收的各自空中接口标准的同步突发串中提取帧同步信息。
方法在620结束。
在一个实施例中,在612、614,在处理单元内产生锁定到所提取的同步信息上的独立同步信息。
在一个实施例中,在616、618,将提取的帧同步信息用于同一个空中接口标准的不同处理单元之间的空中接口帧同步。在另一个实施例中,将提取的帧同步信息用于同一个空中接口标准的不同处理单元之间的总线同步。
在一个实施例中,将用帧时钟锁相的系统时钟分发给这些处理单元,用从系统时钟得出的采样率对串行总线采样。
虽然上面按照附图结合一个例子对本发明作了说明,但显然本发明不局限于此,而是可以在所附权利要求书所给出的专利保护范围内以一些方式加以修改。对于专业技术人员来说,显然可以通过将图中所示的这些实施例相互组合来得到一些新的实现方式。
权利要求
1.一种在实现至少两个不同标准的空中接口的基站分发帧同步信息的方法,所述方法包括
在时钟单元中产生至少两个空中接口标准的帧同步信息;
使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,通过串行总线将含有帧同步信息的同步突发串从时钟单元传送给处理单元;以及
在至少一个处理单元中从相应空中接口标准的接收的同步突发串中提取帧同步信息。
2.如权利要求1所述的方法,还包括
将提取的帧同步信息用于至少一个空中接口标准的不同处理单元之间的空中接口帧同步。
3.如权利要求1所述的方法,还包括
将提取的帧同步信息用于至少一个空中接口标准的不同处理单元之间的总线同步。
4.如权利要求1所述的方法,还包括
在至少一个处理单元内产生锁定到提取的同步信息的独立同步信息。
5.如权利要求1所述的方法,还包括
按请求执行帧同步信息分发。
6.如权利要求1所述的方法,还包括
由至少一个处理单元从时钟单元请求帧同步信息。
7.如权利要求6所述的方法,还包括
在所述处理单元启动期间执行所述请求步骤。
8.如权利要求1所述的方法,还包括
在所述基站启动期间执行帧同步信息分发。
9.如权利要求1所述的方法,还包括
每隔预定时间间隔执行帧同步信息分发。
10.如权利要求1所述的方法,还包括
通过广播或组播执行对处理单元的帧同步信息分发。
11.如权利要求1所述的方法,还包括
在至少一个同步突发串中插入开始部分、指出至少一个同步突发串是意图用于特定空中接口标准的帧同步还是用于总线同步的模式部分、以及末尾部分。
12.如权利要求11所述的方法,还包括
在所述至少一个同步突发串中插入系统帧序号。
13.如权利要求11所述的方法,还包括
在所述至少一个同步突发串中插入检错码。
14.如权利要求1所述的方法,还包括
为帧同步信息产生帧时钟。
15.如权利要求14所述的方法,还包括
向处理单元分发用帧时钟锁相的系统时钟;以及
用从系统时钟得出的采样率对串行总线采样。
16.如权利要求1所述的方法,还包括
为帧同步信息产生帧序号。
17.如权利要求16所述的方法,还包括
在距离接收的同步突发串的预定点一个预定偏移处改变帧序号。
18.如权利要求1所述的方法,还包括
提供包括射频收发单元和基带处理单元的至少一个空中接口标准的处理单元。
19.如权利要求1所述的方法,还包括
提供包括射频收发块和基带处理块的至少一个空中接口标准的处理单元;以及
将射频收发块和基带处理块包括在基站的至少一个专用单元内。
20.如权利要求1所述的方法,还包括
将两个不同空中接口标准的处理单元包括在基站的至少一个多标准单元内。
21.一种实现至少两个不同标准的空中接口的基站,所述基站包括
时钟单元,被配置成产生用于至少两个空中接口标准的帧同步信息;
不同空中接口标准的处理单元,其中至少一个处理单元被配置成从相应空中接口标准的接收的同步突发串中提取帧同步信息;以及
连接时钟单元和处理单元的串行总线,被配置成使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,将含有帧同步信息的同步突发串从时钟单元传送给处理单元。
22.如权利要求21所述的基站,其中
至少一个处理单元被配置成将提取的帧同步信息用于至少一个空中接口标准的不同处理单元之间的空中接口帧同步。
23.如权利要求21所述的基站,其中
至少一个处理单元被配置成将提取的帧同步信息用于一个空中接口标准的不同处理单元之间的总线同步。
24.如权利要求21所述的基站,其中
至少一个处理单元被配置成产生锁定到提取的同步信息的独立同步信息。
25.如权利要求21所述的基站,其中
所述时钟单元被配置成按请求执行帧同步信息分发。
26.如权利要求21所述的基站,其中
至少一个处理单元被配置成从时钟单元请求帧同步信息。
27.如权利要求26所述的基站,其中
至少一个处理单元被配置成在至少一个处理单元启动期间进行请求。
28.如权利要求21所述的基站,其中
所述时钟单元被配置成在基站启动期间执行帧同步分发。
29.如权利要求21所述的基站,其中
所述时钟单元被配置成每隔预定时间间隔执行帧同步信息分发。
30.如权利要求21所述的基站,其中
所述时钟单元被配置成通过广播或组播执行对处理单元的帧同步信息分发。
31.如权利要求21所述的基站,其中
所述时钟单元被配置成在同步突发串中插入开始部分、指出同步突发串是意图用于特定空中接口标准的帧同步还是用于总线同步的模式部分、以及末尾部分。
32.如权利要求31所述的基站,其中
所述时钟单元被配置成在同步突发串中插入系统帧序号。
33.如权利要求31所述的基站,其中
所述时钟单元被配置成在同步突发串中插入检错码。
34.如权利要求21所述的基站,其中
所述时钟单元被配置成为帧同步信息产生帧时钟。
35.如权利要求34所述的基站,其中
所述时钟单元被配置成向处理单元分发用帧时钟锁相的系统时钟;以及
所述处理单元被配置成用从系统时钟得出的采样率对串行总线采样。
36.如权利要求21所述的基站,其中
所述时钟单元被配置成为帧同步信息产生帧序号。
37.如权利要求36所述的基站,其中
所述处理单元被配置成在距离同步突发串的预定点一个预定偏移处改变帧序号。
38.如权利要求21所述的基站,其中所述至少一个空中接口标准的处理单元包括射频收发单元和基带处理单元。
39.如权利要求21所述的基站,其中所述至少一个空中接口标准的处理单元包括射频收发块和基带处理块,所述射频收发块和基带处理块包括在基站的至少一个专用单元内。
40.如权利要求21所述的基站,其中两个不同空中接口标准的处理单元包括在基站的一个多标准单元内。
41.一种在实现至少两个不同标准的空中接口的基站分发帧同步信息的系统,所述系统包括
产生装置,用于在时钟单元内产生至少两个空中接口标准的帧同步信息;
传送装置,用于使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,通过串行总线将含有帧同步信息的同步突发串从时钟单元传送给处理单元;以及
提取装置,用于在至少一个处理单元中从相应空中接口标准的接收的同步突发串中提取帧同步信息。
42.如权利要求41所述的系统,还包括
利用装置,用于将提取的帧同步信息用于至少一个空中接口标准的不同处理单元之间的空中接口帧同步。
43.如权利要求41所述的系统,还包括
利用装置,用于将提取的帧同步信息用于至少一个空中接口标准的不同处理单元之间的总线同步。
44.如权利要求41所述的系统,还包括
产生装置,用于在至少一个处理单元中产生锁定到提取的同步信息的独立同步信息。
全文摘要
本发明提出了一种在实现至少两个不同标准的空中接口的基站分发帧同步信息的方法和系统以及一种实现至少两个不同标准的空中接口的基站。在时钟单元内产生至少两个空中接口标准的帧同步信息。使用用于发往不同空中接口标准的处理单元的同步突发串的时分多路复用,通过串行总线将含有帧同步信息的同步突发串从时钟单元传送给处理单元。在每个处理单元中从其相应空中接口标准的接收的同步突发串中提取帧同步信息。
文档编号H04L7/00GK1768540SQ200480008428
公开日2006年5月3日 申请日期2004年3月30日 优先权日2003年3月31日
发明者派卡·阿多尔弗森, 约翰·比尔 申请人:诺基亚公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1