用于经由网络分发时间和频率的系统和方法

文档序号:7941260阅读:167来源:国知局
专利名称:用于经由网络分发时间和频率的系统和方法
技术领域
本发明一般地涉及用于对于联网的接收机分发精确的时间和频率的系统和方法, 尤其涉及用于通过使用播放的“机会信号”,例如本地无线电或电视信号,来分发时间和频 率的系统。
背景技术
例如在出现切换的高速无线网络中,定时对于网络是至关重要的。定时关键的网 络的另一示例是城市配电网络,其中高压直流(DC)传输线用于在例如水电站坝的发电设 施和用电设备之间长距离地传送电力。高压DC电力信号必须在分发到商业和家庭之前转 换为低压AC电力信号。城市通常有许多在电力网上互连以进行转换的变电站。在低压AC 电力信号可以跨越公共低压传输线分发之前,互连的变电站必须以正好相同的频率和相位 产生该低压AC电力信号。因此,变电站必须在时间和频率上同步地工作。因此,在网络内 分布的或远程的位置处,需要精确的时间确定以及精确的频率确定。只要远程位置处的天线具有足够清楚的天空视野,在远程位置的GNSS接收机可 以提供定时和频率信息。然而,城市内的远程位置通常没有这样的天空视野,因此需要在远 程位置提供定时和频率信息。

发明内容
一种用于在分布的或远程的接收机处提供定时信息的方法和系统,使用可以由基 站接收机和远程接收机同时接收到的播放的(radiated)的机会信号(例如AM和FM无线 电信号、电视信号、来自地球同步通信卫星的信号等),来确定与在基站处确定的时间和频 率的时间和频率偏移量,要分发的时间和/或频率的源位于所述基站中。基于测得的偏移 量,远程接收机确定它们各自与基站的相对时间和频率差,并且采取适当的动作,例如将它 们的时钟校正为与在基站处的时钟的相位和频率更接近地对准。基站接收机和远程接收机知道它们各自的位置和机会信号发射机(这里也称作 为“SOP发射机”)的位置。具有与要分发的基准时钟(例如GNSS或UTC时间)同步的精 确定时时钟的基站获得广播的机会信号的样本序列,基于与经由基站和SOP发射机之间的 已知基线的传输相关联的时间延迟来确定传输时间,并且对样本进行时间标记。基站然后 发送时间标记后的样本序列。在交叠的时间周期期间,远程接收机存储广播信号的样本。远程接收机然后将时间标记后的样本序列与所存储的信号样本相关联,并且确定对应于序列的所保存信号的发 送时间,考虑经由各个远程接收机和SOP发射机之间的已知基线的延迟。远程接收机根据 在各个远程接收机和基站接收机处计算出的发送时间之间的时间差,来确定它们的相位时钟误差。远程接收机因此将时间保持在与基站接收机时间相差几微秒内,基站接收机时间 可依赖于基准时间,例如GNSS或UTC时间。为了更严格的定时并且尤其是频率需求,基站监控广播的机会信号的频率,并且 确定相关的相位误差,即SOP发射机的所登记的广播频率和实际的广播频率之间的相位 差。基站利用它的基准频率控制,并且因此基站确定广播信号的实际频率和基准频率之间 的相位差。基站向远程接收机发送相位差的信息,远程接收机使用相位差的信息来锁相到 基准频率。使用公共的机会信号源,网络上的频率同步精度因此可精确到纳秒/秒内。


下面本发明的描述将参考附图,其中图1是根据本发明构造的系统的功能框图;并且图2示出了机会信号的快照(snapshot)。
具体实施例方式参照图1,基准站或基站20(以下称为“基站接收机”)和远程接收机22” . . 22 连 接到通信网络24,例如因特网或专用网。每个接收机同时接收从一个或多个位置已知的大 功率辐射器26(即,AM/FM无线电发射机、信标或劳兰发射机、电视台发射机、地球同步通信 卫星等)广播的信号,一个或多个大功率辐射器26具有覆盖全部网络或部分网络的各自的 服务区。由于广播信号的信号质量、已知的传输位置和连续的广播而被选择的广播信号是 “机会信号”,即以各种频率并出于例如传输随机会话或对话的目的而广播的信号。例如,这 与GNSS信号形成对照,GNSS信号由GNSS卫星以相同的频率广播并且携带特定的代码。此 夕卜,与已知系统相比,当前系统未利用在广播信号上调制的信息的数据或内容,即例如未利 用广播信号中包含的发送时刻信息。地面辐射器在下文称为“SOP发射机”。在一个实施方式中,基站接收机20使用GNSS接收机,以提供网络的基准时间和频 率。因为使用了 GNSS接收机,所以基站接收机被定位为使得它有足够清楚的天空视野以使 用GNSS卫星信号来确定GNSS时间。然后,以已知方式工作的基站接收机20基于GNSS卫 星信号使它的时钟21与GNSS或UTC时间同步。优选地,基站接收机具有足够清楚的视野, 以便也使用GNSS卫星信号确定它的位置。否则,基站接收机的X、Y、Z位置坐标例如必须由 在安装基站接收机期间从手持GPS接收机获得的GNSS卫星信息,通过勘察、和/或通过使 用拓扑地图来得知。远程接收机22” . . 22 的位置也是已知的。在某些应用中,远程接收机的街道地址 就足够了。对于更精确的应用,必须在更紧的容限内知道位置,例如由在安装远程接收机期 间从手持GPS接收机获得的GNSS卫星信息,通过勘察、或通过使用拓扑地图来在更紧的容 限内知道位置。SOP发射机26的位置通常是已知的,或者可以根据注册机构提供的信息容易地确定,注册机构例如为U. S. Federal CommunicationsCommission(美国联邦通信委员会)或 FCC0该信息例如可经由因特网得到。网络24可向基站接收机和远程接收机提供可用的本 地机会信号的列表,或者系统例如针对其载波频率的稳定性、其调制后的频率内容并且基 于各个接收机处信号的场强度,可以选择特定的机会信号。另外,为了冗余,可以利用来自一个以上的SOP发射机的信号。明显地,广播信号是足够低频率的,以具有卓越的建筑物穿透性。因此,远程接收 机不需要具有特别好的天空视野,相反必须对所选择的广播的机会信号有相对良好的接 收。此外,使用这种低频信号使得接收机能够用可配置的前端滤波器(例如带电的电容滤 波器或数字FIR滤波器)进行扫描,以查找最佳的机会信号候选者。具有已知的位置或使用GNSS卫星信号所确定的位置的基站接收机20可容易地确 定到所选择的SOP发射机26的基线。类似地,远程接收机22,. . . 22n使用它们的已知位置 可以容易地确定到所选择的SOP发射机的各自基线。如果该SOP发射机相对于基站和远程 接收机之间的基线很远,可以使用方向向量代替接收机和该SOP发射机之间的基线。根据 基线,可以计算广播天线和接收机之间的SOP信号传播或行进时间,并且将其用于进一步 改进时间同步,如下所述。还参照图2,基站接收机20得到所广播的机会信号的样本序列200,并且对样本进 行时间标记。该序列可以是一秒长或更长的片段,例如1/4秒长。视情况而定,基站接收机 可以连续地或者按预定时间得到样本。为了对样本进行时间标记,基站接收机确定它们各自的发送时间。基站接收机因 此从时钟21提供的样本接收时间中减去与从SOP发射机26到基站接收机的信号传输相关 联的时间延迟,并且利用广播时间来对样本进行时间标记。例如接收机可以对序列中的每 个样本进行时间标记。另选地,基站接收机可以对快照的第一样本、或者序列中的某些样本 进行时间标记。基站接收机20然后经由通信网络24向远程接收机22” . . 22n发送时间标记 后的样本序列。视情况而定,基站接收机可以压缩信息,以便易于经由通信网络进行传输。远程接收机22” . . 22n类似地保存所广播的机会信号的样本并且基于它们的本地 时钟23” . . 23 对所广播的机会信号的样本进行时间标记。为了对样本进行时间标记,远程 接收机从在远程接收机接收相应信号的时间减去与从SOP发射机26到远程接收机的传输 相关联的时间延迟,以确定广播时间。视情况而定,远程接收机可以保存与样本序列具有相 同长度或者比样本序列稍长的信号片段的样本,以确保捕获相应的信号样本。给定的远程 接收机22i将从基站接收机接收的样本序列与所保存的时间标记后的数据相关联,使得信 号样本对准。根据远程接收机的序列和根据基站接收机的序列的广播时间之间的时间差是 远程接收机处的时钟误差,或者时间偏移量。使用时间偏移量,远程接收机22,将它的时间与基站时间(即在基站接收机处确 定的时间)对准,所述基站接收机可以具有与GNSS或UTC时间同步的时钟。基站接收机继 续向远程接收机发送时间标记后的序列,以确保继续时间对准达到一微秒或少量几微秒内 的程度。远程接收机22” . . 22n使用所接收的具有多种频率含量的样本序列200来确定时间偏移量,例如与广播信号中的变化相对应的序列,该广播信号不同于背景信号并且不是 有规律地重复,例如会话的特定位。这些序列表示“调制事件”,并且使所保存的调制事件和 所接收的调制事件对准,产生了具有基本上为三角形的相关函数,即具有单个相关峰的相 关函数。对应于重复声音(例如,某些音乐片段)的序列,不用于确定时间偏移量,因为关 联的相关函数具有多个峰并且如此将不能用足够的精度确定时间偏移量。远程接收机22J_序地将所接收的样本序列200、或者调制事件与所保存的时间标记后的信号样本数据相关联,并且选择产生最高相关值的所保存的数据。然后,远程接收机 按照上述所讨论的方式来确定时间偏移量。通过用基站接收机20提供的后续调制事件重 复该处理,来验证时间偏移量值。在基站接收机20和给定远程接收机22i处得到的样本可能是在稍微不同的时间 得到的,因为样本是相对于接收机的时钟而得到的。因此,用依赖于最佳匹配(即选择最高 相关值)的关联处理进行时间对准的精度基本上受到采样率的限制。为了提高精度,可以 对于解调样本收集处理的相位进行微调,以驱使在远程接收机处的采样时间更接近在基站 接收机处的采样时间。远程接收机22,确定在相关函数峰的任一侧上的相关值(即较早相关值和较晚相 关值)是否基本对称。如果不对称,则远程接收机在较早相关值或较晚相关值中较大者的 方向改变样本收集处理的相位,即采样时钟。远程接收机可以每次执行分析时将相位改变 预定量。另选地,远程接收机可将相位改变与较早和较晚相关值的差的大小相对应的量。在 确定较早和较晚相关输出值是否基本对称之前,远程接收机22i可以在进行比较之前,例如 通过在连续序列上对相关输出值进行平均来对相关输出值进行滤波。
对准的精度依赖于所选择的机会信号的广播调制频率含量和带宽,广播信噪比以 及较早和较晚相关参数的滤波带宽。例如使用具有5kHz带宽和平均噪声的典型AM无线电 谈话节目广播作为机会信号,并且以IOkHz的速率采样,通过微调采样收集处理的相位,远 程接收机22i可以将远程接收机时间与基站接收机时间(即,例如GNSS或UTC的基准时间) 对准到1微秒内。如果代替地选择具有IOOkHz带宽和平均噪声的电视广播作为机会信号, 则远程接收机可以将其时间与绝对时间对准到小于1微秒内。对于具有甚至更严的频率同步需求的应用,基站接收机20可代替地或另外地向 远程接收机22i提供与广播的机会信号相关联的相位信息,使得远程接收机可以锁相到基 站基准频率。为此,按已知方式运行的基站接收机使用它选择的基准频率源(例如GPS卫 星信息)来确定实际时钟频率。基站接收机然后锁相到广播的机会信号并且对SOP载波的 视在频率连续地积分(integrate)。周期性地,例如每1秒钟,基站接收机测量累积的频率 积分的值,以提供包括整数和分数载波周期分量的SOP相位测量。相位测量以预定间隔进 行,例如关于基准时间和频率以秒为间隔。可精确地测量分数周期分量,然而,整数周期分量具有任意的开始值,其必须由基 站接收机分配。基站接收机20已经使用它的时钟21 (该时钟可以依赖于GNSS的频率控 制),以确定相位测量的定时,并且因此,相位测量基于要分发的基准频率。基站接收机提供 相位信息、测量时间和标识SOP发射机的例如站标识符、标定站频率等的信息,所述相位信 息包括针对远程接收机22” . . 22 的整数和分数载波周期分量。另外,基站接收机可以发送 涉及信号质量和/或基站接收机跟踪操作的信息,例如信噪比、自从获取开始的秒数、最后 的锁中断、或者周跳等等。给定的远程接收机22i类似地锁相到广播的机会信号,并且类似地对它觉察到的 SOP载波频率进行连续积分,并且类似地,以从远程接收机的基准频率得到的采样率周期性 地采样SOP频率积分处理的相位。远程接收机将它的SOP相位测量与基站接收机的相比较, 以确定基站接收机和远程接收机之间的频率差。基于从基站接收机接收的第一计数,远程 接收机将它的整数周期计数设置为基站接收机所设置的计数,并且调整它的时钟的频率,使得在远程处的相位测量与在基站处的相同。远程接收机基于从基站接收机接收的随后相 位测量,将频率误差确定为在基站和在远程接收机处进行的相位测量之间的变化率。远程 接收机然后使用所计算的频率误差将它的时钟频率与基站接收机时钟的频率同步,即与基 准频率同步。系统可以工作以在确定或者没有确定绝对时间的情况下确定网络上的同步频率。 远程接收机例如可以不需要绝对时间,并且用任意时间或者从另一个源确定的不那么精确 的时间来代替。如果远程接收机也同步到基准时间,则基站接收机和远程接收机可以使用 载波周期计数来标识调制事件,其中根据该调制事件确定到绝对时间的同步。利用样本序 列200提供相关性方法能够将基站接收机和远程接收机之间的时间同步到好于SOP载波的 1/2波长,可以解决远程接收机的周期计数的整数非单值性并且将其设置为与基站精确地 匹配。当解决了非单值性的载波用于进行时钟和频率调整时,在远程接收机处的时间和频 率精度可维持在与例如GNSS或UTC时间的基准时间和频率相差几纳秒和几纳秒/秒内。使用来自基站的涉及基站处跟踪操作的质量的信息,远程例如通过仅使用质量最 佳的测量对(即,在基站接收机和远程接收机处都为高质量的测量),来进一步改进它的时 间同步。另选地或者另外地,远程接收机可基于冗余测量在最小平方解中通过信息质量来 加权测量差。此外,质量信息可使得正在跟踪单个SOP信号的远程接收机切换到另一个SOP 信号。这里描述的系统具有利用广播的机会信号在基站接收机和远程接收机之间进行 精确的时间和频率传送的优势。通信网络可以是有线或无线的。SOP发射机的已知位置可 以是轨迹式的而不是固定的位置。例如,SOP发射机可以从例如汽车、飞机、船或卫星的移动 平台进行发送,只要该发射机的位置和速度向量可以由系统确定。例如,对于卫星发射机, 轨道星历参数必须容易得到。一个或更多个远程接收机也可以接收GNSS卫星信号并且确 定位置。GNSS远程接收机可以是移动的或固定位置的接收机。基站接收机和远程接收机可 以通过下述操作来确定相位误差测量将接收的机会信号降频变换到使用该发射机的标定 所登记频率的基带或者某些其它更低的频率,确定剩余频率偏移量,并且将降频变换的频 率偏移量进行积分以计算相位误差测量。远程接收机然后基于在基站接收机处和在远程接 收机处进行的相位测量的差,来确定频率偏移量。通过降频变换来确定相位测量,整数周期 计数值不会增长得那么大,因此更有效地进行处理并且需要更少的带宽来与远程接收机通信。
权利要求
一种用于利用机会信号经由网络传送时间的系统,该机会信号是由一个或更多个位置已知的发射机所发送的,所述系统包括基站接收机,该基站接收机具有与基准时间同步的时钟,所述基站接收机对所述机会信号进行采样,利用计算出的广播时间来对样本进行时间标记,并且经由通信网络发送时间标记后的样本序列;远程接收机,该远程接收机经由所述通信网络接收信息,并且该远程接收机进行以下操作保存所述机会信号的样本并且对所述机会信号的样本进行时间标记,将经由所述通信网络接收到的时间标记后的样本序列与所保存的时间标记后的样本进行关联,计算所保存的与所接收到的样本序列相对应的时间标记后的样本的广播时间,作为在所述远程接收机处计算出的广播时间与在所述基站接收机处计算出的广播时间之差而确定时间偏移量,以及基于所述时间偏移量相对于在所述基站接收机处的所述基准时间来确定所述时间。
2.根据权利要求1所述的系统,其中,所述基站接收机基于与所述样本序列相对应的 信号的接收时间以及与从所述发射机到所述基站接收机的基线相关联的时间延迟,来计算 所述广播时间。
3.根据权利要求2所述的系统,其中,所述远程接收机基于在所述远程接收机处与所 述样本序列相对应的信号的接收时间以及与从所述远程接收机到所述发射机的基线相关 联的时间延迟,来计算所述广播时间。
4.根据权利要求1所述的系统,该系统还包括所述基站接收机将时钟频率同步到基准源,确定与所广播的机会信号相关联的载波相 位测量并且向所述远程接收机提供相位信息,并且所述远程接收机具有时钟并且确定与所广播的机会信号相关联的载波相位测量,所述 远程接收机通过所述基站接收机和所述远程接收机的相位测量之间的差,来确定所述时钟 相对于所述基站接收机的时钟频率的频率偏移量,并且所述远程接收机使用频率偏移量测量来调整它的时钟频率并且使它的时钟频率与所 述基站的时钟频率对准。
5.根据权利要求4所述的系统,其中,所述基站接收机和所述远程接收机通过以下操作来确定所述相位测量锁相到所广播 的机会信号,并且对频率进行积分以产生表示与所述发射机相关联的广播频率的累积相位 的波数,并且根据各个接收机的基准频率在预定时间测量所述波数。
6.根据权利要求4所述的系统,其中,所述基站接收机和所述远程接收机通过以下操作来确定所述相位测量使用根据各个 接收机的基准频率生成的降频变换频率源来对所广播的机会信号进行降频变换,并且对剩 余的频率进行积分,以产生如同根据所述基准频率在预定时间所测得的、表示所述机会信 号相对于所述降频变换频率的频率偏移量的波数。
7.根据权利要求1所述的系统,该系统还包括另外的远程接收机,该远程接收机将相 对时间确定为相对于所述基站接收机的时间的时间偏移量。
8.根据权利要求1所述的系统,其中,所述基站接收机和所述远程接收机利用来自多 个所述发射机的机会信号。
9.根据权利要求1所述的系统,其中,所述基站接收机和所述远程接收机中的一个或 两者包括扫描所广播的信号以选择一个或更多个机会信号来使用的可配置前端滤波器。
10.根据权利要求1所述的系统,其中,所述通信网络提供了可用机会信号的列表,并 且所述基站接收机和所述远程接收机中的一个或两者从所述列表选择一个或更多个机会 信号来使用。
11.根据权利要求1所述的系统,其中,所述远程接收机基于在将所述样本序列与所保 存的信号样本相关联期间所确定的非对称的较早相关值和较晚相关值,来调整采样时钟的 相位。
12.根据权利要求11所述的系统,其中,所述远程接收机在进行调整之前对所述较早 相关值和所述较晚相关值进行滤波。
13.一种用于利用机会信号来经由网络传送相对时间的方法,所述机会信号是由一个 或更多个位置已知并且具有覆盖所述网络的全部或者一部分的信号服务区的本地发射机 发送的,所述方法包括以下步骤将时钟同与基准时标同步,在基站接收机保存所述机会信号的样本序列,用使用基站接收机时钟计算出的广播时 间来对所述序列进行时间标记,并且将时间标记后的样本序列提供到远程接收机;在所述远程接收机处保存所述机会信号的样本,并且将所接收的样本序列与所保存的 信号样本相关联;计算与所述样本序列相对应的信号样本的广播时间,并且作为在所述远程接收机处计 算出的广播时间与在所述基站接收机处计算出的广播时间之差而确定时间偏移量;以及基于所述时间偏移量确定所述远程接收机和所述基站接收机之间的相对时间差,以确 定所述远程接收机处的时间。
14.根据权利要求13所述的方法,其中,所述基站接收机将它的时钟同步到全球基准。
15.根据权利要求14所述的方法,其中,所述基站接收机将它的时钟同步到GNSS时间 或UTC时间之一。
16.根据权利要求13所述的方法,其中,在所述基站接收机处计算所述广播时间的步 骤包括基于所述基站接收机处所述信号的接收时间和与从所述发射机到所述基站接收机 的基线相关联的时间延迟,来计算所述时间。
17.根据权利要求13所述的方法,其中,在所述远程接收机处计算所述广播时间的步 骤包括基于与所述样本序列相对应的信号的接收时间和与从所述远程接收机到所述发射 机的基线相关联的时间延迟,来计算所述时间。
18.根据权利要求13所述的方法,所述方法还包括以下步骤在所述基站接收机处确定与所广播的机会信号的载波频率相关联的相位测量,并且向 所述远程接收机提供相位测量信息,以及在所述远程接收机处确定与所广播的机会信号相关联的相位测量,并且确定在所述远 程接收机处确定的所述相位测量相对于在所述基站接收机处确定的所述相位误差的频率 偏移量,并且基于所述频率偏移量,将所述远程接收机处的时钟频率与所述基站接收机处的时钟对准。
19.根据权利要求18所述的方法,其中,在所述基站接收机和所述远程接收机处确定相位测量的步骤包括锁相到所广播的机 会信号,对所述机会信号的接收载波频率进行积分,以及基于从所述基准频率得到的时间 间隔对积分值进行周期性采样。
20.根据权利要求18所述的方法,其中,在所述基站接收机和所述远程接收机处确定所述相位测量的步骤包括使用由各个接 收机基准频率得到的降频变换频率信号来将所广播的机会信号降频变换到更低频率,对降 频变换后的频率进行积分,以及基于由所述各个接收机基准频率得到的时间间隔对积分值 进行周期性地采样。
21.根据权利要求13所述的方法,所述方法还包括另外的远程接收机执行以下步骤 根据相对于所述基站接收机时间的时间偏移量确定相对时间同步。
22.根据权利要求13所述的方法,所述方法还包括以下步骤在所述基站接收机和所 述远程接收机处利用来自多个发射机的机会信号。
23.根据权利要求13所述的方法,所述方法还包括以下步骤所述基站接收机和所述 远程接收机中的一个或两者扫描所广播的信号,以选择机会信号来使用。
24.根据权利要求13所述的方法,所述方法还包括以下步骤所述基站接收机和所述 远程接收机中的一个或两者从可用机会信号的列表中选择机会信号来使用。
25.根据权利要求13所述的方法,其中,在所述远程接收机处对信号进行采样的步骤 包括以下步骤基于在将快照与所保存的信号样本相关联期间确定的非对称的较早相关值 和较晚相关值,来调整采样的相位。
26.根据权利要求25所述的系统,其中,调整的步骤包括在进行调整之前对所述较早 相关值和所述较晚相关值进行滤波。
27.一种用于利用机会信号经由网络在两个或多个接收机之间传送频率的系统,所述 机会信号是由一个或更多个在已知位置并且具有覆盖所述网络的全部或一部分的信号服 务区的发射机发送的,所述系统包括基站接收机,该基站接收机具有与基准频率同步的时钟,所述基站接收机锁相到所述 机会信号,以预定间隔进行相位测量,并且经由通信网络发送所述相位测量;远程接收机,该远程接收机具有时钟并且经由所述通信网络接收信息,所述远程接收 机进行以下操作锁相到所述机会信号并且进行相位测量,作为在所述基站接收机和所述远程接收机处进行的所述相位测量的变化率而确定所 述远程接收机时钟的频率偏移量,并且调整所述远程接收机时钟的频率,以去除所测得的偏移量。
28.根据权利要求27所述的系统,所述系统还包括另外的远程接收机,该远程接收机 基于使用从所述基站接收机接收的相位测量所确定的频率误差,来在频率上同步。
29.根据权利要求27所述的系统,其中,所述基站接收机和所述远程接收机利用了来 自多个所述发射机的机会信号。
30.根据权利要求27所述的系统,其中,所述基站接收机和所述远程接收机中的一个 或两者包括扫描所广播的信号以选择机会信号来使用的可配置前端滤波器。
31.根据权利要求27所述的系统,其中,所述通信网络提供了可用机会信号的列表,并 且所述基站接收机和所述远程接收机中的一个或两者从所述列表选择一个或更多个机会 信号来使用。
32.根据权利要求27所述的系统,其中,所述基站接收机和所述远程接收机通过以下操作来确定所述相位测量锁相到所广播 的机会信号,对所述频率进行积分以产生表示与所述发射机相关联的广播频率的累积相位 的波数,以及根据各个接收机的基准频率在预定时间测量所述波数。
33.根据权利要求27所述的系统,其中,所述基站接收机和所述远程接收机通过以下操作来确定所述相位测量使用根据各个 接收机基准频率生成的降频变换频率源对所广播的机会信号进行降频变换,以及对剩余的 频率进行积分,以产生如同根据所述基准频率在预定时间所测得的、表示所述机会信号相 对于所述降频变换频率的频率偏移量的波数。
全文摘要
一种利用机会信号经由网络分发精确的时间和/或频率的系统,该机会信号是由一个或更多个具有已知位置的本地发射机发送的,所述系统包括具有与例如GNSS或UTC时间的基准时标同步的时钟的基站接收机,基站接收机保存机会信号的样本序列并且用所计算出的广播时间来对该序列进行时间标记。远程接收机保存机会信号的样本,并且将所述序列与所保存的样本相关联。远程接收机计算所保存的与所述序列相对应的样本的发送时间,确定时间偏移量为在远程接收机处计算出的广播时间和在基站接收机处计算出的广播时间的差,并且确定相对于基站接收机的时间偏移量。基站接收机还或者代替地锁相到机会信号并且以预定间隔确定机会信号的积分后的载波频率的相位测量,并且将相位信息提供到远程接收机。也锁相到同一机会信号的远程接收机使用相位测量信息,通过基于在基站接收机和远程接收机处进行的相位测量的变化率确定频率误差,来将它的时钟锁频到基站接收机时钟。
文档编号H04L12/16GK101843029SQ200880114445
公开日2010年9月22日 申请日期2008年11月3日 优先权日2007年11月2日
发明者乔纳森·拉德, 帕特里克·C·芬顿 申请人:诺瓦特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1