远距离通信系统的制作方法

文档序号:7559969阅读:138来源:国知局
专利名称:远距离通信系统的制作方法
技术领域
本发明涉及远距离通信系统,特别可应用于无绳式电话。本发明的各个方面在所谓“CT2”的无绳式电话系统以及遵循英国贸易与工业司的规范MPT1375的系统中是有用的。规范MPT1375的1989年5月版,在这里结合作为参考文献。
在无绳式电话系统中,在没有塞绳或导线连接的系统的各部分之间,必须提供通常以话音为通信内容的双向传送信号的途径。此外,在各部分之间传送用于对各部分操作进行控制或用于将其它控制报文与通信内容分离的其它信号通常也是必须的。在某些周知的无线电电话系统中,可通过在各部分之间提供两个信道、每个信道用于各自的一个方向的通信来满足双向通信的需求。在本发明的实施例中,提供一种多路传输的信号结构,这种信号结构允许在单个信号通信信道上利用多个逻辑信道进行双向通信。在该实施例中,不同时刻使用不同的多路传输结构允许无绳式通信的逻辑信道在无绳式通信链路的创建和使用的不同阶段有不同的结构。
在常规无线电话系统中,必须提供一种允许建立链路以便各部分可相互通信的结构。当某一部分以与某例程同步的方式进行操作时,如果第二部分本身不能与同一例程相同步,那么对这第二部分来说很难建立与第一部分的链路。在本发明的实施例中,提供了一种允许在两部分之间进行异步链路启动的结构,尽管其中的一部分是以同步方式运行的。
在无线电远距离通信系统中,无线电链路传送有用信号的能力可能是随外部因素而变的,这些外部因素例如有干扰及越过障碍的传输。因此,有优越性的是对传输信号进行编码,以便错误检测与纠正和/或监视链路质量以进行可能的补救步骤,例如,当链路质量低至不可接受的水平时可中断链路并在不同的无线电信道上重建链路。在本发明的实施例中,提供了这样一种结构,在该结构中,两逻辑信道与一逻辑信道的被编码的允许错误检测的信号一起多路传输,对该逻辑信道检测出的错误进行监视并将该错误用作另一信道出错程度的量度。
在用于无线电远距离通信的系统中,一般有大量能在该系统中进行通信的通信设备,其中一些可能较复杂并具有比其它设备更强的通信能力。为使两设备相互通信,这两设备必须以两设备能力限度内的方式进行通信。这样,当相当复杂的设备与不复杂的设备通信时,它们必须以不复杂设备能力限度内的方式来进行通信。然而,当该复杂设备与另一能以不同方式通信的复杂设备通信时,迫使该复杂设备也以这种特定方式来进行通信是低效率的。在本发明的实施例中,在创建无绳式远距离通信链路期间,通信设备进行某操作(有时称为“协商”操作)以便选用两设备能力限度内的一种通信方式。
当两设备通过无绳式远距离通信链路进行通信时,设备操作的相互同步可能是必不可少的,这可通过一设备识别由另一设备所传输信号的特定部分来实现,所述信号部分具有预定时序。在这种情形下,如果接收部分将传输信号的不同部分错误地识别为用于同步的待识别部分时,就会出现不正确的同步。在本发明的实施例中,所传输信号具有这样的数据结构,即,使得用于同步的部分与不含同步部分的信号的其它部分很少相关。另外,在实施例中,同步部分与其时移形态具有很低相关性。而用于同步的信号部分最好在两设备间以两种方向进行传输,并且,用于同步的以一方向传输的信号部分预定与用于同步的以另一方向传输的信号部分具有很低的相关性。
当在同一区域出现能通过无绳式通信链路进行通信的多个设备时,并且有好几个设备正在对通信信道进行扫描检测正寻求建立通信链路的另一设备,那么便有这样一种可能性,即两设备可检测到某信道上通信链路的同一请求并同时响应该请求。结果产生的信道干扰可能使两设备都未能建立通信链路。如果两设备在扫描请求通信链路的信道时的后继动作相同,那么,这种同时的响应和干扰可能随每一次对通信请求的后继检测而出现。在本发明的实施例中,将某些设备设计成在这种并发响应和干扰之后其动作彼此不同,以便减小并发响应及干扰的连续重复的相似性。
经由无绳式远距离通信链路彼此通信的设备可交换“符号交换”(handshake)信号以确认链路上这两台设备之间的通信仍可很好地进行。如果其中一台设备在确定周期内不能接收到符号交换信号,便可断定该链路已经断开。然而,已停止接收符号交换信号的设备常常仍然在传输这些符号交换信号直至周期终止断定链路已断。如果由另一设备成功地接收到这些符号交换信号,那么,其它设备便不会知道链路失效直至第一设备停止传输符号交换信号后的另一周期。这样,当传输链路只是在一个方向上失效时,可能延迟一些设备的反应并常常使这些设备不能相互同步。在本发明的实施例中,如果某设备不能在其符号交换信号的最近接收的第一周期内接收到符号交换信号,那么该设备便会断定该链路未接通。同时,该设备连续发送符号交换信号,但如果从最近的符号交换信号以来的第二个较短的周期内仍未接收到符号交换信号,则发送指出未能接收到符号交换信号的信号。这样,如果链路仅在一个方向上断开,便可很快地通知正在继续接收传输的设备其它设备已停止接收传输,并能对各设备的链路重建动作进行较好协调。
在两个设备以同步方式彼此通信的场合,由于失去同步而使信息的传输变得错误百出是可能的,即使通信链路的传输质量并未削弱。在本发明的实施例中,对某些传输信息进行编码以允许错误检测,并且,对该数据的错误检测可用来指出设备之间已经失去同步。
当两个设备以同步方式在通信链路上相互通信时,可指定其中一设备为同步主动方,并指定另一设备为同步从属方,以便要求从属方使自身同步于主动方的操作。如果链路失效、或由于任何别的原因要求设备断开并重建链路时,如从属方设备停止与主动方设备的同步、从而不能检测到来自主动设备的链路重建信号,则链路重建就会是困难的。在本发明的实施例中,当要求链路重建时,初始时执行链路重建的信号总是由从属设备发出的。
如果链路中设备之一是便携式或活动的,那么,该链路可能因该设备的运动而断开。那么在同样两设备间重建链路便是不可能的。如果其中一设备也是通信路径的终端,例如手机,而另一设备只是中继站,例如与通信网络链接的基地电台,那么,最好使用同一终端设备,但为方便用户可能由不同的中继设备来重建链路。然而,通信网络很难监视在任何给定时刻终点设备靠近哪一个中继设备。在本发明的实施例中,终端设备发送链路重建的初始信号,并可用接收到该传输的任何中继设备来重建链路。终端设备常常是活动设备,例如,便携式电话机。
当若干设备经由通信链路使用交替传输脉冲串结构进行通信时,如果两设备传输的时序能很好地配合并且这些传输有部分覆盖而不是正确地交替,那么就可能有通信故障。在本发明的实施例中,一设备从它接收到来自其它设备的脉冲串的时刻导出用于脉冲串传输的时序。
当若干设备经由远距离通信链路通信时,有必要传输属于某逻辑信道、用于维持链路的信号,即使这时刻该信道上并无传输信息。如果在该逻辑信道中发送随机信号,在这种情况下,这种信号偶尔会与在该通信链路上传输的某有意义信号十分相似,这时就会引起接收到该信号的设备的不适当操作。在本发明的实施例中,对逻辑信道提供规定信号的结构,该结构在信道中不载送有用信息,而选择该结构使之不雷同于在该信道接收端会引起接收设备不适当操作的信号。
按照本发明的一个方面,提供一种远距离通信系统,在该系统中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行相互的同步时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于所述脉冲串中数字数据的第一和第二格式用于所述时分双向通信,这两种格式包括用于第一逻辑通信信道的信息,所述信道传送诸如设备标识码和从一设备到另一设备的指令的通信数据;
所述第一格式还包括用于传送诸如数字编码的话音数据的第二逻辑通信信道的信息,所述信息可在两设备间通信;以及所述第二格式还包括未包括在第一格式中的同步模式,该同步模式允许所述设备确定它从其他所述设备接收到的脉冲串的时序。
按照本发明的另一个方面,提供一种远距离通信方法,使用这种方法,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行相互的同步时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于所述脉冲串中数字数据的第一和第二格式用于所述时分双向通信,这两种格式包括用于第一逻辑通信信道的信息,该信道传送诸如设备标识码和从一设备到另一设备的指令的通信数据;
所述第一格式还包括用于传送诸如数字编码的话音数据的第二逻辑通信信道的信息,所述信息可在两设备间通信;以及所述第二格式还包括未包括在第一格式中的同步模式,该同步模式允许所述设备确定它从其他所述设备接收到的脉冲串的时序。
在所述第一格式中,最好在第二逻辑通信信道的信息之前和之后传输第一逻辑通信信道的信息。
在所述第一格式中,第二信道信息之前和第二信道信息之后所传输的第一信道信息的位数最好相同。
在所述第二格式中,最好在所述同步模式传输之前和之后传输第一逻辑通信信道的信息。
在所述第二格式中,所述同步模式之前和所述同步模式之后所传输的第一信道信息的位数最好相同。
以第二格式脉冲串形式传输的第一信道的信息位数最好多于以第一格式脉冲串形式传输的第一信道的信息位数。
以第一格式脉冲串形式传输的第二信道的信息位数最好多于以第一或第二格式的脉冲串形式的第一信道的信息位数。
按照本发明的另一方面,提供一种远距离通信系统,在该系统中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行相互的同步时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信系统的特征在于所述第二设备还能够异步地传输包含用于逻辑通信信道的一或多部分的数字数据的脉冲串,该信道传送诸如设备标识码的通信数据,所述数字数据后面有一或多个其它部分的数字数据,此后,第二设备停止传输周期以允许它接收来自第一设备的应答,每一个数字数据的各自的所述部分或其它部分包含相应数字数据序列的多次出现,而数字数据每一个所述其它部分的数字数据序列提供同步模式以允许所述第一设备在接收到脉冲串时判定该脉冲串的时序。
按照本发明的另一方面,提供一种远距离通信的方法,在这种远距离通信方法中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行相互的同步时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信方法的特征在于在所述第一和第二设备不在执行时分双向通信的时刻,第二设备异步地发送包含逻辑通信信道的数字数据的一个或多个部分的脉冲串,该逻辑通信信道传送诸如设备标识码的通信数据,所述数据部分后面有数字数据的一个或多个其它部分,此后第二设备停止传输周期以允许它接收来自第一设备的应答,数字数据的每一个各自的所述部分或其它部分包含各自数字数据序列的多次出现,而数字数据每一个所述其它部分的数字数据序列提供同步模式以允许所述第一设备在接收到脉冲串时判定该脉冲串的时序。
在所述时分双向通信中交换的所述脉冲串最好用一个接着一个的所有长度相同的脉冲串周期进行交换,在脉冲串周期的不同时刻将脉冲串从第一设备发送到第二设备以及将脉冲串从第二设备发送到第一设备,在所述异步发送脉冲串中的数字数据的每一个所述部分或另一部分至少延续所述脉冲串周期的长度,而每一个所述数字数据序列的延续长度不超过第一设备不发送脉冲串的所述脉冲串周期部分的一半长度。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信系统的特征在于将第一类脉冲串中的信息用第一逻辑通信信道和第二逻辑通信信道来发送,所述第一逻辑通信信道用于传送诸如设备标识码、和从一设备到另一设备的指令的通信数据,所述第二逻辑通信信道用于在设备间传送诸如数字编码的话音数据,以及第一和第二设备根据其能力进行选择操作,从包含第一和第二格式的预定义的格式集合中选择用于第一类脉冲串的格式,所述第一和第二格式在第一逻辑通信信道每个脉冲串中传送的信息量不同。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信方法的特征在于将第一类脉冲串中的信息用第一逻辑通信信道和第二逻辑通信信道来发送,所述第一逻辑通信信道用于传送诸如设备标识码、和从一设备到另一设备的指令的通信数据,所述第二逻辑通信信道用于在设备间传送诸如数字编码的话音数据,以及第一和第二设备根据其能力进行选择操作,从包含第一和第二格式的预定义的格式集合中选择用于第一类脉冲串的格式,所述第一和第二格式在第一逻辑通信信道每个脉冲串中传送的信息量不同。
最好以脉冲串周期发送所述交替脉冲串,在脉冲串周期的不同时刻以各个方向发送一个脉冲串,而所述第一和第二格式需要不同的时间长度用于脉冲串传输除非脉冲串周期的时间长度相同。
所述第一和第二格式最好相互在第二逻辑通信信道每个脉冲串中传送相同的信息量。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信系统的特征在于至少有些脉冲串包含脉冲串中不同时刻的第一逻辑信道信息和第二逻辑信道的信息,第一逻辑信息的数据预定允许对传输错误进行检测,而每一所述设备将它所接收到脉冲串中所检测到的第一逻辑信道的错误用作第二逻辑信道传输质量的指示。
按照本发明的另一个方面,提供一种远距离通信的方法,在这种方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信方法的特征在于至少有些脉冲串包含脉冲串中不同时刻的第一逻辑信道信息和第二逻辑信道的信息,第一逻辑信道的数据预定允许对传输错误进行检测,而每一所述设备将它所接收到脉冲串中所检测到的第一逻辑信道的错误用作第二逻辑信道传输质量的指示。
在所述脉冲串中,最好在第二逻辑信道的信息之前和之后提供第一逻辑信道的信息。
如果由所述设备使用在第一逻辑信道中所检测到的错误来判定的第二逻辑信道的传输质量不能满足预定标准时,该设备进入重建所述时分双向通信的方式。
判定第二逻辑信道的传输质量不能满足预定标准的设备最好在它进入所述方式之前发送信息给其它设备,通知其它设备它打算进入所述方式。
所述设备最好不配置第二逻辑信道的数据,以允许对传输错误进行检测。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信系统的特征在于第一和第二设备中的每一个重复地发送预置的信号码组中的一个,而这些设备以这样一种速率交换所述无线电信号使得由同一设备进行预置的信号码组中的一个码的相继传输之间的时间段不超过第一预定时间长度,如果发送设备在它发送代码之前的第一预定时间长度内已接收到所述码组中的任何信号,通常便发送所述码组的第一代码,否则发送所述码组的第二代码,如果在大于第一预定时间长度的第二预定时间长度内没有接收到所述第一代码,那么第一和第二设备中的每一个进入重建时分双向通信的方式。
按照本发明的另一个方面,提供一种远距离通信的方法,在这种方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,这种远距离通信方法的特征在于第一和第二设备中的每一个重复地发送预置的信号码组中的一个,而这些设备以这样的一种速率交换所述无线电信号使得由同一设备进行预置的信号码组中的一个码的相继传输之间的时间段不超过第一预定时间长度,如果发送设备在它发送代码之前的第一预定时间长度内已接收到所述码组中的任何信号,通常便发送所述码组的第一代码,否则发送所述码组的第二代码,如果在大于第一预定时间长度的第二预定时间长度内没有接收到所述第一代码,那么第一和第二设备中的每一个进入重建时分双向通信的方式。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,远距离装置通过交换载有数字数据的交替脉冲串形式的无线电信号在无线电信道上能够与基地电台进行时分双向通信,使得在时分双向通信期间,来自远距离装置和基地电台中的一个的所述脉冲串的传输是在远距离装置和基地电台中的另一个开始下一脉冲串的传输之前完成的,允许远距离装置通过基地电台与另一设备通信,所述系统的特征在于如果远距离装置或者与之进行所述时分双向通信的基地电台判定出要求重建时分双向通信时,便采取若干步骤使得远距离装置发送无线电信号来启动所述重建。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,远距离装置通过交换载有数字数据的交替脉冲串形式的无线电信号在无线电信道上能够与基地电台进行时分双向通信,使得在时分双向通信期间,来自远距离装置和基地电台中的一个的所述脉冲串的传输是在远距离装置和基地电台中的另一个开始下一脉冲串的传输之前完成的,允许远距离装置通过基地电台与另一设备通信,
所述方法的特征在于如果远距离装置或者与之进行所述时分双向通信的基地电台判定出要求重建时分双向通信时,便采取若干步骤使得远距离装置发送无线电信号来启动所述重建。
手机最好能够与多个基地电台进行所述时分双向通信,使得可在所述远距离装置和所述基团电台之间进行所述重建,而该基地电台不必是前面远程装置与之通信的同一个其地电台。
由远距离装置发送的启动所述重建的所述无线电信号最好包含由远距离装置发送的、用于当远距离装置还没有改变紧接前面的通信状态时启动所述通信的建立过程的无线电信号,以便传达被重建的时分双向通信的标识。
按照本发明的另一个方面,提供一种远距离通信的系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于至少将第一逻辑信道上设备之间通信的一些信息构造为包括错误检测码的若干字,定义一预定字用于设备间的通信,该预定字包括所述错误检测码而且基本上不带有从发送设备到接收设备的报文。
按照本发明的另一个方面,提供一种远距离通信的方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于至少将第一逻辑信道上设备之间通信的一些信息构造为包括错误检测码的若干字,定义一预定字用于设备间的通信,该预定字包括所述错误检测码而且基本上不带有从发送设备到接收设备的报文。
最好在第一类所述字的传输之前,通过第一逻辑信道传输指出后继字的时序的设置模式,在预定字任何部分都不包括与所述设置模式相同序列的数据。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于至少将第一逻辑信道上设备之间通信的一些信息构造为若干字,而在第一类所述字传输之前,通过第一逻辑信道传输指出后面字的时序的设置模式,以及,在对带有同样报文或同样报文部分并具有同样数据序列的第一类字的重复发送之间通过第一逻辑信道传送第一类的不同的字或不包括所述设置模式的预定序列,因此,如果所述第一类字的重复数据序列包括所述设置模式,那么允许接收设备在设置模式的传输过程中正确地识别所述设置模式的重复次数足够小,所述识别是在重复字的下一次传输之前,即使接收设备错误地将重复字的前面传输的数据序列中的设置模式识别为前面第一类字的设置模式的出现。
按照本发明的另一个方面,提供一种远距离通信的方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于至少将第一逻辑信道上设备之间通信的一些信息构造若干字,而在第一类所述字传输之前,通过第一逻辑信道传输指出后面字的时序的设置模式,以及,在对带有同样报文或同样报文部分并具有同样数据序列的第一类字的重复发送之间通过第一逻辑信道传送第一类的不同的字或不包括所述设置模式的预定序列,因此,如果所述第一类字的重复数据序列包括所述设置模式,那么允许接收设备在设置模式的传输过程中正确地识别所述设置模式的重复次数足够小,所述识别是在重复字的下一次传输之前,即使接收设备错误地将重复字的前面传输的数据序列中的设置模式识别为前面第一类字的设置模式的出现。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,一个第一类设备和多个第二类设备中任一个通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于至少有一些脉冲串包含可由接收设备异步地检测以允许它获得所接收脉冲串的时序的同步模式,第一类设备发送第一同步模式或第一同步模式组中的一个,第二类设备发送第二同步模式或第二同步模式组中的一个,第一同步模式或模式组不同于第二同步模式或模式组,而第二类设备对第二同步模式的接收不响应,因此第二类设备不响应由其它第二类设备的传输的接收。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,一个第一类设备和多个第二类设备中任一个通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于至少有一些脉冲串包含可由接收设备异步地检测以允许它获得所接收脉冲串的时序的同步模式,第一类设备发送第一同步模式或第一同步模式组中的一个,第二类设备发送第二同步模式或第二同步模式组中的一个,第一同步模式或模式组不同于第二同步模式或模式组,而第二类设备对第二同步模式的接收不响应,因此第二类设备不响应由其它第二类设备的传输的接收。
所述时分双向通信最好由多个第一类设备中的任一设备来实现,第一类设备对第一同步模式的接收不予响应,因此第一类设备对第一类的其它设备的传输不予响应。
当每台所述设备企图启动通过无线电信号与另一类的设备的通信时最好发送预定的同步模式,在所述通信启动后,接着发送不同的预定的同步模式。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,
所述系统的特征在于由所述设备发送的脉冲串至少有一些包含若干位数据的同步模式,所述同步模式可由接收设备异步地检测以允许它得到所发送脉冲串的时序,另外由所述设备发送的脉冲串至少有一些还包含若干位可变数据,当接收到的数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备认为同步模式将在所接收到的数据中出现,其中K为零或正整数,每一所述脉冲串的各位是这样排列的,即使得在脉冲串任何L位数据的连续位串中,可变数据的位数小于L-K。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于由所述设备发送的脉冲串至少有一些包含若干位数据的同步模式,所述同步模式可由接收设备异步地检测以允许它得到所发送脉冲串的时序,另外由所述设备发送的脉冲串至少有一些还包含若干位可变数据,当接收到的数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备认为同步模式将在所接收到数据中出现,其中K为零或正整数,每一所述脉冲串的各位是这样排列的,即使得在脉冲串任何L位数据的连续位串中,可变数据的位数小于L-K。
每个所述脉冲串的各位排列最好是使得脉冲串中L位数据的任何连续位串中,可变数据的位数不大于L-K-6。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于脉冲串中至少一种数字数据格式包含具有固定数值及可变位的重复模式的第一部分和包含L位同步模式的第二部分,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,当所接收数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备便认为同步模式将在所接收到数据中出现,其中K为零或正整数。
对L位同步模式和具有固定数值和可变位的重复模式进行选择使得L位连续位串的重复模式起始于重复模式的任何位置、并与少于L-K位的同步模式相匹配,即使假定位串中每一可变位提供一个匹配。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于脉冲串中至少一种数字数据格式包含具有固定数值及可变位的重复模式的第一部分和包含L位同步模式的第二部分,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,当所接收数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备便认为同步模式将在所接收到数据中出现,其中K为零或正整数。
对L位同步模式和具有固定数值和可变位的重复模式进行选择使得L位连续位串的重复模式起始于重复模式的任何位置、并与少于L-K位的同步模式相匹配,即使假定位串中每一可变位提供一个匹配。
所述重复模式的任何L位连续位串最好与不多于L-K-2位的同步模式相匹配,即使假定位串中每一可变位提供一个匹配。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于脉冲串中至少一种数字数据格式包含L位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,当所接收数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备便认为同步模式将在所接收到数据中出现,其中K为零或正整数。
与脉冲串一部分相邻的同步模式由固定数值的若干位构成,同步模式与任何脉冲串的L位连续位串之间的匹配数小于L-K,所述L位连续位串最少仅由所述固定数值的若干位部分和同步模式的相邻部分组成。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于脉冲串中数字数据的至少一个格式包含L位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,当所接收数据与存储的同步模式的拷贝间的比较操作导致不多于K位的所接收数据就停止比较时,接收设备便认为同步模式将在所接收到数据中出现,其中K为零或正整数。
与脉冲串一部分相邻的同步模式由固定数值的若干位构成,同步模式与任何脉冲串的L位连续位串之间的匹配数小于L-K,所述L位连续位串最少仅由所述固字数值的若干位部分和同步模式的相邻部分组成。
最好在不同的情况下使用不同的所述L位同步模式,任何所述同步模式与任何脉冲串L位连续位串之间的匹配小于L-K,所述任何脉冲串L位连续位串仅由任何所述同步模式或固定数值若干位的所述部分的至少一部分与任何其它的所述同步模式的相邻部分所组成。
至少对某些所述同步模式,所述匹配数最好不超过L-K-8。
对所有所述同步模式,所述匹配数最好不超过L-K-7。
K最好不为零,最好取K为2。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于脉冲串中至少一种数字数据格式包含L位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,该同步模式对任何偏移量具有不大于+2的波峰自相关旁瓣值,将某偏移量时的自相关旁瓣值定义为模式各位与其自身偏移量之间的匹配数减去模式各位与其自身在同样偏移量下的不匹配数。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于脉冲串中至少一种数字数据格式包含L位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,该同步模式对任何偏移量具有不大于+2的波峰自相关旁瓣值,将某偏移量时的自相关旁瓣值定义为模式各位与其自身偏移量之间的匹配数减去模式各位与其自身在同样偏移量下的不匹配数。
按照本发明的另一个方面,提供一种远距离通信系统,在这种远距离通信系统中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于
脉冲串中至少一种数字数据格式包含24位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,该同步模式当用16进制格式给出时为以下格式中的一个BE4E50;41B1AF;EB1B05;14E4FA;OA727D;F58D82;AOD8D7;和5F2728。
按照本发明的另一个方面,提供一种远距离通信方法,在这种远距离通信方法中,第一设备和第二设备通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自第一和第二设备之一的所述脉冲串的传输是在由第一和第二设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于脉冲串中至少一种数字数据格式包含24位同步模式,所述同步模式可由接收设备异步地检测以允许它得到脉冲串的时序,该同步模式当用16进制格式给出时为以下格式中的一个BE4E50;41B1AF;EB1B05;14E4FA;OA727D;F58D82;AOD8D7;和5F2728。
本发明还包括可用于以上任何系统中的通信设备,更准确地说是可用作第一设备的通信设备和可用作第二设备的通信设备。
以下参考附图,对通过实例给出的本发明的实施例进行描述,附图中

图1是实施本发明的与系统的基地电台相连的远距离通信系统的简略图;
图2是本发明实施例中脉冲串传输模式的简略说明;
图3是本发明实施例中脉冲串射频信号的频率和幅度变化的简略表示;
图4a和图4b示意性地说明本发明实施例中所用信号脉冲串的第一类数据结构的第一和第二形态;
图5示意性地说明本发明实施例中所用信号脉冲串的第二类数据结构;
图6示意性地说明本发明的实施例中由手机所发送的第三类数据结构相对于本发明的实施例中的基地电台的传输周期的相对时序;
图7更详细地说明图6的一部分;
图8示意性地说明图6数据结构中数据的排列;
图9更详细地说明图8的部分;
图10说明本发明的实施例中所用手机的第一种变型;
图11说明本发明的实施例中所用手机的第二种变型;
图12示意性地说明本发明实施例中手机的各个部分;
图13示意性地说明本发明实施例中所用基地电台的一种变型;
图14示意性地说明本发明实施例中所用基地电台的各个部分;
图15是手机控制电路的原理框图;
图16是基地电台控制电路的原理框图;
图17是图15和图16的可编程的多路调制器的原理框图;
图18是图15和图16的可编程的多路信号分离器的原理框图;
图19是图15和图16的系统控制器的原理框图;
图20是图15和图16的S信道控制器的原理框图;
图21是建立从基地电台到手机的链路的流程图;
图22是在建立从基地电台到手机的链路时,所发送信号序列的示意性表示;
图23是在建立从手机到基地电台的链路的流程图;
图24是在建立从手机到基地电台的链路时,所发送信号序列的示意性表示;
图25是D信道数据结构的整体视图;
图26示意性地示出如何将D信道代码字组合成报文分组包以及将报文分组包组合成报文;
图27示意性说明D信道代码字的一般格式;
图28示意性地说明D信道的固定格式型地址代码字的格式;
图29示意性地说明D信道的可变格式型地址代码字的格式;
图30示意性地说明D信道数据代码字的格式;
图31示意性地说明D信道的固定长度报文的结构;
图32示意性地说明D信道的可变长度报文的结构;
图33示意性地说明当仅仅丢失从手机到基地电台的信号交换信号时,导致链路重建的信号交换信号的序列;
图34示意性地说明当仅仅丢失从基地电台到手机的符号交换信号时,导致链路重建的符号交换信号的序列;
图35是用手机或基地电台执行的链路质量监视过程的流程图;
图36示意性地说明D信道FILL_IN字的结构;
图37是和图1相似的视图,说明为本发明的实施例所用的基地电台的可替换类型;
图38更详细地说明实施本发明的基地电台的第一替换结构;
图39更详细地说明实施本发明的基地电台的第二替换结构;
图40说明实施本发明的基地电台的第三替换结构。
在本说明书中按照数字信号技术的一般实践,“kbit”和“kword”用作“千比特”和“千字”的缩略,分别意指“千位”和“千字”。
实施例概述图1示意性地示出与远距离通信网络1相连接的若干通信设备。远距离通信网络1通常为公共电话交换网(PSTN),尽管将来综合业务数据网(ISDN)会更加普遍。远距离通信网络1与各种设备相连接,作为其中一个例子,图1示出实施本发明的无绳式电话装置的基地电台3,电话5和其它诸如传真机或计算机用的调制解调器的远距离通信设备7。这些通信设备中的每一台都通过网络链路9与远距离通信网络1相连,所述网络链路一般包括一些或所有的有线链路,光纤链路和长距离的无线电链路。
如图1中所示,实施本发明的无绳式电话设备包括基地电台3和远距离装置11。该远距离装置一般为用于话音通信的电话手机,在下文称之为手机。手机11通过无线电链路与基地电台3通信,在图1中示意性地用13来表示,这种通信对手机11的用户提供了对远距离通信网络1的访问。
尽管图1示出每个基地电台3只有一个手机11,但若干可替换实施例可参考其它图,在这些图中,多个手机11和一个基地电台3相关联,或者使得基地电台3能够与手机11中任选一个进行通信,或者在某些场合下使得基地电台3能用不同的无线电信道同时与不同手机11进行通信。这种无绳式电话系统的典型用法包括提供公共远距离点业务,使用这些业务,手机11的载体能够送达公共可用基地电台3的附近,建立与基地电台3的无线电链路,并由此来访问远距离通信网络1;
提供具有分开编号分机的办公室私人分机交换和/或内部通话系统;以及提供其分机不是单独编号的国内或办公室分机和/或内部通话系统。
对纯粹的内部通话的用途,当然,可能没有必要将基地电台3与远距离通信网络1相连接。
下面描述包含基地电台3和手机11的无绳式电话系统的构造和操作。该系统遵循英国贸易和工业司的规范MPT1375,本文结合该文件作为参考,有关进一步细节和规定限制可参考该文件。在MPT1375中,基地电台3一般称作“无绳式固定部分”或“CFP”,而手机11一般称为“无绳便携式部件”或“CPP”,该规范中类似适合的术语将为本文所用。术语“固定”和“便携式”指的是各部分和远距离通信网络1之间所作典型连接的特征,但并不一定就意味着基地电台3不能从一处移向另一处。
脉冲串方式传输及时序基地电台3和手机11通过单个无线电信道使用时分双工脉冲串方式传输进行相互通信。所建立无线电链路上的传输模式如图2所说明。图2中上面一行表示由基地电台3的传输,而较下一行表示由手机11的传输。
脉冲串方式传输系统的一个完整周期延续2毫秒。两个数据脉冲串,各在一个脉冲串周期中各以一个方向进行发送。每个2毫秒脉冲串周期始于图2中时刻t1,即基地电台3开始发送脉冲串的时刻。来自基地电台3的脉冲串传输终止于时刻t2,该时刻在t1以后略微不足1毫秒。在很少间隔之后,手机11在时刻t3开始发送脉冲串,该脉冲串传输延续也略微不足1毫秒并终止于时刻t4。在另一很微小间隔之后,开始下一2毫秒传输周期。
传输周期的长度可由基地电台3控制,该长度确保起始脉冲串传输的相继时间t1要隔开2毫秒。基地电台3和手机11都以每秒72kbit速率发送数字数据。所以每个2ms脉冲串周期等价于144位周期。如将在后面描述的、根据所用脉冲串结构,每个脉冲串要么包含68位,要么包含66位。这样,t1至t2的周期(也可为t3到t4的周期)要么约为0.9167ms要么约为0.9444ms。
时刻t2和t3间的间隔,以及时刻t4和下一个t1间的间隔提供给基地电台3和手机11在发送和接收方式间切换的时间,并且也允许信号的RF传播延迟。时刻t2和t3间的间隔由手机11决定。如果脉冲串周期的2个脉冲串均为66位长,那么手机11便在接收到来自基地点3的脉冲串的最后一位结束之后开始其脉冲串5.5位周期的第一位的发送。如果两脉冲串均为68位,那么手机只等待3.5位周期。假定没有信号的RF传播信息,那么时间t4和下一时刻t1之间的间隔可比时刻t2和t3间的间隔多1位周期。如果在信号传输中存在RF传播延迟,那么手机11将略微迟些接收来自基地电台3的传输,因此开始从手机11的传输也略微迟些,所以要适当地减小时刻t4和下一时刻t1间的间隔时间。该系统能克服每个脉冲串周期中2位周期的积累传播延迟(在每个方向上该延迟一般可高达1位周期)而仍允许基地电台3用至少2.5位周期的时间从接收方式转换到发送方式,即使使用68位的脉冲串。假定基地电台3能够转换得比手机11要快,(手机至少用3.5位周期)以允许在手机11中使用较为简单而且较低价格的电路。
如下面将解释的,基地电台3和手机11间的通信可使用多于一个的脉冲串数据结构。68位脉冲串只能在一个数据结构中出现,称为多路传输1,而称作多路传输2的第二数据结构总是使用66位脉冲串。当在多路传输1的通信和用多路传输2的通信之间变化时,有可能有一个短的周期,在该周期中,部分时间在发送68位多路传输1的脉冲串而另一些时间在发送66位多路传输2的脉冲串。在这种场合下,时刻t2和t3之间的间隔和时刻t4和下一个t1之间的间隔相应改变。
除了无线电信号(RF)传播延迟之外,还可能有通过基地电台3和手机11的电路的信号延迟。由于这些延迟对设备来说是内部的,可通过设备的设计对它们加以补偿。这些延迟并未包括在图2中,图2只涉及设备天线所接收信号的时序。
每个数字脉冲串中的数字位通过无线电载波频率称之为频移键控法(FSK)的频率调制来进行发送。
数据脉冲串的总结构如图3所说明。在基地电台3和手机11中的一个停止发送的时刻到基地电台3和手机11中的另一个开始发送的时刻的间隔内,射频幅度为零。为发送脉冲串的数字数据,射频信号必须以适宜的幅度进行发送。为避免幅度调制噼呖声对其它信道的干扰,打算发送脉冲串的部分在数据脉冲串开始之前开始发送射频信号,并慢慢地增加该信号幅度。这段时间就是图3中a到b的周期。在图3中RF幅度包络如15所示。
在图3中的时刻b,开始数据脉冲串的第一个位周期。在每个位周期,通过频率调制发送一个二进制位的数据,而发送频率大于逻辑“1”的载波频率但小于逻辑“0”的载波频率。为避免频率调制噼呖声干扰其它信道,发送频率不能立即改变,所以要如图3中RF频率包络线17所示渐渐地改变。图3中时刻c表示第一个位周期的结束和第二个位模式的开始。时刻d表示最后一个位周期的结束。
因为基地电台3和手机11中所用的某些类型的滤波器引起的延迟扩散,有必要将RF信号的幅度维持在数据脉冲串期间幅度以下不超过6dB,维持半个位周期直至时刻e,以保证所有数据在接收端被正确接收和处理。该半个位周期称为后缀,并以标号19表示。在后缀19结束后的时刻e,将射频幅度渐渐减小以避免幅度调制噼呖声,从而结束该部分的传输。
脉冲串的数据结构MUX1和MUX2通过三个逻辑信道进行基地电台3和手机11之间的通信。由于该系统中两部分之间只有一条无线电信道,所以可通过时分对多路传输来组合三条逻辑信道。在建立键路的任何时刻,基地电台3和手机11可使用以上所述脉冲串相互进行通信,这些脉冲串具有预先选定的数据结构以便在信道之间提供时分多路传输。在每一可用数据结构中,每个脉冲串带有一起多路传输的3个逻辑信道中的2个。每一个这种数据结构称作一个多路传输,简略为“MUX”。
一旦建立链路,基地站3和手机11间的脉冲串便传送用户希望与人或与他通过远距离通信网络1所连接的设备进行交换的信息,脉冲串的数据结构是称作多路传输1(或MUX1)的格式。该格式,如图所示。多路传输1可以有两种格式,即图4所示的多路传输1.2和图4b所示的多路传输1.4。
在多路传输1.2中,每个脉冲串为66位长。第一位和最后一位定义为属于D逻辑信道而中央64位定义为属于B逻辑信道。B信道传送用户发送或接收的数据。在一般情况下,当手机11正用来保持电话对话时,B信道就发送数字编码的话音声音数据。
D信道发送通信数据。该数据可表示各种事情,如后面所描述的,但可将由D信道传送的大多数数据指定为2种一般类型中的一种。第一种是,基地电台3和手机11间所通信数据仅仅用于建立或维持各部分之间的无线电链路。该数据包括符号交换信号、标识和特权码(允许一个部分识别另一部分以及允许或拒绝以允许在两部分之间建立通信链路)等。第二种数据指示接收部分采取某动作或通知接收部分在发送部分已出现某动作。例如,如果用户按下手机11上的键,该事实便通过D信道发送给基地电台3,并且,如果基地电台3指示手机11显示一符号或闪烁显示,用D信道发送该指示。
用具有确定格式的代码字来发送D信道数据,这将在下文讨论。如图4a所示,由于多路传输1.2中每个脉冲串只包含2位的D信道数据,发送D信道的单个代码字需要大量的脉冲串。如图4b所示,在多路传输1.4中,可以2倍的速率发送D信道数据。该多路传输结构中的每个脉冲器为68位长。前2位和最后2位定义为D信道位,而中央64位定义为B信道位。应该注意到,多路传输1.2和多路传输1.4中,每一个脉冲串都发送同样数目的B信道位,它们之间的不同仅仅是每个脉冲串所传送D信道位数的不同。
尽管多路传输1.4由于允许以2倍于多路传输1.2所允许的速率进行D信道的传输而具有优越性,但这可通过使多路传输1.4中的每个脉冲串比多路传输1.2的每个脉冲串长出2位(即68位代替66位)来达到。参考图2,这就意味着,当两部分使用多路传输1.4进行通信时,时刻t2和t3间的间隔(各部分能在发送方式和接收方式之间转换的时间)从5.5个位周期减小2个位周期为3.5个位周期。类似地,时刻t4和t1间的间隔也减小2个位周期。这样,只有当基地电台3和手机11能够用减小后的可用时间内切换发送和接收方式时,才能用多路传输1.4进行通信。不能作这种足够快的切换的设备只能使用多路传输1.2。
在最佳实施例中的所有基地电台3和手机11能够用多路传输1.2进行通信,即使它们也能用多路传输1.4进行通信。在基地电台3和手机11间的任何特定无线电链路中,收发双方必须使用多路传输1的相同形态。在链路初始建立期间,两个部分在切换到多路传输1之前以称为多路传输2(或MUX2)的不同的数据结构进行通信,并且,在切换到多路传输1之前,两个部分执行操作(有时称之“协商”操作)来确定使用多路传输1的哪一种形态。如果两个部分都能用多路传输1.4进行通信,便可这么做。如果其中一个部分或两个部分都只能使用多路传输1.2,那么该无线电链路就必须采用多路传输1的这种形态。
多路传输2的结构如图5所示。该数据结构用于在使用B信道的通信开始之前建立链路。在多路传输2数据结构中,不发送B信道数据。每个多路传输2的数据脉冲串为66位长。前16位和最后16位定义为属于D信道,而中央34位定义为属于称为S信道的第三逻辑信道。S信道的前10位为P位,该P位构成前置部分并简单地包含“1”与“0”间的交替。S信道的剩余24位为W位,它定交了S信道同步字。
S信道用于正在两部分之间建立无线电链路时对两部分进行同步。需要有两种层次的同步。第一层是各部分必须进入位同步使得接收部分在对接收到信号译码时可将所接收信号划分为具有正确时序的若干位。第二是两部分必须进入脉冲串同步,使得一个部分在发送而另一部分处于接收方式,然后另一部分发送而前一部分处于接收方式,从而提供图2所说明的交替脉冲串传输结构。
当正在建立某方向链路时,手机11接收来自基地电台3的第一无线电信号是多路传输2的格式,并且如果革地电台3正在启动与手机3的链路的创建,那么基地电台3接收来自手机11的第一信号也可为多路传输2的格式。(当手机11正在启动链路时,它首先以另一种称为多路传输3(或MUX3)的另一种数据结构进行发送,这将在后面描述)。所以,已将多路传输2预定用于允许两个部分间的迅速同步过程。
大多数基地电台3和手机11将包含有自动频率控制电路或自动增益控制电路或两者。这些电路需有一初始周期,在该周期内,接收无线电信号,执行其控制操作并建立为相关部分所满意的无线电信号的接收。多路传输2结构中D信道的前16位提供了无线电传输、允许自动增益和自动频率控制电路在接收到S信道的34位之前进行设置的这样一个周期。
S信道P位的“1010…”前置部分模式的连续位值的取反提供了位周期时序的时确定义,允许接收部分在接收到S信道的24位同步字之前进入与发送部分的位同步。该同步字具有预定模式,接收部分在接收到的数据脉冲串中对该预定模式进行搜索。当识别出该位模式时,接收部分便知道所考虑的24位构成了S信道的同步字。由于确定了多路传输2结构中该同步字的位置,那么接收部分便可确定所接收到多路传输2数据脉冲串的脉冲串时序,所以可得到脉冲串同步。
D信道数据是可变动的,并且偶尔有可能D信道的连续的24位具有如S信道同步字相同的模式。如该D信道数据被误识别为S信道同步字,接收部分会选不正确的脉冲串时序。为防止这种情况的发生,在多路传输2中将D信道分割为2个16位部分,使得该脉冲串不包含未断开位串的D信道的24位。
如前参考图2所述,基地电台3通过启动以2毫秒为间隔的连续数据脉冲串的传输来判定2毫秒的脉冲串周期。手机11修改其接收和发送时序以匹配基地电台3的时序,这样便产生图2的时分多路传输结构。这样,在判定脉冲串同步时序时,基地电台3作为主动方而手机11作为从属方。由于基地电台3典型地含有比手机11更为精确的时钟,这种方式便于使脉冲串方式的时序精度最高。因此,如果基地电台3能用不同无线电信道同时与不同手机11进行通信,基地电台3维持两条这样的链路就是不实际甚至不可能的,除非两条链路的发送和接收的时序是同步的。所以,手机11时序必而从属于基地电台3的时序。
链路启动和多路传输3如果基地电台3希望启动链路,那么,它将用多路传输2开始发送。如果手机11接通但未与链路连通,那么,它将扫描无线电信道以寻找正进行传输的无线电信道。如果手机检测到无线电传输,那么,它在假定该无线电传输是多路传输2的情况下而着手对它进行译码。手机11以异步方式进行这些操作,并且,如果接收到的信号是多路传输2的格式,那么,S信道的前置部分和同步字将使手机11能够获得与所发送的信号的位和脉冲串的同步。一旦获得这种同步,就能对D信道的内容进行译码,并能开始链路启动过程。
当手机11希望启动与基地电台3的通信链路时可能出现问题。空载基地电台3(即,正等待来自手机的通话的基地电台)可以与占线的基地电台(即,已经处在与手机的通信状态中的基地电台)的操作同步。这样,所述空载基地电台将仅仅具有这样的监听窗口,即,在占线基地电台处在接收方式的那些时间内,所述空载电台能够在该窗口期间接收来自手机11的传输信号。如果所述两个基地电台共同使用一个公用天线系统的话,那么,这种对空载基地电台的监听能力的限制几乎是必然的情况,因为,从已经处在通信状态中的基地电台的发射机泄漏出的射频功率多半会淹没从通话的手机接收到的功率、以致在这些时间段内空载基地电台将不能探测到任何手机、即使该电台处在接收方式。因此,手机11必须假定基地电台具有这样的监听窗口,即,在每个2毫秒(144位)脉冲周期中,该窗口仅仅占有1毫秒(72位)。
已经不与基地电台3通信的手机11将不与基地电台3同步,因此,手机11不能发出其时序与它试图联系的基地电台3的监听周期同步的链路请求信号。因此,手机11通过异步发送称为多路传输3(即,MUX3)的另一种数据结构来进行链路请求。多路传输3的这种异步特性示于图6中。
图6中下面的线表示基地电台3的工作时序。基地电台3将把时间分成多个发送周期21,并且在这些发送周期21之间只能接收来自手机11的信号。图6中上面的线表示手机11用多路传输3进行发送的活动。图6中用标号23表示的每个多路传输具有720位的长度,并且,持续10毫秒的时间段。接着的多路传输3的传输过程23隔开288位周期,持续4毫秒,在此时间间隔,该手机从发送方式转换到接收方式,并且,倾听来自基地电台3的具有多路传输2格式的回答。这样,多路传输3的传输过程的总的脉冲串周期是1008位周期或14毫秒。多路传输3的脉冲串周期是多路传输1和多路传输2的脉冲串周期的7倍,并且,多路传输3的传输过程持续5个多路传输1或多路传输2的脉冲串周期。
如图6中所示,每个多路传输3传输过程23被分成5个相等的子多路传输段。每段144位,并持续2毫秒。这样,每个子多路传输段持续时间与基地电台3的工作周期(包括发送周期和接收周期)相同。
图7按放大比例示出图6的一部分。多路传输3的每个子多路传输段又分成4个相等的重复周期。以一个子多路传输段发送的数据在每个重复周期中重复出现。每个重复周期包含36位并持续0.5毫秒。因为,手机11与基地电台3不同步,所以,基地电台3工作时的单个接收窗口相对于多路传输3结构的时序是不能预测的。然而,子多路传输的每个36位重复周期是足够短的,以致在相继的基地电台传输周期21之间的时间间隔中,基地电台3必须至少接收子多路传输的一个完整的重复周期。图7中,基地电台3和手机11的操作的相对时序是这样,即,每个子多路传输的第三个重复周期完全落在基地电台的接收周期内,并因此被基地电台3接收。
因为每个重复周期包含在多路传输3脉冲的一个子多路传输周期中所发送数据的完整的拷贝,所以,为了接收由手机11发送的数据,基地电台3只需要接收每个子多路传输中的一个重复周期。如图6中所示,多路传输3的前面4个子多路传输周期被规定为用来传输D信道,而多路传输3的最后一个子多路传输周期被规定为传输S信道。这使基地电台3对S信道的重复周期进行接收和译码的可能性达到最大。
多路传输3的子多路传输的S信道的每个重复周期包含S信道同步字。当基地电台3检测到该同步字时,该电台就知道在以后两个接收周期中没有多路传输3的传输信号,于是,在相继的接收周期中,它接收D信道的4个部分、然后再接收包含同步字的S信道部分。由此可见,基地电台3能够在不改变本身的多路传输1和多路传输2的信号的脉冲同步的情况下,暂时与来自手机11的多路传输3的时序同步。
在对从手机11接收到的多路传输3的信号译码之后,该基地电台能够在相继的多路传输3的传输过程之间的288位间隔期间以多路传输2的方式应答。该间隔是足够长的,以致能够保证它至少包含一个完整的基地电台的发送周期21,如在图6中能够看到的那样。手机11一旦接收到来自基地电台3的具有多路传输2形式的应答信号,就停止以多路传输3的方式发送,代之以同基地电台3的时序同步的多路传输2的方式发送。
图8和9中更详细地示出多路传输3结构中数据的结构。图8中,每列表示一个子多路传输周期。前面的4行表示4个D信道子多路传输的周期,而第5行表示S信道子多路传输的周期。第6行和第7行表示在下一个多路传输3传输之间、跟在一个多路传输3传输之后的周期(等于两个子多路传输周期)。在该周期里,手机11监听多路传输2格式的应答。
将多路传输3的传输过程的5行各自分成4个重复的周期。在前4行中,每个重复周期包含36个D信道位。同一个子多路传输的顺序的重复周期是相同的,但是,顺序的子多路传输发送不同的D信道信息。图8中,表示第5个子多路传输的第5行的每个重复周期包含S信道的36位。每个重复周期中的S信道数据是相同的。这样,在图8的单列中包含了以多路传输3脉冲串发送的数据的完整性。
图9更详细地示出图8单列中数据的结构。在D信道中,仅仅某些位携带有用数据。每个36位重复周期起始于构成交替的逻辑“0”和“1”的前置部分的6个P位。接着是10个数据传输位、另外8个P位、另外10个数据传输位,最后是另外两个P位。这样,每个重复周期被分成两个10位时间段的20个D信道数据传输位,这两个10位时间段被8位的前置部分隔开。该数据传输位能够采用任何值,依赖于D信道中所发送的数据;因此,原则上,D信道中数据位的模式与S信道的同步字相同或非常相似是可能的。如果连续地发送D信道数据并且偶然在其中出现这种位模式,那么,基地电台3可能错误地把接收到的D信道重复周期识别为属于S信道的,所以基地电台3可能对多路传输3进行不正确的译码。通过将D信道的数据传输位分裂成由8位前置部分隔开的各10位段,多路传输3格式的D信道永远不会包含与S信道同步字的模式相似的由顺序位构成的模式。
如图9中所示,多路传输3的S信道子多路传输的每个重复周期起始于逻辑“1”和“0”交替构成的12个P位的前置部分。在这后面的是构成S信道同步字的24个W位。多路传输3格式的S信道的这种结构使得在基地电台3接收到所述同步字之前正在接收的基地电台3获得与多路传输3的位同步的可能性达到最大。
S信道结构S信道的结构是非常简单的。如图5中所示,它由具有多路传输2格式的前置部分的10个位和后面的同步字的24个位构成,或者,如图9中所示,它由具有多路传输3格式的前置部分的12个位和后面的同步字的24个位构成。所述前置部分总是由交替的逻辑“1”和“0”组成。
在最佳实施例的系统中,有4个可能的S信道同步字。这些同步字中的两个仅仅用于基地电台3,而其他两个只能用于手机11。当某一部分希望启动链路时,它就使用称为信道标志(简写为CHM)的S信道同步字。当系统的另一部分接收到该信号时,它就用简写为SYNC的正常同步字进行应答。当在这两部分之间建立链路后,在接收所述应答之后,所述第一部分在其发送时将S信道中的同步字从CHM改为其SYMC形式。基地电台3的CHM的形式称为固定部分信号标记,简写为CHMF,而手机11的信道标志称为便携部分信道标志,简写为CHMP。类似地,SYNC的基地电台3的形式记为SYNCF,而SYNC的手机11的形式记为SYNCP。CHMF和CHMP,各位彼此互逆,而SYNCF和SYNCP各位彼此互逆。
这样,如果基地电台3希望启动链路,那么,它将使用多路传输2、以CHMF作为S信道同步字来发送链路请求。接收到该传输信号的手机11将使用作为S信道同步字的SYNCP、以多路传输2的格式应答。一旦建立了链路,基地电台3将改变其多路传输2的脉冲串,以便使用SYNCF代替CHMF作为S信道同步字。
如果手机11希望启动链路,那么,它将以多路传输3的格式、用CHMP作为S信道同步字来发送链路请求。当基地电台3检测到该请求时,它将以多路传输2的形式、用SYNCF作为S信道同步字来应答。一旦建立了链路,手机11将把其传输信号改变为多路传输2的格式,并将SYNCP用作同步字。
当基地电台3或手机11正在扫描各信道以便判断可否有另一部分正请求与它建立链路时,它仅对CHM同步字起反应,因为,该同步字表示存在希望建立链路的另一部分。如果检测到SYNC同步字,那么,这表示该信道包含已经建立的链路,因此正扫描各信道的所述部分对此不起反应。
基地电台3预定能够识别CHMP和SYNCP,即,由手机11发送的S信道同步字,但是,不能识别CHMF或SYNCF。因此,基地电台3决不会对来自另一个基地电台的多路传输2的传输信号起反应和译码,即使接收了该传输信号。类似地,手机11仅能识别CHMF和SYNCF,而不能识别CHMP和SYNCP,因此,各手机不能识别彼此间的多路传输2和多路传输3的传输信号,从而,各手机决不会启动它们之间的直接的链路,而只启动与基地电台的链路。
硬件在以上说明了基地电台3和手机11交换信号的方法之后,下面将说明基地电台3和手机11本身。
图10示出手机11的实例。它具有用于在联系基地电台3的无线电链路中发送和接收信号的天线25。天线25也可以设置在手机11的壳体中,使其从外表上看不见。手机11具有用于电话话音通信的话筒27和扬声器29,并且,具有用于控制其工作的小键盘31。该小键盘的底下4排构成能够拨号等等的普通电话键盘,该电话键盘包括0至9的数字键,散列键(“hash”key)和“*”键。上排键33使用户能够与基地电台3的链路。通过按下适当的键33,用户能够接收基地电台3向该手机11的呼叫,或者,请求经由附近的基地电台3进入远距离通信网络1。
手机11可以备有其他普通部件,例如,用于预先存储电话号码的存储器,以及显示器。图11中示出具有显示器35的手机11的实例。除了有显示器35之外,该手机与图10的手机相同。
图12是手机构造的简图。该手机受控于控制电路37,该电路连接到天线25、话筒27、扬声器29和构成小键盘31的键盘/显示器部件39,当设置显示器时,该电路还连接到显示器35。一个或多个电池组41为控制电路37和键盘/显示器部件39提供电力。
图13示出基地电台3的实例。该电台具有用于同无绳式电话手机11通信的天线43,并且,还经由普通电话线45连接到远距离通信网络1以及经由电源线47连接到普通电源。
基地电台3还备有普通有线电话手机49、显示器51和小键盘53,这些部件使基地电台3能够用作连接到远距离通信网络1的普通电话、也能够用作能够在不涉及远距离通信网络1的情况下与无绳式电话手机11通信的内部通信电台。图14是基地电台3的结构简图。该电台受控于基地电台控制电路55,该电路连接到有线电话手机49,连接到电话线45以及连接到构成普通小键盘53和显示器51的小键盘/显示器部件57。电源电路59经由电源线47接受电力,并向控制电路55和小键盘/显示器部件57提供电力。电源电路59可以包括诸如电池组或电容器的电力存储装置,该装置使基地电台即使当断开外部电源时也能继续工作一段有限的时间。
基地电台控制电路55包括连接到有线手机49的开关装置61,电话线45和天线43。在开关装置61的一种状态中,该开关将有线手机49连接到电话线45,以便允许进行通常的电话操作,此时,控制电路55不必按经由无线电链路的传输所要求的方式对话音信号进行处理。在另一种状态下,开关61将有线手机49和天线43连接到控制电路55的其余部分,以便话音信号在有线话机49和天线43之间穿过,按允许经由无线电链路与无绳式手机11进行通信的要求进行处理。在第三种状态下,开关装置61将电话线45连接到控制电路55的其余部分,而不是有线手机49,以便使基地电台3仅仅作为远距离的手机11和远距离通信网络1之间的无线电链路的基地电台。
在不需要有线手机49的功能的地方,基地电台3可以不包括任何有线手机49、显示器51、小键盘53、小键盘/显示器部件57以及开关装置61。基地电台控制电路55可能永久地连接到天线43和电话线45。
在使用无绳式手机11的情况下,可以把基地电台天线43安装在基地电台3的外壳内。
图15是手机11的电路系统的框图。把话筒27接收到的话音转换成电信号、提供给话音编码器63。话音编码器63包括A/D变换器,该变换器把来自话筒27的模拟电信号转换成具有8KHz取样频率的8位数字信号。这产生6千位/秒的总的位速率。该A/D变换器是非线性的,并且,具有对输入信号进行脉码调制(PCM)的功能。
然后,将8位数据字压缩到4位数据字,从而,把数字数据的位速度减小到32千位/秒。用自适应差分脉码调制(ADPCM)来进行所述压缩。在该编码系统中,每个4位字表示相邻样值之间的数值变化、而不是它们本身的绝对样值的数值变化。对于变化较慢的信号、例如、话音信号来说,这是有效的数据压缩技术。该32千位/秒的数据流构成B信道的内容,并且,按8千字/秒的速率、以4位并行字的形式供给可编程多路调制器65的B信道输入端。
话音编码器63还可以把B信道数据中的一些位的值按照预定模式取反,以便提高数据的相邻位之间位值的变化概率。这是为了使无线电发送和接收系统在所发送和接收信号位的数据值频繁变化的情况下可以更好地工作。
可编程多路调制器65还在相应的输入端接收D信道和S信道数据。在手机11正以多路传输1的形式工作的同时,可编程多路调制器存储来自话音编码器63的32K比特/秒的数据流。可编程多路调制器65按照所述无线电链路的脉冲串方式操作以脉冲串的形式输出数据,根据该无线电链路的数据速率,所述数据输出的速率是72K千位/秒。这样,在每个2ms脉冲串周期,该可编程多路调制器将输出先前从话音编码器63接收并存储的B信道的64位数据,并且,将把该B信道数据夹在D信道的2或4位数据之间、构成多路传输1.2或多路传输1.4的数据流。
把来自可编程多路调制器65的数据流脉冲串供给发射机67,该发射机根据接收到的数据流对从本机振荡器69接收到的无线电载波频率进行调制。经由发射/接收开关71,把作为结果得到的无线电频率脉冲串供给天线25。发射/接收开关71在每个脉冲串周期的发射部分期间把发射机67连接到天线25,而在每个脉冲周期的接收期间把天线25连接到无线电接收机73。
在每个脉冲周期的接收部分,接收机73使用来自本地振荡器69的载波频率信号对从天线25接收到的信号进行解调。接收机73把解调后的72千位/秒数据流脉冲串供给可编程多路信号分离器75。
可编程多路信号分离器75按照手机11通常工作的多路传输结构,把接收到的各数据位在B信道、S信道和D信道之间分配。当该手机以多路传输1的形式工作时,在每个数据脉冲串接收到的64个B信道位被存储在可编程多路信号分离器75中,然后,按8千字/秒的速率、以4位并行字连续流的形式输出到话音解码器77。
在基地电台3中,话音解码器77重复由该解码器加在B信道的位取反模式而获得正确的数据值,然后,执行用于对该话音数据译码的ADPCM算法的逆过程,以便获得具有8千字/秒速率的8位脉码调制字。
然后,该话音解码器用PCM数字-模拟变换器把该数字数据转换成模拟数据,并且,把该输出模拟信号提供给扬声器29。扬声器29把该模拟信号提供给扬声器29。扬声器29把该模拟电信号转换成供用户收听的声音。
在多路传输1操作期间,话音解码器63以32千位/秒的速率向可编程多路调制器65提供B信道数据。因此,在每个2ms脉冲周期中,可编程多路调制器65接收64个B信道位。由于每个多路传输1脉冲串传输64个B信道位,所以,该无线电链路以等于由话音解码器63提供的位速率的有效平均位速率传输B信道。类似地,接收到的B信道数据的有效平均位速率与从可编程多路信号分离器75到话音解码器77的连续数据传输的位速率一致。这样,存在有效的连续双向B信道通信,而不管该无线电链路的时分双向脉冲串方式的特性。
正如本领域技术人员众所周知的,可以用称为编码器/译码器或Codec的单个电路部件来提供话音编码器63和话音译码器77。
手机11的工作受控于系统控制器79,同时,为了确保脉冲串同步,响应来自S信道控制器81的信号而控制该操作时序。系统控制器79一般是包括处理器、程序存储器和随机存储器的、基于微处理器或基于微计算机的控制系统。S信道控制器81可以用单独的微处理器来实现,或者,可以用与系统控制器相同的处理器的软件来实现。但是,鉴于由S信道控制器所执行的操作的简单性以及在这种操作中需要高的速率,所以,最好用专用硬件来实现该S信道控制器。
系统控制器79把控制信号送到可编程多路调制器65和可编程多路信号分离器75,以便命令它们采用哪种多路传输结构,并且,给它们输送定时信号,以便它们与无线电链路的脉冲串结构适当地同步。可编程多路调制器65和可编程多路信号分离器75也可以向系统控制器79发送信号,以便向它报告用于存储该多路调制器或多路信号分离器中的数据信号的缓冲器是否到达溢出或者是空的。
来自系统控制器79的控制信号控制发射/接收开关71,以便它按照正确的时序交替地把发射机67和接收机73连接到天线25。
系统控制器79在任何指定的时刻选择手机11工作的无线电信道,并且,命令本机振荡器69产生用于发射机67和接收机73的、具有适当频率的信号。在准备使用的按照贸易工业司颁布的规定的英国的系统中,手机11可以工作于40个信道中任何一个信道,这40个信道的载波频率以100KHz的间隔位于864.15MHz至868.05MHz的范围内。系统控制器79将通知本机振荡器69哪个信道已被选用,而当其输出信号已达到所选频率时,本机振荡器69通知系统控制器79。
系统控制器79还可以在若干确定的时刻向话音编码器63和话音译码器77发送控制信号,以减弱B信道的信号。在建立链路时,以及谈话过程中有必要重新建立链路时,对B信道进行抑制是有益的,以便让用户免于在这些时候收听到不愉快的噪声。
系统控制器79还控制D信道。它接收来自可编程D多路调制器75的输入的D信道数据,并向可编程多路调制器65提供用于传输的输出的D信道数据。某些接收到的D信道数据仅仅用于控制系统控制器79的操作,而在系统控制器79中产生某些发送的D信道数据。这种数据包括发送和接收的符号交换信号,以及在建立无线电链路期间手机11和基地电台3之间交换的各种标识信号。然而,发送的D信道其他类型的数据将由用户的操作产生,而接收到的D信道其他类型的数据必须传送到用户。因此,系统控制器79还具有与小键盘和显示器部件39联系的控制信号。
当用户正用手机11开始电话呼叫时,经由小键盘送入所拨的电话号码。小键盘/显示器部件39将向系统控制器79报告所述键的按下,该控制器对所拨的电话号码编码,以便在D信道中传输。这样,基地电台3就知道用户所拨的电话号码,并且,能够向远距离通信网络1发送适当的拨号信号。
如果基地电台3由于已经接收到电话呼叫而启动与手机11的无线电链路,那么,必须提醒用户存在来话呼叫。为此,该信号控制器可以控制一种单音呼叫器(未单独示出),以便发出可听的警报。此外,系统控制器79可以命令小键盘/显示器部件提供可视的指示(例如,用指示灯)。如果用户希望接收该呼叫,那么,可通过按下“line”键33来实现。小键盘/显示器部件39向系统控制器79报告所述键的按下,该控制器又通过D信道向基地电台3报告。
如果手机11包括显示器35,那么,根据系统控制器79的命令,可以或者在用户接收之前、或者在通话过程中,把信息显示在该显示器上。从基地电台3经由D信道送来的待显示的数据一般已经被系统控制器79所接收。
S信道控制器81接收来自可编程多路信号分离器75的S信道数据,并且,向可编程多路调制器65提供用于传输的S信道数据。当手机11空闲并正在扫描无线电信道以便知道基地电台3是否正呼叫它,那么,系统控制器79控制发射/接收开关71,以便把天线25永久地连接到接收机73。当接收到无线电信号时,就在可编程多路信号分离器75中实现了位同步,而S信道控制器81负责识别S信道同步字从而允许脉冲串同步。在实现脉冲串同步之前,把接收到的所有数据当作可能属于S信道的数据处理,因而,由可编程多路信号分离器75把这些数据输送到S信道控制器81。S信道控制器81在该输入数据中检索S信道同步字CHMF,当基地电台3希望建立链路时就使用该同步字。
当S信道控制器81识别CHMF后,它就向系统控制器79报告已接收到基地电台信道标志,并且,提供与接收到的脉冲串的时序同步的帧时钟信号。系统控制器79使用来自S信道控制器81的脉冲串时序信息来控制可编程多路信号分离器75的操作时序,以便把来自基地电台3的其他传输信号译码为正确的逻辑信道。在该阶段,可编程多路信号分离器75将以多路传输2方式工作。可编程多路信号分离器75按照多路传输2的数据结构,将接收到的数据在S和D信道之间分配。只要发送到S信道控制器81的S信道数据继续包含同步字CHMF,该S信道控制器就将继续确认到系统控制器79的脉冲同步有效。
系统控制器79对D信道上所接收的数据进行译码。如果这导致该系统控制器对接收到的传输信号应答,那么,它将命令可编程多路调制器65开始按适当的脉冲时序、以多路传输2的形式开始工作,并且,将控制发送/接收开关71交替地把天线25连接到接收机73和发射机67。同时,系统控制器79将命令S信道控制器81向可编程多路调制器65提供同步字SYNCP、作为S信道输入信号。
如果手机11的用户想开始呼叫,并且,按F小键盘31上键33之一,那么,小键盘/显示器部件39会把该操作报告系统控制器79。系统控制器79经由射频信道、用改变本机振荡器69的频率的方法进行搜索、直至找到空信道为止。将空信道定义为该信道上所接收到的射频能量低于阀值。如果所有信道上接收到的射频能量都高于该阀值,那么,把接收到最小射频能量的信道定义为空信道。
然后,系统控制器79命令可编程多路调制器65以多路传输3的形式工作,并且,命令S信道控制器81向可编程多路调制器65提供便携部分的信道标志CHMP、作为S信道同步字。控制发送/接收开关71,以便按照多路传输3操作所需模式把天线25连接到发射机67和接收机63,并且,系统控制器79确保发射/接收开关71的转换是与可编程多路调制器65的多路传输3的工作同步的。
在各接收周期内,可编程多路信号分离器75把接收到的任何数据传送给S信道控制器81。所述接收到的数据应当包含SYNCF。在识别该同步字之后,S信道控制器81将所接收到的信号的脉冲串时序提供给系统控制器79。然后,系统控制器79命令可编程多路信号分离器75按照接收到的脉冲串时序、以多路传输2的形式对接收到的数据进行译码。一旦该接收到的信道数据已被系统控制器79译码,该控制器立即命令可编程多路调制器65转换到多路传输2,后者具有与来自S信道控制器81的信息的脉冲串时序同步的时序。该控制器还将适当地改变通向发射/接收开关71的控制信号的时序,并且,将命令S信道控制器81向可编程多路调制器65提供SYNCP、以代替CHMP。
一种变型的手机11可用于数字数据通信(例如,向便携式个人计算机或计算机终端输送或自来这些设备的数字数据)而不是话音通信。在这种情况下,用通向所述计算机或终端的接口代替话筒27、扬声器29和小键盘/显示器部件39,同时,可能需要话音编码器63和话音译码器77的变型。具体地说,所述计算机或终端通常将提供或接收数字数据,因此,将不再需要话音编码器63的A/D变换器和话音译码器77的D/A变换器。此外,计算机数据通常不适合使用自适应差分脉码调制来进行数据压缩。因此,可能需要改变话音编码器63和话音译码器77对数据的编码和译码操作。另一种情况是,如果能使该计算机或终端工作于32千位/秒,那么,可以完全省去所述编码器和译码器。
图16示出基地电台3的原理框图。这是一种简单的基地电台,它不包括有线手机49、显示器51和小键盘53。
如从图中能够看到的,该基地电台控制电路55的总结构与所述手机控制电路37的总结构相似。可编程多路调制器85、发射机87、本机振荡器89、发送/接收开关91、接收机93以及可编程多路信号分离器与发射机11的对应部分基本上相同。基地电台3的S信道控制器101也与发射机11的S信道控制器81相似,除了以下操作之外,即,该基地电台控制器101预定识别输入的S信道数据中的CHMP和SYNCP,并且,向可编程多路调制器提供用于传输的CHMF和SYNCF,而不是正好相反的操作。
系统控制器99的操作大体上与发射机11的系统控制器79的操作相似,但存在一些差别。首先,当基地电台3试图建立与手机11的无线电链路时,它以多路传输2而不是多路传输3发送,因此,在这两种情况下,向可编程多路调制器85发出的指令以及向发射/接收开关91提供的时序信号是不同的。
同样,当基地电台3扫描各无线电信道以便探测手机11是否正在呼叫它时,它预计手机使用多路传输3呼叫。此外,一旦S信道控制器101已经向系统控制器99报告已接收到手机信道标志CHMP,系统控制器99将立即命令可编程多路信号分离器95处理具有多路传输3的数据结构的输入信号。基地电台3一旦已经发送对接收到的多路传输3的信号的应答,它就要求手机11转变到多路传输2,因此这时,它将据此向可编程多路信号分离器95发出命令。
因为手机11的脉冲串时序从动于基地电台3的时序,所以,除了多路传输3的传输过程之外,系统控制器99从S信道控制器101接收到的时序信息不用于对可编程多路调制器85的操作时序进行控制。可编程多路调制器85和发送/接收开关91的时序决定于系统控制器99的内部时钟。但是,按照接收到的脉冲串时序来控制可编程多路信号分离器95,以便既能够对来自手机11的多路传输3的传输信号正确译码、又能补偿RF传输延迟对来自手机11的传输信号的影响。系统控制器99也可以使用来自S信道控制器101的同步时序信息作为判断与手机11的通信链路已经由于失去脉冲串同步而断开的一种方法。
基地电台3的系统控制器99的操作不同于手机11的系统控制器的操作的第二方面在于手机11对D信道数据的处理。基地电台3从远距离通信网络1接收的通信数据不同于由用户输入到手机11的通信数据,因此,在经由无线电链路接收到的D信道各个部分数据中,将存在相应的差别。因此,系统控制器99的程序设计在基处理D信道数据的细节方面将是不同的。
此外,正如将在下文中详细说明的,在链路启动期间,基地电台3的操作也不同于手机11的操作,因此,在这方面,将对相应的系统控制器79、99进行不同的程序设计。
基地电台控制电路55包括线路接口103,电话线45连接到该接口。在该控制电路结构中,线路接口103代替话筒27,扬声器29和小键盘/显示器部件39。系统控制器99的通信数据输出(通常响应于接收到的D信道数据)受线路接口103的制约,并且,被接入电话线45。经由电话线路45从远距离通信网络1接收到信号同样被线路接口103译码,并且,当需要时提供给系统控制器99。线路接口103还接收来自译码器97的译码后的B信道数据流,然后,把它接入电话线路45,并且,接收来自电话线路45的话音或其他通信信号,然后,把这些信号接入编码器83。
可按照与基地电台3连接的远距离通信网络1的特性选择线路接口103的工作方式。具体地说,如果基地电台3连接到普通的公众电话交换网(PSTN),那么,线路接口103将经由电话线路45发送和接收模拟信号;而如果基地电台3连接到国际卫星数据网(ISDN),那么,线路接口103通常将必须发送和接收64千位/秒的脉码调制信号。
为了使基地电台3能够与各种不同类型的手机11通信,使编码器83和译码器97能够进行各种编码和译码操作。可以使它们能够使用多种不同的自适应差分脉码调制算法。还可以使它们能够使用数字数据处理算法,或者,使它们能够让信号不变地穿过、以便使基地电台3能够适合于与上述便携式计算机和计算机终端型手机11结合使用。
在链路建立过程中,虽然基地电台3和手机11以多路传输2的形式通信,但是,手机11能够经由D信道指定它所需要的编码和译码类型,因此,一旦开始多路传输1的传输过程,基地电台3的系统控制器99就将控制编码器83和译码器97、使其按上述要求操作。
图17以框图形式示出可编程多路调制器65、85。编码器63、83按8千字/秒的速率、以4位并行字的形式输出B信道数据。并行接收每个字的4位,并且,在与编码器63、83的操作同步的8KHz读时钟的控制下,把这4位存入可编程多路调制器的B信道易擦存储器105中。
系统控制器99提供8位并行字形式的D信道数据。可以间歇地提供该数据,而D信道数据的平均速率将随所采用的多路传输数据结构而变。该D信道数据被D信道易擦存储器107接收,并且,按照由系统控制器99提供的时钟信号记入该易擦存储器中。
以同样的方式向S信道易擦存储器109提供S信道数据,并按照与S信道控制器81、101的操作同步的时钟信号将该S信道数据记入存储器109中。以下做法是有可能的取消S信道易擦存储器109,而以适当的时序从S信道控制器81、101向可编程多路调制器65、85提供该S信道数据、以便将它插入数据脉冲串中。但是,这要求该S信道控制器的操作与该可编程多路调制器精确地同步,而当它们之间的位或脉冲串同步出现任何变化时,该脉冲串的数据结构会被扰乱。使用S信道易擦存储器109使该可编程多路调制器能够确保以正确的时序将S信道数据置于数据脉冲串中,而不管S信道控制器的时序的任何轻微的差别。此外,因为一般说来从一个数据脉冲串到下一个数据脉冲串、S信道的内容是相同的,所以,能够重复地将S信道数据存入S信道易擦存储器109并从其中读出,并且,如果改变S信道同步字的话,那么,S信道控制器仅仅需要向可编程多路调制器提供新的S信道数据。S信道的前置部分可永久地存储在S信道易擦存储器109中。
该可编程多路调制器的多路传输操作受控于多路传输控制器111。该多路传输控制器接收来自系统控制器79、99的信号,该信号向它报告正使用哪一种多路传输结构,并且,赋予它正确的脉冲串时序。多路传输控制器111还可以接收来自系统控制器的时钟信号,或者,按另一种方法,它可以具有与来自系统控制器的脉冲时序信号同步的内部时钟发生器。
在多路传输控制器111的控制下,从B信道易擦存储器105,D信道易擦存储器107和S信道易擦存储器109读出信号,而这些信号的多路传输发生在信号组合器113中。信号组合器113接收来自各个易擦存储器105、107、109的输入信号,然后,该组合器在由多路传输控制器111向信号组合器113提供的输入选择信号的控制下、选用在这些输入端之一上接收到的信号、把它传送到输出端。同时,多路传输控制器111向易擦存储器105、107、109提供控制信号,使得当每个易擦存储器输入到信号组合器113的信号被连接到该组合器的输出端时,该易擦存储器就读出其内容的一位或多位而构成串行位流。多路传输控制器111向每个易擦存储器105、107、109提供72KHz时钟信号,以便按正确的位速率从这些存储器读出信号、而由可编程多路调制器把该数据脉冲串组合起来。
B信道易擦存储器105和D信道易擦存储器107向多路传输控制器111提供表示当前存储在该存储器中的数据量的控制信号。当正在传输的多路传输结构要求用相关的信道发送数据时,多路传输控制器111向系统控制器79、99报告这些存储器中的任一个是否会溢出,或者,以另一种方式,报告这些存储器中是否每一个都不包含数据。
图18是可编程多路信号分离器75、95的方框图。首先,向重新定时部件115提供来自接收机73、93的已解调的输入信号。该部件连续监视由接收机提供的信号电平的变化,以便保持多路信号分离器与接收到的信号的位同步。然后,把该输入信号数据传输到信号分离器117,同时,向多路信号分离控制器119提供处在接收信号的位时序状态下的数据。该多路信号分离控制器向信号分离器117提供数据分配信号,该分配信号控制分离器117把在其输入端接收到的数据在三个输出端(B信道、S信道和D信道中每个信道一个输出端)之间分配的方式。
多路信号分离控制器119接收来自系统控制器79、99的控制信号,该信号向它报告应当按照所具有的哪种多路传输结构来处理输入数据。当手机11或基地电台3正在扫描无线电通道以寻找表明另一部分希望与它建立链路的信号时,多路信号分离控制器119将命令信号分离器117把由可编程多路信号分离器接收到的所有数据传送到S信道。把该S信道数据直接供给S信道控制器81、101。在该可编程多路信号分离器中没有用于S信道的易擦存储器,因为,这种易擦存储器中对S信道数据的延迟可能使S信道控制器不能正确地检测对接收到的信号的脉冲串同步。
一旦已经检测到该输入信号的脉冲串同步,系统控制器81、101将立即命令多路信号分离控制器119将输入数据处理为具有所规定的多路传输结构,并且,它还将为多路信号分离控制器提供脉冲串同步时序。多路信号分离控制器119将按照来自系统控制器的指令而控制信号分离器117、在所述三种信道之间分配输入数据。
向B信道易擦存储器121提供B信道数据,而向D信道易擦存储器123提供D信道数据。在所有情况下,接收到的数据都将具有串行位流的形式以及72K比特/秒的速率。按照由多路信号分离控制器119向这些存储器提供的72KHz时钟信号,将该数据记入易擦存储器121、123中。多路信号分离控制器119利用由重新定时部件115向该多路信号分离控制器119提供的接收信号位时序信息、以确保72KHz时钟信号与被易擦存储器121、123接收到的数据同步。
多路信号分离控制器119控制易擦存储器121、123的操作,使得它们仅仅在信号分离器117向该存储器提供数据时才存储数据。这些存储器向多路信号分离控制器119提供关于它们包含多少数据的信息,然后,多路信号分离控制器119通知系统控制器79、99所述存储器是空的还是会溢出。
以4位并行字的形式从B信道易擦存储器121中读出B信道数据,将该数据传送到译码器77、97。该4位字是按照向B信道易擦存储器121提供的并与该译码器的操作同步的8KHz时钟信号、以8千字/秒的速率读出的。
按照系统控制器79、99的要求、以8位宽并行字的形式从D信道易擦存储器123读出D信道信息。该操作是按照由系统控制器向D信道易擦存储器123提供的读时钟信号进行的。
图19是系统控制器79、99的原理图。该系统控制器包括具有以普通方式与它连接的时钟装置127的微处理器125。地址、数据和控制信号总线129把该微处理器125连接到RAM131和ROM133。RAM131为微处理器125提供工作存储器,而ROM133包含微处理器125的程序。
至少对于手机11来说,通常在使用前必须进行注册操作,以便获得允许进入基地电台3(或者一组基地电台3,或者由基地电台3提供的多个设备之一)的代码字。为了能够安全的存储该代码字、并且、即使在切断该设备的电源时(例如,当更换手机11中的电池组时)也能保存它,最好提供可以存储该代码字的电气上的可改写ROM134(EAROM)。在一种可供选择的方法中,或者RAM131、或者ROM133是一种EAROM,而不提供单独的EAROM134,但是,这通常是一种成本较高的实施方法。
该设备的其他部分象图15和16所示那样连接到系统控制器。正如本领域的技术人员所熟知的,所述其他设备可以是或者象外围设备那样、或者象存储器映象设备那样进行连接。存储器映象设备直接连接到总线129。外围设备连接到输入/输出接口135,后者又连接到总线129。
当手机11或者基地电台3占线但未连接到无线电链路时,它将扫描无线电信道以便探测是否有其他设备正企图启动无线电链路。同时,在手机11的情况下,如果用户按F按钮请求建立无线电链路,或者,在基地电台3的情况下,如果接收到来自远距离通信网络1的电话振铃信号,那么,系统控制器79、99必须起反应。实现这种操作的方法是可对该系统控制器编写程序,使得它可用来定时询问小键盘/显示器部件39(在手机11的情况下)或者用来定时询问线路接口103(在基地电台3的情况下)、以便判断是否已接收到该系统控制器必须对其起响应的信号。另一种方法是,可以经由总线129的控制线路,把小键盘/显示器部件39和链路接口103连接到微处理器125的中断输入,以便当接收到要求该设备自己启动链路的信号时,中断系统控制器79、99的信道扫描操作。本领域的技术人员会很了解微处理器控制的设备的这些关于结构和程序设计方面的替代方法。
图20是S信道控制器81、101的原理方框图。该S信道控制器具有CHM同步字识别器137和SYNC同步识别器139。这些识别器连续地将由可编程多路信号分离器75、95给S信道控制器提供的数据中最新接收到的24位与存储的同步字的表示相比较,并且,每当获得S信道输入和所存储的同步字间的匹配时,就产生相应的“识别出CHM”和“识别出SYMC”的信号。识别器137、139可以分别用24位串行输入移位寄存器来实施,该寄存器的并行输出端通向相应的位识别器的第一输入端,而该位识别器的第二输入端连接到所述同步字的各位的硬连接表示。
对于每个同步字来说,手机11的形式是基地电台3的形式的位取反,因此,通过将通向每个位比较器的两个输入之一取反,或者,通过移位寄存器的输入取反,可以使同步字识别器137、139在识别手机字和识别基地电台字之间转换。这样建立识别器能够或者识别手机字、或者识别基地电台字,并且,使用时,哪个字被识别取决于线路141上的信号,该信号表明S信道控制器是否已经安装在手机11中,或是否已经安装在基地电台3中。
S信道控制器81、101还包括CHM同步字发生器143和SYNC同步字发生器145。可以分别通过提供并行输入、串行输出的其并行输入端硬连接的24位移位寄存器来构成这些发生器,以提供合适的同步字。每个同步字发生器143、145预定能够通过将所述移位寄存器的输入或输出取反来产生手机字或基地电台字,并且,当这些发生器工作时,线路141上的信号确定哪个字将被产生。
正如先前已经说明的,手机11的S信道控制器81、101将识别基地电台字和产生手机字,而基地电台3的S信道控制器81、101将识别手机字和产生基地电台字。用“或”门147将同步字发生器143、145的输出信号组合起来,然后,作为S信道输入信号供给可编程多路调制器65、85。
当识别出相应的同步字后,经由相应的线路149、151直接向系统控制器79、99提供“识别出CHM”信号和“识别出SYNC”信号,同时,还向帧时序控制器153提供这些信号。帧时序控制器153还从该系统控制器接收关于假定接收到的数据具有哪种多路传输结构的信息,以及关于该无线电链路的状态的信息。通过将“识别出CHM”或“识别出SYNC”信号的时序与关于多路传输结构的信息相组合,帧时序控制器153能够产生帧时钟信号,后者向系统控制器79、99提供脉冲串同步信息。此外,当链路状态信息表明已经命令可编程多路信号分离器75、95按照多路传输2或多路传输3的数据结构、以假定的脉冲串时序对输入数据进行多路数据信号分离时,该帧时序控制器还向系统控制器提供帧时钟信号157,信号157表明接收到的同步字的时序是否与假定的脉冲串时序一致。正如已经说明的,系统控制器79、99用帧时钟信号155和帧同步信号157来控制可编程多路调制器65、85以及可编程多路信号分离器75、95的脉冲串时序。
当要求CHM发生器143和SYNC发生器145中任一个向该可编程多路调制器输出相应的S信道同步字时,帧时序控制器153还向这些发生器提供控制信号。
链路启动程序图21以流程图的形式说明当基地电台3启动与手机11的链路时、手机11和基地电台3所进行的操作。图22说明在该过程中数据脉冲串传输信号的模式。图23和24是当手机11启动与基地电台3的链路时相应的流程图和数据脉冲串序列图。
在图21和23中,每个图中示出两个流程图一个是基地电台3进行的操作,另一个是手机11进行的操作。图中以粗线表示逐步操作的流程,而以细线表示各步骤中设备之间无线电信号的通路。
当手机接通、但未接入链路时,它执行信道扫描循环。在步骤H1中,选择下一个扫描信道。在步骤H2中,它不经由所选的信道发射信号,但将其天线25连续地连接到接收机23。可编程多路信号分离器75把任何输入数据传送到S信道控制器81。如果S信道控制器81不能在预定的时间段内检测到所述固定部分信道标志-S信道同步字CHMF,那么,手机11放弃步骤H3中的信道,而回到步骤H1,以便选择下一个信道。如果依次扫描所有信道而未检测到CHMF,那么,在再次扫描信道之前,手机11可以在一段时间内停止工作,以节省电池组的功率。
当基地电台3也未接入链路时,它将执行类似的操作,如图23中所示。如果基地电台3接收到信号,例如经由电话线45到来的电话振铃信号,表明要求它建立与手机11的链路,那么,该扫描操作将被中断。在这种情况下,该基地电台将在步骤B1中扫描可用的无线电信号以便找到空信道。
然后,在步骤B2中,基地电台3开始用多路传输2发送信号。在多路传输2的传输脉冲串之间,基地电台3将把它的天线43连接到其接收机93,以便检测来自手机11的、使用多路传输2数据结构并具有S信道同步字SYNCP的应答。
在步骤B2的多路传输2的传输过程中,基地电台3将以预定的D信道码字格式发送D信道数据。D信道码字将采用若干多路传输2的数据脉冲串的形态以便发送。以后将说明D信道上数据传输信号的结构。
由基地电台3发射的D信道码字包括PID字段,基地电台3把用于识别希望连接的特定手机11的“便携部分标识”代码置于该字段中。该D信道码字还包括LID字段,基地电台3把“链路标识”代码置于该字段中。在不同的情况下可以使用各种不同的链路标识码。当基地电台3正设法建立链路的时候,置于字段LID中的该代码将是用于识别基地电台3的基地识别代码(BID)。
虽然基地电台3一次仅与一个手机建立链路,但是,在步骤B2中,它可以向多个手机发出呼叫,然后,与它们中的任何一个建立链路。在步骤B2中,基地电台3以多路传输2的传输方式、连接地重复它希望发送的D信道信息。如果基地电台3希望向多于一个的手机11发送其信号,那么,它将改变D信道数据的相继的传输信号中的PID代码,以便依次呼叫每一个手机。
当手机11在步骤H1中选择的信道与基地电台3在步骤B1中选择的一样时,手机11将在步骤H2中检测到由基地电台3在步骤H2中发送的多路传输2。因此,手机11将找到代码CHMF,并进入步骤H4。在该步骤中,手机11利用接收到的CHMF代码以实现与基地电台3的脉冲串同步,同时,系统控制器79命令可编程多路信号分离器75以多路传输2形态处理接收到的数据。因此,对来自基地电台3的多路传输2的传输信号进行译码,并将该D信道数据传送到系统控制器79。
系统控制器79把由基地电台3发送的这些D信道码字组合起来,并检验PID和LID字段。如果系统控制器79在超时(time-out)周期内未检测到自己的PID代码,手机11将在步骤H5得出结论从基地电台3接收到的呼叫不是发送给它的,因此,它将回到步骤H1。系统控制器79还可以决定什么时候重复由基地电台3发送的PID代码序列。当发生这种情况时,系统控制器79应当对所发送的每一个PID代码进行译码,因此,如果此时未检测到自己的PID代码,那么,即使超时周期尚未终止,手机11也可以从步骤H5回到步骤H1。
如果在步骤H5中手机11由于识别到自己的PID代码而决定响应来自基地电台3的呼叫,那么,它进到步骤H6。在该步骤中,手机11开始以多路传输2发射以及收听来自基地电台3的多路传输2的传输信号。手机11将把SYNCP同步字置于S信道中,因为,它正响应于基地电台3而不是启动自己的呼叫。手机11将使用D信道发送应答码字,此时,它将把自己的标识码置于PID字段,并且,将把与在基地电台3发送的LID字段中的代码相同的代码置于LID字段中。
为避免在同一信道上同时发射的两个或更多个手机11之间的干扰(这些手机响应来自基地电台3的、用于识别若干手机11的一连串呼叫信号),手机11将在接收到含有自己的PID代码的D信道报文之后(而不是在接收到含有别的PID代码的D信道报文之后)立即发射其应答。
如果基地电台3在步骤B2中检测到对其传输的应答,那么,它将检验接收到的S信道同步字是否是SYNCP,并且,将对接收到的D信道信息译码以便检验它是否识别返回的PID代码,以及返回的LID代码是否与它发出的相同。如果基地电台3在预定的周期内未接收到令人满意的应答,那么,它放弃其经由步骤B3中在那个信道上建立无线电链路的努力。于是,基地电台3转到步骤B4,在该步骤中,它判断它试图建立该无线电链路的时间是否已超过超时周期。如果超时周期尚未结束,那么,它将返回到步骤B1,选择另一个自由信道,并进行新的建立无线电链路的努力。如果在步骤B4中超时周期已结束,那么,基地电台3进到步骤B5,并停止所有建立链路的企图。
如果基地电台3在步骤B3中判断已经接收到令人满意的应答,那么,它进到步骤B6。它继续使用多路传输2发射其对手机或多个手机的呼叫。如果从所有被呼叫的手机接收到令人满意的应答,那么,基地电台3以SYNCF代替S信道中的CHMF,以避免不必要地向其他任何手机发出警报。
手机11一旦识别到基地电台3正向它发送呼叫,它能立即采取或者接受呼叫、或者拒绝呼叫的动作。手机11可以或者响应用户的某些操作而拒绝呼叫,或者,它可以通过预置的方法来拒绝呼叫,例如,通过类似于普通电话上已知的“请勿打扰”那样的功能。在用户按下该手机小键盘31上链路控制键33中的一个键之前,不会接收呼叫。因此,在步骤H7中,手机11判断是否需要采取任何动作。如果不需要采取任何动作,该手机转到步骤H8,在该步骤,它判断基地电台3是否还在发射呼叫。基地电台3可能停止发射呼叫,或者由于进入与另一个手机11的链路并据此改变所发射的多路传输2的报文,或者由于在预置的周期内手机11没有接收到呼叫而停止经由所述信道的发射。如果不再发射呼叫,那么,手机11返回步骤H1,并重新扫描各信道、以便探测向它发出的新的呼叫。
如果在步骤H7中断定需要采取动作,那么,手机转到步骤H9,以便判断需要什么样的动作。如果所需要的动作是不接受呼叫,手机就转到步骤H10。
在步骤H10,手机11连续地以多路传输2发射,但把LID字段中的代码改为专用的“链路拒绝”代码。它继续发射自己在D信道的PID字段中的标识码。如果在步骤B6中基地电台3接收到“链路拒绝”报文,那么,它可以从PID代码表中消去它正轮番呼叫的相关的PID代码。手机11停留在步骤H10,并响应其检测到的PID代码而发射“链路拒绝”代码,直到超时周期(例如,1秒)已过去而仍未接收到自己的PID代码为止。这向手机11证实基地电台3已接收到“链路拒绝”报文、并且、已经停止发射该PID代码。然后,手机11回到步骤H1,并且,重新开始扫描信道,以便探测表明基地电台3正在设法建立链路的另一个报文。先前曾与手机11通信的基地电台3不再发射该特定手机11的PID代码,所以,该手机不会再响应于该基地电台3,甚至当它扫描到正被该基地电台使用的信道时也是这样,这是因为,该手机会在步骤H5中断定其PID代码已不再被发射。
如果该手机在步骤H9中断定所需要的动作是接受呼叫,那么,它转到步骤H11。在该步骤中,它连续地以多路传输2发射,发送与步骤H6中的相同的D信道中的PID和LID代码。但是,它发射表示“链路请求”的专用的符号交换代码,而不是发射其正常的符号交换代码。它继续对来自基地电台3的多路传输2的传输信号译码,以便接收来自基地电台3的、对该链路请求的应答。
在步骤B7,基地电台3判断它是否已经接收到来自任何已被呼叫的手机11的链路请求报文。如果在预设置周期中未接收到链路请求,那么,该基地电台3转到步骤B5,并放弃建立链路的努力。如果接收到链路请求,基地电台3就进到步骤B8。
因为基地电台3现正进入链路,所以把在其多路传输2中的S信道同步字从CHMF改为SYNCF(如果在步骤B6中尚未这样做的话)。基地电台3向该手机11发送应答,在该应答中,它以“链路准许”代码代替其正常的D信道符号交换代码。该基地电台3会在D信道代码字的PID段中发射它正准许与其建立链路的手机11的标识码。
基地电台3会在LID段中发射不同于步骤B2和B6中发送代码的链路标识码。该新的LID代码是一种任选的代码,它标识该基地电台3和手机11之间的这种特定链路。如果有时需要重建链路(如下面所说明的那样),那么,手机11将使用新的LID代码发射链路重建报文。这使得能够把在这些情况下的手机传输信号作为重建链路的努力来识别,而区别于来自该手机的、建立新链路的呼叫。如果把原始的基地标识码作为整个所建立的链路的整个LID代码,那么,这可能增加这样的可能性,即,基地电台3可能把来自手机11的链路重建报文误认为建立新链路的呼叫。
当手机11在步骤H11中接收到来自基地电台3的链路准许报文时,它就转到步骤H12。它停止发射链路请求,并把在D信道的LID段中发送的代码改变为由基地电台3发送的新代码。
在步骤B8中,基地电台3一旦接收到来自手机11的、返回新的LID代码的传输信号,它就明白所述链路准许报文已被收到。因此,基地电台3进到步骤B9。一旦手机11到达步骤H12、而基地电台3到达步骤B9,它们之间的链路就被建立,并且,它们彼此以多路传输2通信。接着,基地电台3命令开始多路传输1的通信。手机11随之进到步骤H13。基地电台3一旦接收到来自手机11的多路传输1传输信号,它立即进到步骤B10。并可开始B信道传输。
手机11和基地电台3之间的多路传输2的传输包括表明每一侧可否能提供多路传输1.4的代码,并且,在这种交换之后,这两部分在进到步骤H13和B10之前、在使用多路传输1.2或者使用多路传输1.4方面取得一致意见。
图22以图解法说明当基地电路3发出被手机11接收的呼叫时,手机11和基地电台3之间的信号交换。
首先,基地电台3使用多路传输2发送D信道报文159,向第一手机11发出呼叫。接着,基地电台3使用多路传输2发出D信道报文、提供任何接收的手机都可使用的另一种D信道信息。该D信道信息可以包括将在手机的显示器35上显示的、为用户提供关于该呼叫的信息的数据,或者,可以包括向该手机发出的D信道指令、以便为用户提供相当于正常电话振铃信号的呼叫信号。接着,基地电台3使用多路传输2发出D信道码字163,呼叫第二手机。然后,它重复D信道报文161。该基地电台继续在呼叫手机和发送总的D信道信息161之间交替,依次呼叫手机群中每一个手机。
在某些时刻,第一手机11接收到来自基地电台3的这些报文。在呼叫第一手机的D信道字159的下一次传输之后,第一手机11通过发送D信道字165来应答。
基地电台3继续发出依次呼叫所有手机的、与D信道报文161交错的D信道字159、163,而第一手机随接收到向它发出的各个呼叫报文息159而继续发送其应答报文165,直到该手机用户表示应当接受该呼叫为止。在呼叫第一手机的D信道字159的下一次传输之后,手机11发送链路请求报文167。基地电台3用链路准许报文169应答,从而建立了链路。
然后,基地电台3和手机11交换使用多路传输2的D信道字171,直到基地电台3命令改为多路传输1为止。于是,它们交换携带B信道的多路传输1的传输信号173,从而,开始了电话对话。
图23是对应于图21的流程图,但是,它说明当响应手机11发出呼叫而建立链路时,手机11和基地电台3所采取的动作。
如果基地电台3在运行但尚未参与链路,那么,它将扫描各信道以便发现任何正在呼叫它的手机11。它在步骤B21中选择信道,然后,在步骤B22中监听所选信道的任何传输信号。在步骤B22中,基地电台3不发射信号。但是,正发参考图6至9所说明的,可不连续地收听所选信道,而可能仅仅在每隔1毫秒的周期中、与相关的基地电台3的脉冲串时序同步地收听。
在步骤B22的监听周期中,可编程多路信号分离器95把接收到的全部数据传送到S信道控制器101,以便检测由手机11发送的任何CHMP信道标志同步字。基地电台3仅仅响应于CHMP同步字,而不响应于SYNCP同步字,因为,接收SYNCP同步字表示来自已经与某些其他基地电台3连接的手机11的传输。
如果该基地电台3在步骤B23中断定在预定的周期中未接收到信道标志码字CHMP,那么,它返回步骤B21,选择下一个信道并开始监听该信道。基地电台3一旦已经扫描完所有信道,它可能立即关闭一段时间以便节省功率,但是,这对于基地电台3来说不象对于手机11那样重要,因为,基地电台3通常连接到电力网电源。
正如在参考图21时所说明的,如果手机11接通但未接入任何链路,那么,它会执行类似的信道扫描循环。但是,如果用户按下键33(这表明应建立通向基地电台的链路),那么,该操作中断。在这种情况下,该手机在步骤H21中扫描各信道以便选用空信道。
在步骤H22中,手机11开始用多路传输3、经由它已选用的信道进行发送。在各次多路传输3的传输过程之间,手机11的可编程多路信号分离器75把接收到的任何数据传送到S信道控制器81,以便识别SYNCF同步字,该同步字应当包含在来自基地电台3的任何应答中。
手机11在其多路传输3的传输的D信道中发送具有PID字段和LID字段的D信道码字。它把自己的手机标识码置于PID字段中。它可以根据用户要求的服务项目把各种代码之一置于LID字段中。
如果该手机正作为国内电话的分机,或者,正作为专用支路交换机的编号分机,那么,该手机11会发射LID代码,该代码表示它希望与专用国内电话或者与该手机已经向其注册的专用交换系统连接。如果手机11正用于公用“远离距点”(“telepoint”)系统(这是这样的系统其中用户可以通过在各种地理位置的各种基地电台中任何一个来进行电话呼叫),那么,LID代码可以标识该手机已经向其注册、并且、用户希望通过它进行电话呼叫的远距离点公司或系统。
在存在若干竞争的远距离点系统的情况下,最好是规定一个或多个LID代码、该手机11能够发射这些代码而与范围内的与它所属的系统无关的任何基地电台连接,并且,规定另一些代码、该手机11能够发射这些代码而仅仅与一个所说明的系统的基地电台连接。另一个特定的LID码可用于使手机11能够与仅仅用于注册的基地电台3连接,因此,该基地电台3可以接收和存储手机11的PID代码,基地电话3能够按图21中所示类型的呼叫建立顺序而呼叫手机11。该手机11还可以在这种注册无线电链路中从基地电台3得到其他LID代码。
各种LID代码和手机11的PID代码一起存入该手机11的系统控制器79中。可以在制造手机11时把这些代码置于系统控制器79的存储器之一中,或者,可以在后来的注册步骤中通过小键盘31输入这些代码,或者,如上所述,可以在注册的无线电链路中接收这些代码。
如果基地电台3在步骤B23中断定已经接收到手机信道标志CHMP,那么,它转到步骤B24。在该步骤中,该基地电台3仍然不发送信号,但命令其可编程多路信号分离器95使用具有从接收到的CHMP字导出的脉冲串时序的多路传输3结构对接收到的数据进行译码。因此,此时,由手机11发射的D信道数据被传送到基地电台3的系统控制器99,在该控制器中,该数据被译码。系统控制器99检验该PID和LID代码,并根据这些代码判断是否对该手机11起反应。
如果在步骤B25中断定在预置的周期中未接收到要求应答的PID和LID代码,那么,基地电台3返回步骤B21,选择新的信道并开始收听来自希望建立链路的手机的其他传输信号。
如果该基地电台3在步骤B25中判断它应响应该手机11,那么,它会进到步骤B26并开始以具有S信道的SYNCF的多路传输2的形式发送信号。基地电台3将发射含有从手机11接收到的PID代码的D信道数据字,以及用于标识所建立的链路的任意的LID代码。此时,基地电台3期望手机11转换到使用S信道同步字SYNCP的多路传输2的传输方式。
在步骤H22中由手机11以多路传输3的形式发射的D信道码字中,用“链路请求”码代替通常的符号交换代码。在步骤B26中在对手机11应答时由基地电台3以多路传输2的形式发送的D信道码字中,用“链路准许”代码代替通常的符号交换代码。
在步骤H23中,手机11判断在预置的周期中它是否已经接收到来自基地电台3的SYNCF同步字。如果未接收到,它就转到步骤24。在该步骤中,它判断自从手机11最初开始要求建立链路以来超时周期是否已经终止。如果该超时周期未终止,那么,手机11返回步骤H21,选择另一个自由信道并设法经由该信道建立链路。如果该超时周期已经终止,那么,手机11转到步骤H25并放弃建立链路的努力。
如果在步骤H23中断定已经接收到的SYNCF,那么,手机11转到步骤H26。在该步骤中,手机11暂时停止传输,并对从基地电台3接收到的多路传输2的传输信号进行译码,同时,利用接收到的SYNCF同步字来实现与来自基地电台3的脉冲串同步。
现在,手机11能够对基地电台3发送的D信道信息译码。在步骤H27中,手机11判断在预置的周期中它是否已经接收到含有其PID和“链路准许”代码的D信道码字。如果在该预置周期中未接收到这种D信道码字,那么,手机11进到步骤H25并放弃建立链路的企图。如果手机11确实接收到带有自己的PID代码的链路准许报文,它就进到步骤H28。在该步骤中,手机11开始使用SYNCP作为S信道同步字来进行多路传输2的传输。在其D信道报文中,手机11继续发送自己的PID代码,但是,把LID代码改为从基地电台3接收到的链路标识代码。在该步骤中,手机11继续监听来自基地电台3的多路传输2的传输,并保持与该基地电台3的脉冲串同步。
基地电台3一旦已经接收到来自手机11的、用SYNCP作为S信道同步字并再现由该基地电台3送出的LID字的多路传输2的传输信号,它立即明白链路准许报文已被接收。
现在,基地电台3进到步骤B27,在该步骤中,它停止发射链路准许报文,而用多路传输2数据结构与手机11交换D信道信息。一旦手机11已经到达步骤H28而基地电台3已经到达步骤B27,该无线电链路就已建立。接着,基地电台3命令开始多路传输1的通信。手机11进到步骤H29而基地电台3进到步骤B28。此时可以开始B信道通信。
图24以图解法说明当手机11成功地启动与基地电台3的链路时所发送信号的模式。首先,手机11以多路传输3的形式发送一组链路请求报文175。当基地电台3接收到这些报文并决定准许该链路时,该电台用具有多路传输2形式的链路准许报文177作出应答。当接收到该链路准许报文177时,手机11停止多路传输3的传输,使其脉冲串时序与来自基地电台3的信号同步并开始对接收到的多路传输2的脉冲串译码。当手机11已经完成对链路准许报文的译码时,它就开始用多路传输2发射报文179。这两部分继续用多路传输2交换报文179,直到基地电台3命令改变为多路传输1的报文181为止。
如上所述,在某些情况下,手机11可以用标识若干基地电台3(手机11能够与其中的任一个建立链路)的LID代码、以多路传输3发送链路请求报文。如果在手机11的范围内有多于1个的这种基地电台3,那么,首先扫描手机11正经由它进行发送的那个信道的基地电台3,通常就是第一个准许建立链路的基地电台,从而,将成功地建立与该基地电台的链路。但是,两个基地电台3可能偶然同时向手机11发射链路准许报文。在这种情况下,手机手多半不能成功地对其中任一个报文译码。因此,手机11在步骤H23中断定它未接收到SYNCF,因此,穿过步骤H24到步骤H21。手机11选用另一个空信道并经由该信道重复其多路传输3的传输。因为在这种情况下手机11不会对来自这些基地电台3的链路准许报文作出应答,所以,两个基地电台都会做出链路已失效的结论、因此返回步骤B21。每个基地电台会选择新的信道并开始监听来自手机11的CHMP传输信号。
在这种情况下,如果两个基地电台3选择下一个信道,那么,它们会继续在彼此相同的时刻扫描各个信道,并由于相同的原因而使准许与手机11的链路的努力继续失败。为了避免出现这种情况下,在这些情况下,在步骤B21中所选择的信道不是下一个信道。这些基地电台代之以遵循预定减少它们同时继续扫描相同信道的可能性的规则。可以这样做提供随机操作的信道选择算法,使得在所述情况下,在步骤B21中所选择的信道是随机选择的。另一种方法是,可以为每个基地电台3编制程序,使它们在这些情况下返回特定的信道,并且,靠近的那些电台按程序工作而返回不同的信道。随机信道选择算法是可取的。如果对这些基地电台编程而返回特定的信道,那么,存在这样的可能性,即,不适当的编程可能使两个靠近的基地电台总是返回同一个信道,在这种情况下,它们之间的冲突会得不到解决。
D信道结构如上所述,应用代码字发送D信道中的报文。每个代码字为64位长。可以将代码字位串作为D信道数据包连续发送。在这种情况下,第一代码字必须具有第一特定格式,所述格式通称为地址代码字(ACW),而报文分组包的剩余代码字必须具有不同的规定格式,并通称为数据代码字(DCW)。在一报文分组包中,一个地址代码字后面可以有最多五个数据代码字。当仅发送一个代码字、后面没有任何其他代码字时,所述发送的一个代码字必定是一个地址代码字。
发送D信道位的速率取决于用于无线电链路的多路传输数据结构。通常需用几个脉冲串以发送单一的D信道代码字。由多路传输2提供最大速率,在所述多路传输中,每个脉冲串中发送D信道的32位,因此发送一个代码字需要两个脉冲串。用多路传输1.2是D信道的最慢传输,其中,每个脉冲串仅发送D信道的两位。在这种情况下,传送一个代码字需要32个脉冲串。
倘若在任何时刻,没有D信道信息准备发送,该多路传输结构还是要求发送D信道位。假若这样,可发送称为“IDLED”的信号以填满D信道。当IDLED正进行发送时,D信道各位在1与0间交替。
为了提醒接收部分注意有用的D信道信息即将准备发送,每个地址代码字前面是称为SYNCD的标准16位D信道同步模式。所述SYNCD模式不仅通知接收部分地址代码字随之而来,而且确保系统控制器79、99的D信道译码操作与代码字的边界同步,使得对每个代码字得以正确地译码。
这样,用若干数据脉冲串总合的D信道传送的典型序列可能如图25中所示。发送IDLED的周期以16位SYNCD模式的传送结束。这后面立即跟着一个64位地址代码字,然后是一个或多个64位数据代码字。
在多路传输1中,必须总是将SYNCD模式的第一位作为多路传输1脉冲串的第一位加以发送。在多路传输2中,必须总是将16位SYNCD模式作为一脉冲串的最后16位而加以发送,而在多路传输3中,16位SYNCD模式的第一位必须永远是有用的D信道信息的第一位,所述有用信息在起始65位D信道前置部分之后第一子多路传输的每一重复周期中发送。当正应用多路传输2或3时,尽可能快地将SYNCD模式置于S信道同步字之后,从而使在随后的脉冲串同步中迅速检测出SYNCD模式的可能性增加到最大限度。
图26示出D信道中报文的结构。地址代码字183后面有以连续位串方式发送的最多五个任选数据代码字185(如图26的第一行中所示)构成一个D信道报文分组包187,如图26的第二行所示。可将若干报文分组包总合起来以创建任何长度的D信道报文,如图26的最低行所示。
为了在交换手机信号时至少保持一最低速率,D信道报文的相继报文分组包不必一个接着一个立即发送。改而可在报文的相继报文分组包之间发送后面没有任何数据代码字的一种规定的地址代码字。该规定的地址代码字载有手机和标识信号。
图27表示D信道代码字的一般格式。该代码字由八个八位二进制数的位组组成,各自以图27中的一行为例证,每个八位位组依次由八个数据位组成。
当代码字在D信道上进行发送时,首先发送八位位组的位1。这是图27中最高的右手位。其次发送八位位组的位2。这是图27的最高行中右起第二位。然后按照顺序发送八位组的剩余位。于是就按照顺序从位1至位8发送八位位组2。其余的八位位组按同样方式按照顺序发送,以致被发送的代码字的最后位是八位位组8的位8,该位在图27中是最下行的最左一位。
八位位组1的位1用来指示代码字的类型。对于地址代码字来说,该位被设定为“1”。对于数据代码字来说,该位设定为“0”。八位位组1的位2确定该代码字格式。一地址代码字可以或是固定格式或是可变长格式。固定格式地址代码字用来发送符号交换和等同报文,这将参照图28更详细加以描述。固定格式地址代码字后面没有任何数据代码字。在地址代码字中,将八位位组1的位2设定为“0”以定义固定格式地址代码字。将八位位组1的位2设定为“1”以表示可变长格式代码字。可变长格式表明报文分组包的长度可以变化,即,可呈现数据代码字。数据代码字永远是取可变长格式的,因此对数据代码字来说,该位永远应设定为“1”。全部标准D信道报文都用可变长格式代码字传送。可变长格式地址代码字后面最多可有五个数据代码字,但也可构成报文分组包,后面没有任何数据代码字。
八位位组1的剩余的有效位,以及八位位组2至6的所有位,取决于该代码字是否是固定格式地址代码字。可变格式地址代码字或数据代码字。
八位位组7和8总是载有检验代码。该检验代码的最初十五位,从八位位组的位1至八位位组8的位7提供循环冗余码检验(CRC)代码。这样的代码及其产生方法是众所周知的。八位位组8的位8是奇偶检验位,将其选为给整个64位代码字偶数奇偶校验。
图28示出固定格式地址代码字的结构。将八位位组1的位1设定为“1”,以表明它是地址代码字,八位位组1的位2设定为“0”,以表明它是固定格式字。八位位组的位3和4载有信号交换代码。八位位组1的位5将是多路传输1通信速率编码。将其设定为“1”以表示多路传输1.4,而设定为“0”则表示多路传输1.2。
八位位组的剩余位和八位位组2、3及4载有PID代码。最好将其分成两部分。八位位组4单独载有制造厂标别码,可将其分配给法定的制造厂。由制造厂指定剩余的PID代码,并表明一台由所述制造厂生产的手机11。八位位组5和6载有LID代码,而八位位组7和8载有循环冗余码检验和奇偶检验位。
在链路建立期间发送固定格式地址代码字以传送PID和LID代码,“链路请求”和“链路准许”报文,如参照图21至24所描述的。借助于将八位位组1的位4和3设定为“00”来发送“链路请求”,将八位位组1的位4和3设定为“01”来发送“链路准许”。
当手机11发送“链路请求”时,若手机可支持多路传输1.4则设定通信速率位(八位位组1的位5)为“1”,若它只能支持多路传输1.2,则设定通信速率位为“0”。当基地电台3发送“链路准许”报文时,只有在基地电台3可支持多路传输1.4,加之它已从手机11在该位置位接收到“1”的条件下,八位位组的位5才将设定为“1”。表明手机也能支持多路传输1.4。若任何一台设备只能支持多路传输1.2,基地电台3在“链路准许”报文中设定八位位组的位5为“0”,通知手机11将用多路传输1.2进行传输。这结束了在两设备间有关确定使用多路传输1的哪一种形态的“协商”操作。
图29示出可变格式地址代码字的结构。在该代码字中,将八位位组1的位1设定为“1”以表明它是地址代码字,将八位位组1的位2设定为“1”以表明它处在可变格式状态。八位位组1位3、4和5的有效位取决于八位位组1的位6。倘若在D信道报文分组包中后面还有代码字,将八位位组的位6设定为“0”。在这情况下,位3、4和5以二进制给出,这些位显示出在报文分组包中该代码字后面还有的D信道代码字数。因此,如果报文分组包总共含有三个代码字,该地址代码字(该代码字将是该报文分组包的第一代码字)的八位位组1的位3、4和5将设定为“2”或二进位的“010”,以表明后面还有两个代码字。
倘若八位位组1的位6设定为“1”,这表明该代码字是该报文分组包的最后代码字。假若这样,可能该代码字的数据传送八位位组中只有某些位载有有用数据。因此,在这种情况下只有给出该代码字数据传送八位位组数的八位位组1的位3、4和5才载有有用数据。当由接收系统控制器79、99译出该代码字时,将应用该信息而忽略在报文分组包的最后代码字中未载有用数据的任何剩余的八位位组。
将八位位组的位7设定为“1”以表明当前的报文分组包后面还有D信道信息的报文分组包,将其设定为“0”则表明当前的报文分组包是D信道信息的最后报文分组包。
将八位位组的位8设定为“0”以表明八位位组2的标准有效位为控制报文。在所说明的实施例中,该位总是设定为“0”,但若必要时,它提供重新定义为可变格式地址代码字的八位位组2含义的便利。通过重新定义八位位组2的含义,该位能使整个报文分组包的解释发生变化。
可变格式控制字的八位位组2是一个控制八位位组。将八位位组2的位3设定为“1”以表明接收设备必须证实D信道报文分组包的成功接收。在这情况下,八位位组的位4将是报文分组包数,相继的报文分组包在“0”与“1”之间交替。八位位组的位2当需要时用来证实所接收到的来自链路另一端处设备的D信道报文分组包。将该位设置成待从另一设备接收下一报文分组包的地址代码字的八位位组2的位4的期望值。当将八位位组的位3设定为“0”时,不需要证实接收到报文分组包,因此,八位位组2的位4就不具意义。八位位组2的位2是否有意义将取决于天线电链路另一端的设备是否要求证实其报文分组包。
八位位组2的位3必须设定为“1”,要求无论什么时候D信道报文含有多于一个报文分组包时证实各报文分组包。
倘若由发送设备所接收的最后D信道报文分组包已被证实,八位位组2的位1就设定为“0”。倘若接收到的D信道报文分组包被拒收时,例如,因为代码字之一的CRC检验失败,在下一发送的可变格式地址代码字中八位位组2的位1被设定为“1”,并且将八位位组2的位2设定为接受到的但被拒收报文分组包的地址代码字中八位组2的位4的值。
八位位组2的位5规定D信道报文分组包是“信息型”还是“管理型”。“管理型”报文分组包(位5被设定为“0”)的内容涉及控制和维护无线电链路的操作。这种报文分组包可能包括在同一信道上重建链路,或在另一规定的信道上重建链路时,要求另一设备增大或减小正在发送的功率的指令。另一种管理报文是FILL-IN报文,该报文用于特定用途,将在后面加以描述。
所有其他D信道报文由“信息型”报文分组包予以传送(位5被设定为1)。这些将包括由基地电台3发送的报文,以便指示手机发送铃声、使输入呼叫的用户处于待机状态,或发送准备显示在手机11的显示屏上的报文。由手机11发送给基地电台3的“信息型”报文一般通知基地电台3已按下小键盘31的某些键。改变在多路传输1与多路传输2之间的多路传输结构也由“信息型”报文分组包进行传送。
倘若报文分组包是“信息型”报文分组包,如图26的最下面行中所示,仅允许D信道报文由多于一个报文分组包构成。“管理型”报文分组包必须各自独立,其地址代码字的八位位组1的位7设定为“0”。
地址代码字的八位位组3、4、5和6载有信道报文内容。八位位组7和8载有CRC代码和奇偶检验位。
图30示出数据代码字的结构,将八位位组1的位1设定为“0”以表明它是一个数据代码字,将八位位组1的位2设置为“1”,说明数据代码字只允许取可变格式。八位位组1的位3、4、5和6具有同样含义,如图29中所示用于可变格式地址代码字,八位位组的位7和8无意义,设置为“0”。
所述数据代码字并不包括控制八位位组,因此,D信道报文内容由八位位组2,八位位组3、八位位组4、八位位组5和八位位组6进行传送。八位位组7和8载有CRC代码和奇偶检验法。
在“信息型”报文分组包中,D信道报文在代码字的报文内容部分提供“标识符、长度、内容”格式,按照已知用于ISDN数据的类似方式。在该格式中,将报文第一个八位位组的位8设定为“1”以表明固定长报文,而如设定为“0”则表明为可变长报文。固定长报文只由一个八位位组组成。除非已知报文分组包连继续先前报文分组包中开始的报文,总是假定代码字是按一“信息型”的报文分组包中地址代字的第一个报文内容的8位位组(即,地址代码字的八位位组3)是D信道报文的第一个八位位组。
图31示出固定长报文的格式。将位8设定为“1”以标志它是一固定长报文。位7、6和5提供标别已被传送报文的类型的代码。由于该报文具有固定长格式,所以无需长度信息,而位4、3、2和1提供报文内容。
这种报文格式仅用于传送非常简单的报文,例如控制用于解释可变长格式报文的方式的报文。
图32示出可变长D信道报文的格式。它至少由三个八位位组、或可由更多八位位组组成。
在可变长格式中,将第1个八位位组的位8设定为“0”,以表明它是可变长格式报文。所述第一个八位位组的另外七位提供标识符代码,识别被送报文的类型。第二个八位位组是长度代码。这是报文中该长度代码8位位组后面的余下的八位位组的数目。因此,倘若总的报文是四个八位位组长时,一个是标识符和格式类型八位位组,一个是长度代码八位位组和另外两个八位位组,所述长度代码八位位组将表明后面还有两个八位位组。可变长报文的所有剩余的八位位组载有报文内容。
符号交换和链路重建如已予描述的,在建立链路以传送“链路请求”和“链路准许”报文时应用图28的固定格式地址代码字,以传送用来在多路传输1.2与多路传输1.4之间的协商,以及传送PID和LID代码。在链路已建立后,还时而传送符号交换信号来发送该D信道代码定。可在链路过程中应用PID和LID代码以确认在所述相同两设备之间继续建立链路。
为了保持链路的连续性,至少必须以某一最小频率交换符号交换字。把D信道报文分成报文分组包使这能予进行。在同一报文的相继报文分组包之间可以发送固定格式地址代码字以保持符号交换速率。这并不干扰D信道报文的传送,由于每个可变格式地址代码字会表明在同一报文中后面是否还有报文分组包(从而也就表明是否还有可变格式地址代码字)。该固定格式地址代码字将被承认并不作为报文的报文分组包,当接收到下一个可变格式地址代码字时,D信道报文的组合将重新开始。
固定格式地址代码字中,八位位组1的位3和4载有符号交换报文。因此,四个符号交换报文是可能的。“00”指的是“链路请求”,“01”指的是“链路准许”,“10”指的是“IDOK”,“11”指的是“IDLOST”。“链路请求”和“链路准许”在链路建立时参照图21至24已予描述。这些符号交换报文仅为所述用途而加以发送。无论何时,符号交换报文在固定格式地址代码字中一般是“IDOK”。这代码作为符号交换码,对接收设备来说该代码还证实在预置周期之内发送设备已从接收设备接收到符号交换码。“IDLOST”码也作为符号交换码,但对接收设备指出的在预置周期期之内发送设备并未从接收设备接收到有效的符号交换码。应用“IDLOST”使链路失败能被迅速判定,因此,能以最小延迟进行重建。
当将手机11和基地电台3两个部分连接在无线电链路中时,每部分将用固定格式地址代码字以不大于每400毫微秒一次而不小于每秒一次的速率发送符号交换码。符号交换代码字的传送时序并不取决于来自其他部分的符号交换代码字的接收时序。如果任一部分确定一秒以上未接收到有效的代码字,就断定符号交换已失。如果任一方至少三秒钟未接收到有效的代码字,就允许该部分在另一信道上重建链路。但是,如果任一部分10秒钟未接收到有效的符号交换,必须停止试图重建链路,并必把该链路当作已经终止来处理。
禁止小于三秒后在另一信道上重建链路,以防止不希望有的迅速信道转换,所述转换可能会干扰其他设备设法使用其他信道的操作,以及防止响应于射频噪声或干扰的短脉冲串的不需要的信道转换。要求失去符号交换后10秒钟关闭链路,以防止连续无限地试图重建链路。
如果两部分正非常迅速地交换符号交换信号,就可能使用多路传输2,有机会使每一方能每三秒一次接收有效的符号交换信号,即使链路质量很差。在这些情况下,不管链路的不良质量,将禁止各部分改变信道。因此,符号交换信号以不大于每400毫秒一次的速率发送,即使有多余的D信道容量传送更频繁的符号交换码。
该系统中的一部分每次发送符号交换码就筻置发送计时器。它每次接收到四种可能符号交换码中任一种就复位接收计时器。如果所接收到的符号交换码是“IDOK”,它还复位链路计时器,但如接收到的符号交换码是任何其他符交换码时,该链路计时器就不予复位。
当发送计时器指出自上次所述部分发送符号交换号后已过去400毫微秒时,只要经由D信道发送的数据结构允许,它就准备发送符号交换码。在它临发送其符号交换码之前,它检验接收计时器。只要该接收计时器指出在过去一秒钟之内已接收到符号交换代码字之一,所述部分发送“IDOK”符号交换码。否则,它发送“IDLOST”符号交换码。如果该部分接着接收到任何有用的符号交换码,它将复位其接收计时器,并返回发送“IDOK”符号交换码。
如果未接收到符号交换码,或者假如只接收到“IDOK”之外的符号交换码时,就不复位链路计时器。一旦该链路计时器指出自从最后接收到“IDOK”后已过去三秒钟,所述部分将自动地开始链路重建。如果所述部分是手机11,它将以多路传输3开始发送,而如该部分是基地电台3,它将监听由手机11以多路传输3发送的S信道同步字CHMP。链路重建遵循与参照图23和24所述的、当手机启动呼叫时用于建立链路的相同的过程,除了由手机以多路传输3传送,以D信道LID字段发送的代码是最新的链路标识码,该代码由部分在它们正企图重建的链路中加以使用,而不是一般由手机建立新链路所用的代码。
当重建链路时,接收“IDOK”符号交换码将复位链路计时器。如果该链路计时器表示在它接收的最后10秒之内未曾接收到该代码,该部分放弃重建链路的企图。
因为当接收到“IDLOST”符号交换码时各个部分不复位其链路计时器,所以,两个部分的链路计时器将总是示出彼此的1秒之内的时间,而且,通常是彼此的小于560毫微秒的时间。这确保两个部分开始试图链路重建,并且必要时差不多在同一时刻放弃链路重建的企图,即使链路问题的实质在于使得信号在一个方向继续得以顺利接收而信号在另一方向却接收不到。
当链路只在一个方向中断时,在图33和34中说明了在链路计时器上“IDLOST”符号交换码的作用。图33说明来自手机11的信号未能到达基地电台3的事例,虽然来自基地电台3的信号仍继续到手机11。
在图33中,一开始链路的质量是好的且由两部分发送“IDOK”符号交换码。然而,后来干扰阻止基地电台3接收来自手机11的符号交换码,由基地电台3所接收到的最后符号交换码出现于时刻A。于时刻B,基地电台3发送其下一个符号交换码。由于这与时刻A的间隔小于1秒,它发送“IDOK”,但是,下一时刻它发送符号交换码,它发送“IDLOST”,由于这时从时刻A以来已大于1秒。此外,由于基地电台3再接受不到另外的符号交换码,所以,在时刻A以后不再复位其链路计时器。
由于手机11在小于1秒的间隔中连续接收到来自基地电台3的有效的符号交换码,它继续发送“IDOK”作为它的符号交换码。但是,由于它正接收的是“IDLOST”而不是“IDOK”,所以,手机11在时刻B以后也不复位其链路计时器。
在时刻C,该时刻离时刻A3秒,基地电台3准备链路重建。它停止通过射频信道发送,而开始搜索来自手机11的多路传输3的传送。在时刻B之后3秒的时刻D,手机11停止其先前通过链路的传送,而开始以多路传输3通过同一或不同信道发送,以启动链路重建。
时刻C和D之间的周期与时刻A和B之间的周期是相同的。由于基地电台3在时刻B发送“IDOK”,因为这时刻在时刻A之后小于1秒,所以它可保证这两个时刻相隔小于1秒。一般,它们相隔将小于半秒。因此,当相应各部分移到链路重建时,时刻C和D将类似地也是彼此靠近的。
图34示出由于干扰手机11中止接收来自基地电台3的事例,但基地电台3继续接受来自手机11的符号交换信号。一开始,该链路质量是好的,两部分都发送“IDOK”符号交换码。接着,手机11中止接收由基地电台3发送的符号交换码,而由手机11所接收的最后符号交换码是在时刻E发送的。从这时刻向前,手机11再接收不到任何符号交换码,所以,它不复位其接收或其链路计时器。
下一时刻手机11发送符号交换码,从其在时刻E接收到“IDOK”代码以来仍小于1秒。因此,基地电台3在时刻F发送“IDOK”代码。然而,当手机11再发送一符号交换码时,这在时刻E之后已大于1秒,因此,它发送“IDLOST”。
由于基地电台3继续接收到来自手机11的符号交换码,所以,它继续复位其接收计时器并发送“IDOK”。然而,现接收到的是“IDLOST”信号。由基地电台3所接收到的最后的“IDOK”是在时刻F发送的,这就是在基地电台3重置链路计时器的最后时刻。
在时刻G,手机11由其链路计时器告知离时刻E已是3秒。从而手机11停止其先前通过无线电链路的信号发送,并试着借助多路传输3进行发送重建链路。很短时间以后,在时刻H,基地电台3的链路计时器通知该基地电台时刻F以后已是3秒钟,从而基地电台3也进至链路重建,并开始搜索手机11以多路传输3的传送。
由于时刻E和F必定相隔小于1秒,所以时刻G和H也相隔小于1秒。
不管链路在哪一方向中断,总是从手机11到基地电台3重建,而不是相反。在某些情况下,链路可参在手机11与若干处于不同地点的基地电台3中任一个之间进行重建。如果基地电台3是公共远程通信系统的部分,也可能这种情况,即,如果基地电台3全都连接到同一专用分支交换台(例如供一大的工业地区用的),那种场合要求涉及地区整个面积处于各种不同地点的基地电台。
在这些情况之一,基地电台3将全部连接到中央控制台,例如一台计算机上,而链路可能因为手机11移到离其与之通信的基地电台3太远而中断。这时手机可能处于同系统另一基地电台3的领域内,这样该链路就可与其他基地电台3而不是先前一个重建。由于远程通信点或交换系统不能跟踪手机的移动,因此无法知道哪一个基地电台3用来重建链路。所以,基地电台3不能开始传送。
当手机11开始多路传输3传送以便重建链路时,将由在区域内的任一基地电台3接收这些发送。基地电台3对PID和LID译码,并把这些传送到中央控制台。从PID和LID可以认出手机11正试着重建它先前曾与不同的基地电台3建立过的链路。于是,该中央控制台可指令基地电台3现接收来自手机的信号从而就承认该链路,并把手机重新连接到目标,它曾是先前通过链路与其他基地电台3通信的目标。
在诸如小区域内部通信和电话分机的情况下,手机11永远只与特别的基地电台3通信,由于没必要决定若干基地电台3中哪一个应当发送这些信号,所以基地电台3就可能发送第一批无线电信号以启动链路重建。然而,即使在这种情况下,要求由手机11而不是基地电台3发送第一批无线电信号还是有利的。
首先,一般基地电台3比手机11有更大功率的发射机,如果基地电台3发送首批无线电信号这些信号可能被手机接收到,但来自手机11的应答有可能不被基地电台3接收到。于是手机11和基地电台3双方都将积极试图重建链路,实际上反而处于阻止重建的局面。如果基地电台不发送直至接收到来自手机的信号,则更可能使在两个方向的信号强度足够链路重建。
其次,如果基地电台3发送首批信号,它必将使用CHMF,而所有在所属范围内的手机11在从PID发现这些信号是否预定给特定相关手机11之前都必将对传送信号同步化并译码。倘若所述链路重建首批信号系用CHMP发自手机11,而基地电台3用SYNCF答复,则其他手机11都不会对这些信号反应。
链路质量检验B信道中仅有的编码发生在手机11和基地电台3的编码器63、83中。如上所述,编码器63、83应用一种自适应的差分脉码调制算法来实现数据压缩。它们还可按照预定的模式取反B信道数据选定的位值(这将由译码器77、97加以取反),以便使串行数据位串中取反位数为最大。然而,B信道一般不包括任何错误检测或校正码。尤其是,错误检验或校正码需要代码位的传送,减小发送的数据位数据有利于传送信息。B信道平均发送位速率在每个方向为每秒32千位,为了把发送语音的质量提为最高,最好把所有这些位用于语音信息。
因此,倘若B信道中有错误时,系统不能直接检测出该事实。然而,所有多路传输结构载有D信道位,而且用D信道代码字的CRC代码可以检测D信道中的错误。所以,在多路传输1期间B信道中出现的错误可从D信道中错误检测加以判断。
信号错误一般由两方面引起。第一,随着无线电链路,发送和接收系统带来的噪音、干扰和其他问题可能以任何平均位出错率引起随机错误,多路传输结构的每个位位置都可能遭受这种或任何其他错误。第二,倘若无线电链路的各部分失去位或脉冲串同步,错误就可能从对所接收到信号的误解释而引起。虽然因失去同步脉冲串的所有位都易于产生错误,但每个脉冲串的第一和最后位尤其易受损。为此,将多路传输1.2和多路传输1.4中的D信道位置于数据脉冲串的任一端,而将B信道位夹在中间。由于在D信道中可以检测错误,而在B信道中错误无法检测,所以,上述做法是确保将D信道置于比B信道更易出错的位置。
由系统控制器79、99应用在D信道代码字中的个别CRC故障以检测D信道错误,使得它能避免作用于错误码的D信道报文上。这可能引起D信道报文分组包的障碍,并请求用如参照图29所述的可变格式地址代码字的控制八位位组重新发送。此外,系统控制器79、99采用D信道通过时间积累故障以提供无线电链路质量的一种测定模式,并且,如果所述质量不能满足预定判别标准时,通过发送D信道中的报文给另一部分,任一方都能启动链路重建。在所有情况下,实际上是由手机11发送多路传输3数据结构实现链路重建的。
在两个部分间严重的永久性的失去同步将引起D信道中连续性的错误,同时,系统控制器79、99将迅速判定链路质量不能满足判别标准(不管采用何种标准)。据此,选择链路质量标准应以便当无线电链路出问题或略微失去同步只引起某些位出错而绝大多数位正确的场合可提供所要求的性能。
可以模拟分析任何平均位出错率对B信道的影响,并可以对哪种接收语音质量是可接受的作出主观的判定。D信道中CRC故障模式对于一种给定的位出错率来说也可加以模拟分析,而且,可以对引起可接受和不可接受的语音质量的位出错率加以比较。在这种比较的基础上,可以选用D信道中CRC故障的模式作为链路质量判别标准,以便由系统控制器79、99来判定是否要请求链路重建。可选用任何CRC错误模式类型作为链路质量判别标准,但已经发现方便简单而有效的判别标准,即,当给定数的相继CRC故障不被D信道代码字中断时,在该判别标准中CRC检验是成功的。
假定错误在D信道中随机出现,任何给定位出错率将最后导致一种错误模式未能满足质量判定标准,并引起链路重建。采用众所周知的统计方法,有可能对任何给定位出错率计算出一种周期,在该周期中,出现未能满足质量判别标准的可能性是50%。
对于一个理想的判别标准来说,任何出错率导致B信道质量被判断为不可接受的这种周期应当是很短的(例如,几分之一秒),以便在这些情况下迅速重建链路,使已进行的电话谈话受到最小的干扰。
另一方面,对于允许经由B信道的最佳语音质量的位出错率来说,与预测手机11和基地电台3之间呼叫平均长度相比这种周期又应当是长的,使得不必要的链路重建不太可能在B信道质量是良好的呼叫期间出现。除使不必要的链路重建减至最小之外,这也减少将丢失良好质量的链路的可能性,因为,总有这样的可能性,即,试图重建链路将导致丢失链路,尤其在忙碌时刻当大多数其他可用信道正被占用于其他设备间链路时。
对于表示B信道语音质量处于良好以下,但至少在短周期内还是可接受的中等的位出错率来说,链路的企图重建有50%可能性的时间长度也处在不可接受质量的短周期与良好质量的长周期中间。
图35示出系统控制器79、99的链路质量检验操作的流程图。在这种情况下,质量判别标准是连续不中断的D信道CRC故障数必须不达到N。
当链路最初建立时,在步S1中系统控制器79、99将计数器C置0。步S2中它接收并对D信道代码字译码。步S3中判定D信道代码字的检验码和奇偶检验位是否有正确值。如果该值是正确的,错误检验合格从而系统控制器返回到S1。计数器C置0,而质量监控过程等待直至接收下一个D信道代码字并对其译码。
倘若CRC代码或奇偶检验位指示出现错误,步S3中检验失败,于是过程进到步S4。在该步中,计数器C的值增1。紧接着,在步S5中测试计数器C的值。如果C的值尚未到达N,质量监控过程返回步S2,并等待接收下一个D信道代码字并对其译码。在这情况下,所述过程并不通过步S1而是返回到步S2,因此,C的值未予置0。倘若相继的D信道代码字含有错误,链路监控过程将通过由步S2、S3、S4和S5组成的循环,同时,计数器C的值继续增长。如果任何时刻接收到的D信道代码字没有错误,该过程返回到步S1同时计数器被置0。
在接收到全都含有错误的N个相继D信道代码字之扣,计数器C的值将达到N。这将由步S5中测试C的值进行检测,于是,该过程就进到步S6。在该步中,判定该链路已不能满足质量判别标准,从而启动链路重建。
在图35中,当到达步6时,在该时刻当先前述及的3秒期间,如果相关的手机11或基地电台3没有接收到的“IDOK”符号交换码,就允许在不同的无线电信道上试图重建链路。否则,如先前已被采用过的,试图重建链路必须在同一无线电信道进行。然而,如果错误是由于两个部分间失去同步造成的,而不是无线电传输和接收带来的困难,在同一信道上重建链路一般将恢复链路质量。此外,加有如下条件,即,在先前使用的同一信道上重建链路是不允许的,除非自从建立该链路以来,或者,自从最新的链路重建以来,已经经由该链路进行至少300ms的多路传输1.4的传输,或者,至少500ms的多路传输1.2的传输。
在另一种实施例中,将D信道CRC和奇偶检验出错未能满足质量判别标准用作一种指示说明B信道质量是不可接受地低下,但是响应这点而采取的行动都不是(或不必要)启动链路重建。
在一方案中,设备(手机11或基地电台3)通过对B信道噪声抑制起作用来检测错误,这样用户什么也听不到以代听到不良质量的B信道,但不准备链路重建直至如上所述有三秒钟符号交换丢失(即,未曾接收到“IDOK”)。
在另一种方案中,设备由于启动从多路传输1改变为多路传输2而起作用。由于增大了D信道的量以及S信道的存在,所以,按多路传输2方式比按多路传输1方式更易于通过低质量链路保持链接。
在两种情况下,链路质量的暂时下降将导致B信道通信的相应暂时终止,但链路得以维持而且当链路质量恢复时B信道通信也可能恢复。在这两种情况下,如果在超时周期内不可能恢复B信道通信,那么,都可能作进一步选择以启动链路重建。
D信道FillIn图28中示出的固定格式地址代码字中,根据给予特定设备或服务类型的标识码,PID和LID代码可具有任何值。类似地,图29的可变格式地址代码字的报文内容八位位组和图30的数据代码字都可选用任何值,取决于被发送的D信道报文。因此,有以下可能性,即,D信道字的内容偶然可能类似于SYNCD模式。如果碰巧这样,当实际上接收到的是部分D信道代码字时,系统控制器79、99却可能认为已接收到SYNCD。因此,由该系统控制器译码的D信道将不会正确地与接收到的D信道数据同步,而D信道数据也将被误译。
在大多数情况下,该错误是自限制的。在D信道中的每个地址代码字必须紧接着SYNCD。如果系统控制器79、99与D信道失去同步,当它期望SYNCD模式再次出现时它可能找不到该模式,当碰巧如此时,系统控制器79、99将放弃其与D信道的不正确的同步,并将搜索D信道SYNCD模式,这将使它能重建正确的同步。
但是,如果D信道中相继的地址代码字在代码字中同一相关位置处含有类似于SYNCD的模式,那么,就会出现问题。倘若这样,系统控制器79、99可能会锁定在该不正确的D信道同步上。为避免这种情况,相继地址代码字必须用48位IDLED分隔开,除非保证各地址代码字不含类似于SYNCD的模式,或两个相继的地址代码字充分不同以致它们不可能在同一相关位置载有类似于SYNCD的模式。
必须以足够的频率发送D信道代码字,以允许用每个代码字中的CRC代码和奇偶检验位得到令人满意的信道质量控制。如果有大量D信道报文准备发送,要用几乎连续的传送这些报文所需要的代码字流、与传送符号交换信号所需要的固定格式地址代码字交替来满足该要求,然而,如果准备重复发送相同的D信道报文,以致要重复发送相同的可变地址代码字,或者,如果不准备发送D信道报文,以致只准备发送固定格式地址代码字(这每次都将是相同的),那么,如上所述,必须用48位的IDLED把所述地址代码字间隔开,以避免锁定在错误的D信道同步上的可能性。IDLED不是D信道代码字,只不过是简单“1”和“0”位值交替的模式,而且,它并不包括CRC代码。鉴于按多路传输1方式发送D信道数据时的慢速率,发送48位IDLED的要求可能意味着发送D信道代码字时的速率是不足以达到令人满意的信道质量控制的。
为解决该问题,定义了特殊的“FILL-IN”D信道代码字。该代码字是一种“管理型”可变长格式地址代码字,后面不跟任何数据字,并载有取全“内容”八位位组形式(即八位位组3、4、5和6)并规定不具任何含意的特殊报文。
这样来设计FILL-IN代码,即,使得它没有哪一部分(包括八位位组7和8中检验代码)类似于SYNCD序列。因此,当没有D信道报文待发送时,可连续地发送该FILL-IN字,以保持D信道检错率。因为,已知它不含有SYNCD的错误表示,所以,无需预先用48位IDLED重复该字。此外,如果由于任何理由需要重复地发送另外的地址代码字,可将FILL-IN字与其他地址代码字交错,代替48位IDLED提供一种保证,使接收系统控制器不会锁定在错误的D信道同步上,而同时FILL-IN字保持了D信道代码字的速率以供信道质量监控之用。
图36示出D信道字的八位位组1至6的位模式,该模式适用于带有SYNCD模式为“0010001111101011”的系统。“X”在八位位组2的位1、2和4给出表明这些位可以或是“1”或是“0”。模式“11110000”是有效而无含义的“管理型”报文。这种相同位模式用于“信息型”报文分组包的最后的代码字中以填满未被所发送的报文使用的八位位组。
S信道字结构在多路传输3和多路传输2传输期间使用S信道同步字SYNCP、SYNCF、CHMP和CHMF以便使接收设备获得与发送设备的脉冲串同步。直到相关同步字已被检测到,可编程多路信号分离器75、95才能实现与输入数据的脉冲串同步,并才可能说明D信道。
由于必须在能完成脉冲串同步之前检测到S信道同步字,所以,必须能够异步地检测所述字。为了这个原因,一旦实现位同步,输入数据的每一位送至S信道控制器,将24个最近接收到的位模式(假定S信道同步字为24位长)与存储的目标字模式作比较。为了使S信道同步字在呈现少量噪声的条件下能予检测,只要24个输入位中至少有22位与目标模式匹配,S信道控制器就提供一个“字已发现”的输出。
为避免接收设备可能会不正确地识别S信道同步字的存在从而取得不正确的脉冲串同步,理想地说,按多路传输2或多路传输3方式应该不可能获得提供24位中22位匹配的任何同步字的数据模式(如果正确接收的话),除非是该同步字本身出现在数据中并将其以精确地正确对准方式与存储的同步字进行比较。这样,如果所接收到的S信道同步字是与存储的本身的形态相比较,仅有一或多个位周期未校准,或如果多路传输2或多路传输3的任何其他部分与存储的S信道同步字进行比较,应不会识别出存在同步字,否则将产生不正确的脉冲串同步。
概括地说,可把这些要求者做用于系统中的长度为L的同步字,在该系统中,如果字的位模式与输入数据的位模式之间比较时,对输入的任何L数据位串信号中给出不大于K的错误,就可认为同步字存在的识别已经出现。在这种一般的情况下,下列情况都是各自分别有用的,并最好两者都呈现。
A)每个数据脉冲串有固定和可变部分,并且每一可能的L连续位串含有少于L-K的可变位。设想该可变部分可假定任何值,偶然就有以下可能性,即,可变数据的L个相继位将精确地提供与S信道同步字相同的模式。通过对可变数据进行分裂,使得L个连续位含有小于L-K的可变位,这就避免了这种可变数据模式的L-K位作为数据脉冲串中完整的位流出现而导致错误识别S信道同步字的可能性。
在多路传输2结构中,D信道部分是可变部分而S信道部分(前置部分加S信道同步字)是固定部分。虽然多路传输2脉冲串传送D信道数据为32位,但被S信道的34位隔开分裂成两个16位部分,因此,D信道决不能单独模拟24位S信道同步字的22或更多位。可以把这样一个量当作保护因子,即,任何L连续位串中的可变位的最大个数按该量而小于L-K。这样,如果可变位数比L-K位小一位,它提供一位的保护因子。如果小二位,就提供二位的保护因子。鉴于接收数据中的错误可能导致固定数据脉冲串部分紧接着可变数据脉冲串部分而模拟S信道同步字的附加位的可能性,因为它们的较少数量不可能将其包含在可变位中,所以,较高保护因子给予阻止偶尔与S信道同步字可变数据相似而可能导致不正确脉冲串同步的可能性有更好的保护。在多路传输2情况下,L-K为22而任何24连续位串只能包含最大为16的可变位,提供的保护因子为6位。
B)组成脉冲串整体固定数据部分的任何L位串与任何同步字模式相比较时给出大于K个错误。除了在其正确位置精确地组成正确同步字的位串之外,这加到固定数据的所有L位串,包括含有同步字本身部分的位串上。另外,由部分固定数据和部分可变数据组成的任何L位串当与任何字相比较时,虽然假定可变数据位不产生错误,但也必定产生大于K个错误。还有,定义一个保护因子是可能的。在这情况下,保护因子是所提供的超出K的错误的个数,在这基础上,在与任何同步字模式比较中借助于所述固定数据或部分固定数据和部分可变数据的L位串而产生最小的错误个数。
理论上,通过把所有可能的L位模式与在所有可能的位偏移位置处的脉冲串结构进行比较,对于任何给定的脉冲串结构来说,发现满足条件B的L位模式是可能的,或者,如果没有这样的模式,那么,发现最接近于满足条件B的模式是可能的。实际上,对于任何合理的大的L值来说,有如此多可能的L位模式,以致不能以合理的时间量执行这种比较。但是,由于同步字本身构成全部或部分数据脉冲串的固定部分,在每个同步字模式与它自己一位或多位偏移之间自相关度、以及在不同的同步字模式之间带或不带偏移的互相关度都与以上条件B)相关。
在最坏情况下,可以假定S信道同步字被嵌在可变数据的多路传输结构之中。在这些情况下,如果M是同步字与它自己以S位计的偏移的匹配数,于是,对全偏移值S来说,M+S必须小于L-K以满足以上条件B)。将偏移总数S加到匹配数M上,以考虑到可变数据的全位数可能偶尔与它们与之比较的同步字各位精确匹配的可能性。当S趋近L时,使得同步字偏移到这种高度,即,它只以极少位与它自己重迭,这种情况是较难遇到的。然而,以上条件A)阻止S达到L-K,由于它禁止在L相继位中这样多可变数据的存在。
对于任何合理的高的L值来说(即,对任何合理的长的同步字来说)要发现满足长度L这一条件的全部可能的模式、或要发现M+S的最高值保持以最大量低于L-K的长度L的模式可能是极端费力的。实际也毫无必要这样去做,因为可用诸如多路传输2和多路传输3的脉冲串结构,在该种结构中,S信道同步字并不嵌于可变数据中。在多路传输3中,S信道同步字在任一侧配置有12位的前置部分,而在多路传输2中,在它之前有10位的前置部分且在它之后可变数据被限制为16位。实际上,假定具有低自相关和互相关的位模式旁波瓣将趋向于适应以上条件B)是合理的,因为,它们趋向于有低的M值。
在一种模式与它自己在S位偏移方面的比较中的自相关旁波瓣值,对本专利申请来说被定义为在所述模式与它自己在上述偏移方面的比较中的匹配数减去不匹配数。如果对所有S值(除S=0∶正确对准之外)计算出自相关旁波瓣值。在所有S值中所发现的自相关旁波瓣全值中最大的值,可作为位模式自相关度的量度。该值越低,对S信道同步字来说该模式就越有希望被当作候选模式。
互相关旁波瓣是以相同方式定义的,用于一个同步字模式与另一个的比较,不同的是在这情况下S=0的值也必须考虑进去。
在所说明的实施例的设计中,条件A)符合多路传输2和多路传输3脉冲串结构的设计。在这情况下,S信道同步字的长度L为24,而在识别S信道同步字中所允许的错误个数K为2。在以多路传输2或多路传输3方式214发送的任何连续的24位串中,可能出现的D信道位的最大数为16,这产生一个条件A)的6位的保护因子。
已经决定通过对S信道同步字的各种位模式的适当选择以探求符合条件B)。S信道中的所述前置部分以多路传输2和多路传输3的方式出现,以允许接收设备获得位同步,而如果为改良在条件B)方面的性能,在任选S信道同步字模式情况下改变该位模式,可能会干扰该目标。在多路传输3方式中D信道中前置部分各位对允许位同步也是有用的,另外,该模式与IDLED的模式相同,因此它不太可能导致D信道数据的误译。从而,也考虑到不希望试图操纵这些位模式以改良在条件B)方面的性能。
为了简化计算,确定首先通过选择那些具有良好的相关特性(即那些具有最高值自相关旁波瓣的低值),以识别同步字的好的候选模式。所有可能的24位二进制模式都加以检验以通过该限定来识别那些具有良好自相关特性的位。
因为涉及很大量的计算,所以,不对多路传输2和多路传输3方式中每个可能的24位串测试候选模式以确保符合条件B),代之以使用多路传输3测试和S信道测试。
在多路传输3测试中,将24位候选模式与用于D信道中具有多路传输3方式的8位前置部分、10位数据的位排列、在18位可能的不同位偏移中的每一个处进行比较。在18位偏移位置之后,重复位排列,因此,不需要再在另外的偏移处作比较。测试结果是与任何位模式比较中所获得的最大匹配数。为在该测试上满足条件B),匹配的最大数必须小于L-K,即小于22。根据条件B),假定D信道中的每一位与24位候选模式中的相应位提供完美的匹配。
当候选模式与前置部分的任一侧上一个8位前置部分和每个10位数据的部分对准时,候选模式与可变数据各位进行对准。在这情况下,将24位模式与16可变位对准。这与能将可变数据位的最大数与多路传输2方式对准是相同的,人们相信,在多路传输3方式中,将可变位分隔分低于10位的两个部分,而不是如多路传输2方式中用16位的一个部分,对24位候选模式提供了一种更有说服力的测试。
另外,在多路传输2方式中,用两个脉冲串来发送D信道代码字,并且,如上参照FILL-IN字所说明过的,存在避免同一D信道代码字的连续完整重复的规定。因此,多路传输2的可变数据部分的脉冲串在脉冲串与脉冲串间各不相同,并将不重复若干脉冲串。这样,在多路传输2脉冲串中导致S信道同步字的不正确识别的任何可变数据模式不会被重复,而从不正确识别恢复到正确识别应当迅速出现。在多路传输3方式中,可变(D信道)部分倾向于脉冲串与脉冲串之间是相同的,使S信道同步字的不正确识别的恢复更为困难。因此,避免不正确识别在多路传输3方式中比在多路传输2方式中显得更加重要。
由于这些原因,没考虑到有必要应用多路传输2方式的可变数据位模式来执行相应的测试。
在所有可能的24位二进制模式中发现的最佳自相关特性提供一个+1值作为最高自相关旁波瓣值。在多路传输3方式测试中,这些值中的某些也符合条件B)。然而,所有这些在多路传输3测试中至少提供一个位置,在该测试中可能有21种匹配方式。这就是说,在多路传输3方式测试中,这些模式对条件B)来说只提供一位的保护因子。
考虑到这是不能令人满意的,因为这意味着如果在数据接收过程中发生一个错误,在多路传输3方式中D信道的某特定模式情况下都将有可能引起S信道同步字的一种错误识别。由于在多路传输3方式中所发送的D信道数据是PID和LID代码,这意味着带有特别不适当的PID代码的手机11在试图启动链路时可能遭受过大的出错率,因为,基地电台在存在轻度噪声的情况下可能易于把D信道的一部分错误地识别为S信道同步字,从而未能正确地对多路传输3的传输译码。因此,所有具有最大自相关旁波瓣值为+1的候选的各种模式都予以排斥,而具有最大自相关旁波瓣值为+2的候选各种模式可予考虑。已发现若干这样的代码,该代码在多路传输3方式测试中对条件B)来说,提供2位的保护因子。
在接受具有自相关旁波瓣高达+2的候选位模式情况下,由于误译来自正确的S信道同步字时序的S信道数据偏移,在噪音环境中可能得到不正确脉冲串时序的机会也随之扩大。然而,可以认为相对于某些特定设备会遇到在多路传输3方式测试中由于只有一位的保护因子而可能产生的问题的可能性,这种情况还是可取的。
在多路传输3方式的测试中,可以这样来标识一对给出对条件B)的二位的保护因子的位模式,即,使得这对位模式中的每一个是另一个的位取反。将位取反对意味着有必要考虑D信道和S信道前置部分的极性影响。发现了七种这样的代码,十四种这样的模式。这些模式的每一种与各自的对方进行比较(包括其位取反)、以确定互相关值。选用两对位取反模式对,在它们之间的6种互相关中,这两对位取反模式对具有最低的互相关波瓣的最大值。
经由所选用的模式进行S信道测试。在该测试中,在所有偏移的情况下,把四种代码中的每一种与四种比较模式中的每一种进行比较。比较模式为36位长,由12个前置部分位和其次的四种候选模式中的相应一种组成。比较模式与在多路传输3的S信道子多路传输中一种的重复结构相同。它还包括在其内的多路传输2方式中S信道的模式。因此,这种测试表明了如下的可能性,即,在多路传输2方式中或多路传输3方式中,把S信道数据不正确地识别为错误的S信道同步字,或将其识别为具有错误时序的正确字。
在S信道测试中,当将每种候选模式与包含它自己的测试模式进行比较时,当将候选模式与在测试模式中的它自己对准时,将会有完美的24位匹配。该数据是不相干的,因为它表示S信道的正确译码、而不是一种不正确译码,因而予以废弃。在已废弃该不相干的数据之后,每对位取反的结果是企图判定与任何测试模式的对准给出最大匹配数。对于一对位取反对来说,这种最大数是15种匹配,而对另一对来说,该最大数是14种匹配。这样,S信道测试对于条件B)来说,分别给出7位和8位的保护因子。
给出最大为14个匹配且保护因子为8位的位取反对被选定作为信道标志码CHMF和CHMP,并将另一对选定作为普通的S信道同步字SYNCF和SYNCP。
应当指出由多路传输3测试和S信道测试给出的条件B)的保护因子仅加到在同步字与脉冲串结构之间执行过测试的特定对准群上,而没必要保证为同步字与脉冲串结构之间所有可能的对准提供这些保护因子。
但是,多路传输3测试重复在所有最初的四个多路传输3的子多路传输上重复所述位排列,而S信道测试在多路传输3的第五子多路传输中重复所述位排列。在第四与第五子多路传输之间的跃迁处,十位可变D信道数据后面有十四个前置位(两位来自第四子多路传输而十二位来自第五子多路传输中的S信道)在24个W位之前组成S信道同步字。把前置部分和W位(它们是固定的)当作可变位的特定值来处理、以便使这种排列适配于多路传输3测试中所用的排列,这种处理方法是有效的。因此,多路传输3测试和S信道测试的结果,在它们之间提供如下保证,即,至少两位的保护因子对条件B)来说在同步字和多路传输3脉冲串结构的所有可能的对准方面是适用的。
以十六进制和二进制符号表示的为S信道同步字所选的值如下CHMFBE4E50十六进制数101111100100111001010000二进制数CHMP41BIAF十六进制数010000011011000110101111二进制数SYNCFEBIB05十六进制数111010110001101100000101二进制数SYNCP14E4FA十六进制数000101001110010011111010二进制数对本技术领域的技术人员来说,显然,对S信道同步字用一组4位模式可获得类似的特性,这些同步字是与上述各位以逆序给出的同一模式。这些模式将是以十六进制符号表示的OA727D,F58D82,AOD807和5F2728。
检验同步字嵌于可变数据中时的特性,作为所选的用于位模式的进一步测验。实验证明,对于所选位模式中的每一种模式来说,至少有一个位位置数为S,由此,该模式离其正确位置的偏移,在这场合M+S等于或大于L-K。也就是说,倘若假定可变数据的所有位提供一种完美的匹配,至少有一个偏移值S,此时对24位同步模式的匹配总数至少为22。如上所述,一旦S达到22,事实上这是不可避免的。
尽管如此,为所述同步字选择的各种位模式实际上仍是适用的。在多路传输3数据结构中,决不会将同步字嵌于可变数据中,但总是有12位前置部分居先,并在任一侧后面都有12位前置部分,或者,在第五子多路传输中最后重复的情况下,后面是传输的终点。如上所指出的,有这样的保证,即,除非至少错误地接收到两位(例如,由于噪声的缘故),就不可能在多路传输3中出现错误的识别。在多路传输2中,S信道同步字总是由10位前置部分居先,后面在传输终点之前仅有16位可变D信道数据。因此,即使在识别中允许两个许可的错误,在同步字完全嵌于可变数据中的情况下偏移值大于18,它仍可导致不出现错误识别的最大可能性。
此外,由于在多路传输2中10位前置部分在同步字之前,而D信道16位邻近同步字在其后面,如果S信道控制器81、101已未能检测实际已出现的同步字,所述邻近的D信道16位只能导致对S信道同步字的错误识别。如果S信道控制器81、101识别出实际已出现的同步字的存在,则结构时序控制器153就会用该识别的时序设置结构时钟155,并将忽略来自同步字识别器137,139的其它识别信号,而这种另外的错误的输出应在少许位周期后加以提供。
最终,偶然的不正确的识别在多路传输2中无关紧要,倘若其频率很低,因为由不正确的识别中恢复,如上所说明的在多路传输中存在无论如何总会发生的趋势。
为了确定这种错误识别的可能性是否低到可接受的程度,假定将同步字嵌于随机可变数据中。在这情况下,在任何特定S位周期数的偏移处将出现错误识别的或然率是S位随机数据将提供至少(N-K-M)不匹配的或然率,此处M是同步字与它自己在S位偏移处的匹配数,N是同步字的总长(即24位),而K是在相继识别中所允许的错误数(即2)。
对于任何给定的S值,该或然率是
此处
是一个二项式系数。
对于所有S值来说,这些或然率值的总和即,从S=1至S=23,如果将同步字嵌在随机数据中为错误检测输出的或然率或频率提供一数值。互相关值,即一个同步字的误识别的数值,在另一个被嵌随机数据中时,可以应用相同的公式提供,但是零偏移即S=0时的或然率也应当包括在内。
下表1、2和3给出旁波瓣峰值,每个同步字在与它自己相比较时以及与其他同步字相比较时的匹配数最高值和错误检测值,还有,“0101……”前置部分模式。
表1旁波瓣CHMFSYNCFCHMPSYNCP0101……CHMF210674SYNCF2765CHMP2104SYNCP25表2匹配数CHMFSYNCFCHMPSYNCP0101……CHMF1216111312SYNCF11131212CHMP121612SYNCP1112表3错误检测值CHMFSYNCFCHMPSYNCP0101……CHMF2.7E-52.89E-41.5OE-34.80E-42.77E-4SYNCF6.9E-54.80E-41.42E-35.95E-4CHMP2.7E-52.89E-41.40E-4
SYNCP6.9E-53.55E-4当表1和表2进行比较时,应当指出旁波峰值和匹配数最高值对于任何比较并不需要出现在相同的偏移量S处。在表3中“E”代表“指数的”,指的上第一个数应当是第二个数的10倍。这样1.42E-3意指0.00142。
为比较起见,可以指出24位模式111100001111000011110000有一最高的自相关旁波瓣值为16,其最大的匹配数在任何偏移处是18,而其错误检测值是1.47E-1,即,0.147(即假定将其嵌在随机数据中,对它自己具有在14.7%出现错误时序机会状态下来说,会引起一个不正确的识别输出)。
变型与其他方案图37是一张类似于图1示出具有网络链路9通往改进的基地电台的远距离通信网络1的示意图。基地电台189有单网络链路9通信远距离通信网络1,并且在这方面相似于图1的基地电台3。然而,它有分布式的天线191,例如,“波导馈线”,代替基地电台3的通用天线43。这可由基地电台3允许在比较低功率的天线电传输情况下改进地理有效区域。
基地电台单元193有若干网络链路9通往远距离通信网络1,因此,可通过相应的网络链路9和相应的无线电链路13在不同的无线电信道上把许多手机11连接到远距离通信网络1。基地电台单元193可如图38中示意性示出的那样构成。由相应的电话线45把每个类似于参考图16所述的电路的多个基地电台控制电路55连接到相应的网络链路9上。将发送/接收开关91连接到无线电信号合成电路195,而不是连接到相应天线43上。通过合成电路195的作用,每个独立的控制电路55可用公共天线197发送和接收。为了防止一个控制电路55的传输阻断另一个控制电路55的接收操作,集中控制基地电台单元193的所有基地电台控制电路55的脉冲串时序,以便它们同步发送和接收。
图39的布局提供类似于图38布局的操作,但在这种情况下,每个基地电台控制电路55有一各自独立的天线43,以代替合成电路195和公共天线197。这样,图39的布局非常类似于基地电台3的集合,各自具有非常相似的单一网络9。然面,为了使各单元非常相似起见,尤其是它们的天线43非常相似,在相应的基地电台控制电路55之间常必须确保脉冲串同步,以便来自一个电路的传输不会干扰另一个电路试图从手机11接收信号。
图40示出另一种的变型,该变型允许基地电台连接供内部通信用的若干手机11,或将若干手机11连接到单一网络链路9以便提供会议通话。图40中提供了若干基地电台控制电路199,如图39所示,它们各自具有相应的基地电台43,但可代之提供合成电路195和公共天线197。每个基地电台控制电路199都连接到开大电路201上,该开关电路通过相应的电话线45依次接通一条或多条网络链路9。连到开关电路201上的网络链路9的数目可少于基地电台控制电路199的数目。开关电路201在从基地电台控制电路199接收到的信号的控制下动作,从而一起接通相应基地电台控制电路199和/或将它们连接到电话线45,以便除一般电话呼叫设备之外提供内部通信系统/会议通话各种设备。
每个基地电台控制电路199可以是与参考图16所描述的基地电台控制电路55相同的。倘若这样,开关电路201将通过控制电路的相应线路接口103接收信号和送出信号。但最好提供如图16中示出的结构变型的基地电台控制电路199,在该控制电路中,不出现编码器83、译码器97和线路接口103。而代之以开关电路201,该电路含有与其每对电话线45对应的编码器、译码器和线路接口。
在这种情况下,如果准备通过网络链路9发送信号,开关电路201直接从可编程多路信号分离器95接收B信道数据,并将该数据提供给相应电话线45的译码器97,如果准备将它们发送给另外的手机11,则将来自一个基地电台可编程多路信号分离器95的B信道信号提供给另一基地电台的控制电路199的可编程多路调制器85。来自系统控制器99的信号,一般发送到线路接口103,可将其用于控制开关电路201动作的开关控制装置,或可将其通到与电话线45相关联的线路接口103上或适当时通往另外的基地电台控制电路199的系统控制器99上。如在图38和39的布局中那样,基地电台控制电路199的操作脉冲串时序应通过提供公用脉冲串时序信号加以同步。
在任何基地电台布局中,天线43、197可用如图37中所示分布式天线191加以取代。
本发明的最佳实施例已用如下的设想为根据作了大量描述,即在基地电台与手机之间建立无线电链路,以便通过B信道允许话音对话。然而,如参照图15所述,可将手机11与小型计算机或便携式计算机终端结合,使无线电链路能传送计算机数据信号。在这种情况下,计算机数据信号可通过B信道按多路传输1方式进行传送,或者,另一种方法是,无线电链路可以从来不移到多路传输1,而计算机数据可作为特殊报文在D信道用多路传输2方式进行传送。数据通信用B信道和多路传输1将显著地加快,因每个多路传输1传输脉冲串来传送B信道的64位,它全部都适用于传送数据。按多路传输2方式,每脉冲串只传送D信道的32位,另外,用来传送D信道报文的代码字结构意味着D信道位大约只有一半可适用于传送计算机数据。但因为对D信道传输进行编码用于错误检验,所以用D信道传送计算机数据在某些情况下可能是有益的。如果用无线电链路经由D信道与计算机通信数据,一旦链路建立,两部分就可仅按多路传输2方式通信,且链路传输可从来不接通到多路传输1。
在另一种变型中,手机11可能不配置小键盘31,或仅配置少许几个键,因此,从手机11无法拨号。这种手机只能用于接电话,或可允许挂一个或几个预选号码。该号码可存储在手机中并自动发送给基地电台。另一种方法是,尤其当只有一个号码时,可由基地电台将其存储并响应手机的PID予以选用。
通过实例提供了上述各实施例,对本领域技术人员来说,各种变型和替代物将是容易理解的。
权利要求
1.在一种远距离通信系统中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述系统特征在于至少有些脉冲串包含脉冲串中不同时刻的第一逻辑信道(D)的信息和第二逻辑信道(B)的信息,第一逻辑信道(D)的数据预定允许对传输错误进行检测,而每一所述设备将它所接收到脉冲串中所检测到的第一逻辑信道(D)的错误用作第二逻辑信道(B)的传输质量的指示。
2.在一种远距离通信方法中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述方法特征在于至少有些脉冲串包含脉冲串中不同时刻的第一逻辑信道(D)的信息和第二逻辑信道(B)的信息,第一逻辑信道(D)的数据预定允许对传输错误进行检测,而每一所述设备将它所接收到脉冲串中所检测到的第一逻辑信道(D)的错误用作第二逻辑信道(B)的传输质量的指示。
3.如权利要求1的系统或如权利要求2的方法,其特征在于,在所述脉冲串中的第二逻辑信道(B)信息之前和之后配置有第一逻辑信道(D)的信息。
4.一种可用于按照权利要求1或3的系统中的通信设备。
5.在一种远距离通信系统中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述系统特征在于第一和第二设备中的每一个重复地发送预置的信号码组中的一个,而这些设备以这样一种速率交换所述无线电信号使得由同一设备进行预置的信号码组中的一个码的相继传输之间的时间段不超过第一预定时间长度,如果发送设备在它发送代码之前的第一预定时间长度内已接收到所述码组中的任何信号,通常便发送所述码组的第一代码,否则发送所述码组的第二代码,如果在大于第一预定时间长度的第二预定时间长度内没有接收到所述第一代码,那么第一和第二设备中的每一个进入重建时分双向通信的方式。
6.在一种远距离通信方法中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述方法特征在于第一和第二设备中的每一个重复地发送预置的信号码组中的一个,而这些设备以这样一种速率交换所述无线电信号使得由同一设备进行预置的信号码组中的一个码的相继传输之间的时间段不超过第一预定时间长度,如果发送设备在它发送代码之前的第一预定时间长度内已接收到所述码组中的任何信号,通常便发送所述码组的第一代码,否则发送所述码组的第二代码,如果在大于第一预定时间长度的第二预定时间长度内没有接收到所述第一代码,那么第一和第二设备中的每一个进入重建时分双向通信的方式。
7.一种可用于按照权利要求5的系统中的通信设备。
8.一种远距离通信系统中,远距离装置(11)通过交换载有数字数据的交替脉冲串形式的无线电信号在无线电信道上能够与基地电台(3)进行时分双向通信,使得在时分双向通信期间,来自远距离装置(11)和基地电台(3)中的一个的所述脉冲串的传输是在远距离装置(11)和基地电台(3)中的另一个开始下一脉冲串的传输之前完成的,允许远距离装置(11)通过基地电台(3)与另一设备通信,所述系统的特征在于如果或者远距离装置(11)或者与之进行所述时分双向通信的基地电台(3)判定出要求重建时分双向通信时,便采取若干步骤使得远距离装置(11)发送无线电信号来启动所述重建。
9.一种远距离通信方法中,远距离装置(11)通过交换载有数字数据的交替脉冲串形式的无线电信号在无线电信道上能够与基地电台(3)进行时分双向通信,使得在时分双向通信期间,来自远距离装置(11)和基地电台(3)中的一个的所述脉冲串的传输是在远距离装置(11)和基地电台(3)中的另一个开始下一脉冲串的传输之前完成的,允许远距离装置(11)通过基地电台(3)与另一设备通信,所述方法的特征在于如果或者远距离装置(11)或者与之进行所述时分双向通信的基地电台(3)判定出要求重建时分双向通信时,便采取若干步骤使得远距离装置(11)发送无线电信号来启动所述重建。
10.如权利要求8的系统或如权利要求9的方法,其特征在于手机(11)能够与多个基地电台(3)进行所述时分双向通信,使得在所述远距离装置(11)和所述基地电台(3)之间进行所述链路重建时,该基地电台(3)不必是须远距离装置(11)前面与之进行所述通信的同一个基地电台(3)。
11.按照权利要求8或10的系统或按照权利要求9或11的方法,其特征在于由远距离装置(11)发送的启动所述重建的所述无线电信号包含由远距离装置(11)发送的、用于当远距离装置(11)还没有改变紧接前面的通信状态时启动所述通信的建立过程的无线电信号,以便传达被重建的时分双向通信的标识。
12.一种在按照权利要求8、10和11中任一个的系统中用作远距离装置(11)的通信设备。
13.一种在按照权利要求8、10和11中任一项的系统中用作基地电台(3)的通信设备。
14.在一种远距离通信系统中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于至少将第一逻辑信道上设备之间通信的一些信息构造为包括错误检测码的若干字,定义一预定字用于设备间的通信,该预定字包括所述错误检测码而且基本上不带有从发送设备到接收设备的报文。
15.在一种远距离通信方法中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于至少将第一逻辑信道(D)上设备之间通信的一些信息构造为包括错误检测码的若干字,定义一预定字用于设备间的通信,该预定字包括所述错误检测代码而且基本上不带有从发送设备到接收设备的报文。
16.按权利要求14的系统或按权利要求15的方法,其特征在于在第一类所述字的传输之前,通过第一逻辑信道来传输指出后继字的时序的设置模式,在预定字任何部分都不包括与所述设置模式相同序列的数据。
17.一种可用于按照权利要求14或16的系统中的通信设备。
18.在一种远距离通信系统中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述系统的特征在于至少将第一逻辑信道(D)上设备之间通信的一些信息构造为若干字,而在第一类所述字传输之前,通过第一逻辑信道传输指出后面字的时序的设置模式,以及,在对带有同样报文或同样报文部分并具有同样数据序列的第一类字的重复发送之间通过第一逻辑信道传送第一类的不同的字或不包括所述设置模式的预定序列,因此,如果所述第一类字的重复数据序列包括所述设置模式,那么允许接收设备在设置模式的传输过程中正确地识别所述设置模式的重复次数足够小,所述识别是在重复字的下一次传输之前,即使接收设备错误地将重复字的前面传输的数据序列中的设置模式识别为前面第一类字的设置模式的出现。
19.在一种远距离通信方法中,第一设备和第二设备(3,11)通过交换载有数字数据的交替脉冲串形式的无线电信号,在无线电信道上能够进行时分双向通信,使得在时分双向通信期间,来自设备之一的所述脉冲串的传输是在设备中另一设备开始下一脉冲串传输之前完成的,所述方法的特征在于至少将第一逻辑信道(D)上设备之间通信的一些信息构造为若干字,而在第一类所述字传输之前,通过第一逻辑信道传输指出后面字的时序的设置模式,以及,在对带有同样报文或同样报文部分并具有同样数据序列的第一类字的重复发送之间通过第一逻辑信道传送第一类的不同的字或不包括所述设置模式的预定序列,因此,如果所述第一类字的重复数据序列包括所述设置模式,那么允许接收设备在设置模式的传输过程中正确地识别所述设置模式的重复次数足够小,所述识别是在重复字的下一次传输之前,即使接收设备错误地将重复字的前面传输的数据序列中的设置模式识别为前面第一类字的设置模式的出现。
20.一种可用于按照权利要求18的系统中的通信设备。
全文摘要
在单个无线电信道上用交替脉冲串形式进行手机11和基地电台3间的时分双工通信。一旦建立链路,初始传输载送同步逻辑信道S和通信逻辑信道D,再转换到载有用于话音的通信逻辑信道B和通信逻辑信道D的脉冲串。通过异步检测S中各个字来达到脉冲串同步。这些具有位模式的字减小了被不正确地异步检测的可能性。如一部分停止接收来自另部分的手机信号,便发特定信号告知另部分,使双方基本同时检测到链路故障,而使重建链路的动作得以同步。
文档编号H04M1/24GK1044558SQ9010045
公开日1990年8月8日 申请日期1990年1月25日 优先权日1989年1月27日
发明者迈克尔·T·杜德克, R·古丁斯, 戴维·克罗福德奥汉姆斯, 彼得·尼古拉斯·普罗克特, 奈杰尔·埃弗拉德·巴尼斯, 布赖恩·阿尔弗雷德·比德韦尔, A·巴德, M·克里斯普, I·罗杰斯 申请人:英国电讯公司, 费兰蒂信用电话有限公司, Gec-普列斯长途电讯有限公司, 水星通讯有限公司, 奥必特尔流动通讯有限公司, 谢伊通讯有限公司, 电话点有限公司, Stc有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1