组合了扩频信号所有可用多径组件的瑞克接收机的制作方法

文档序号:7564797阅读:162来源:国知局
专利名称:组合了扩频信号所有可用多径组件的瑞克接收机的制作方法
技术领域
本发明涉及供在固定与移动的无线单元之间利用直接序列扩展频谱提供数字无线链路的设备中使用的装置。
在申请号为9304901.3的英国专利申请中描述了用于提供这种无线链路的设备。该申请描述利用一些韦纳(Wiener)型滤波器,用于提供,例如,对扩频导引信号的同相I和正交分量Q幅度的良好测算。
通过分解个别的、时间分离的多路径分量并最佳地将它们组合起来,扩频信号提供了获得针对多路径衰落最佳抗干扰性的可能性。达到这一目的的通常办法是本专业的专业人员所熟习的利用“瑞克”接收机。这种接收机将一些去扩频相关器分配给每个占优势的多径分量和将这些分量同步为最大去扩频能量。对于每个瑞克“检测器”(Rake′ Fingers′)而言,要测算去扩频分量的相位与幅度,并采用相位与幅度进行最佳幅度加权并在进行相加(组合)之前实现相位对准。各多径分量的加权和将比任何个别的分量经受少的多的衰落,以便得到一个分集增益。
通常实现这样一种接收机的一个问题是,信号的延迟扩频必须不断地被搜索,以确定是否一个瑞克指数应被分配给新的、更强的多径分量。如果信道正在迅速变化,由于在一个正在出现的较强多径分量和该分量被分配一个瑞克指数之间存在太长的延迟就可以导至在性能上的明显降低。
此外,一些信道可以包含大量相当小的多径分量。如果所有的或大多数的这些分量未被分配瑞克指数,则从接收的目的而言,相当大量的信号能量可能被浪费掉,尽管这个信号能量仍将作为对以码分多址(CDMA)意义上共享的载波频率上的扩频传输接收的干扰。与这些低电平分量相连带的问题是,除非这些分量被进行连续地测量,否则它们是不可能被相当精确地评估,即当什么时候和在哪个电平上它们将被包括在组合输出之中。允许包含大量多径分量的要求可能导至需要用于大量瑞克指数的永久性硬件设备和一个非常高速的搜索装置,有效地和快速地分配瑞克检测器。
按常规来讲,每个瑞克检测器应当要求一个扩频去相关器,它按标称地定时、对准该多径分量。将两个相同的扩频去相关器的时间对称的方式分配给第一相关器的每一侧是需要的。这些相关器的时间偏移通常将被加上或减去一个时间片(chip interval)的1/4或1/8。时间片是扩频比特的持续期,即 (比特持续期)/(扩频因子) 。以对时间片(chip)速率四次或八次的信号取样成为重要的。这些相关器与前者共同形成码锁定环,在该环中比较三个相关器输出的能量和调整各相关器的码发生的时序,以便在中央相关器上的能量总是最大,正如本专业的技术人员所熟习的那样。在组合之前出于相位补偿的目的为获得信号的载波相位的相位测算器(通常是一个锁相环),和在组合之前为了对信号施加最佳的加权的幅度测算器也将是需要的。就操作的主要复杂性而言是在于三个频谱去相关器上。
一般搜索器将包括安排为共同覆盖信号的所有延迟扩频的一些滑动相关器,或者以半个时间片为级次滑动其时序。如果最佳性能在分配瑞克指数给各非常弱的多径分量能够实现的话,则理想的搜索器将以并行的方式检查所有的多径分量。这将要求一个具有延迟覆盖等于最大预处理的延迟信号扩频的数字匹配滤波器。
本发明的目的是提供用于组合搜索器与瑞克检测器的功能的装置,同时将取样率减小为每时间片一次取样并大大地减小硬件的复杂性。
按照本发明提供了一种装置,该装置供在固定的与移动的无线单元之间利用直接序列扩频提供数字无线链路的设备中使用。所述装置包括一个瑞克接收机,该接收机包含多个每个提供一个瑞克检测器的数字相关器,其中数字相关函数的块覆盖与要接收的最大信号扩频延迟相同量级的扩频码相位的相邻接的间隔,以及加法器装置,被安排对来自若干相关器的各个多径分量进行能量组合。
下面将参照各附图描述本发明的各种实施例,其中

图1表示一种相关函数非最佳取样的图;
图2表示一种并联瑞克DBPSK接收机的框图;
图3表示一种串联瑞克DPSK接收机的框图;
图4表示一种具有导引信号的串联瑞克DPSK接收机的框图;
图5表示一种串联瑞克MDPSK接收;
图6表示一种具有交流能量测量的串联瑞克MPDSK接收机,和图7表示一种串联瑞克MPSK接收机的框图。
首先,设想一个i=0到n-1的数字相关器组,每个相关器被馈给一个从前一个时间片移位一个时间片的码。总的覆盖延迟间隔等于N个时间片,这里N被选为所给出的延迟间隔,它至少等于在实际中可能要遇到的最大信号延迟扩展。假设该码已被同步,以致在数字相关器的终端执行相关操作,对延迟扩频信号的所有明显多径分量去扩频,即该相关器组的延迟覆盖被集中在延迟扩频信号上。
每个数字相关器用做在其定时位置上测量接收的信号功率并且还用做每当要进行组合时为接收的那个信号分量提供瑞克检测器。人们将会理解,当每时间片仅利用一个样值时,对于一个特定的多径分量而言,不可能精确地对准任何的数字相关器(或瑞克检测器),或者甚至于接近它。这可能似乎意味着在信号能量上的明显损失必定升高。但是,合适地设计提供扩频链路的传输接收滤波器,这种必要并非如此。
如果可能是奈奎斯特型的传输接收滤波器被按照具有非常陡的(接近矩形频率响应)的线性相位设计,那么非常小的能量通过取样将被混淆,甚至在低至每个时间片一个样值的速率的情况下。这个出现的问题是就要恢复的能量而论的。让我们设想这样一个位置,即在相邻的一对相关器的最佳相关时间之间的一半,该多径分量被定时以便精确地达到(这代表最坏的情况)。由于接收信号的自动相关函数通过传输接收滤波器函数的组合施加至多径分量上,对应于多径分量到达两相关器之间的中间,该两个相关器将输出一些能量(在这个特定的情况输出相等的能量)。同样,在各相关器的另外的出口,多径分量的每一侧将输出较小的能量等级。这种效应如图1所示。在图1中,曲线表示通过一个理想的矩形滤波器的信号的相关函数。箭头表示对于明显能量的相关器的时序。如果来自所有相关器输出的各个信号分量(在两个方向扩展任意长的时间)是最佳组合,那么对应于多径分量的所有信号能量可能被恢复,而无视不正确的取样时序。实际上,不可能满足这种理想的情况。因此,滤波器不是理想的矩形滤波器;组合也不是最佳的,并且仅仅少量相关器输出能被有用地组合。尽管如此,实验已然表示,对于实际的滤波器来说,实际的组合和利用最佳数量(少量)相关器输出,由于非最佳组合所至的平均损耗一般来说小于1dB,甚至对于非常多的多径分量的情况。这部分的原因是由于该性能是通过所有条件的平均和绝不可能所有多径分量都精确地同时出现在最坏的取样点上。
因此,利用具有连续的瑞克检测器组,就可以除去实现最佳取样定时的要求。如上所述,可以每个时间片一次取样地进行取样。这能够使模拟/数字变换器中和初始的数字信号处理操作中的成本/功耗明显减少。每个瑞克检测器现在仅要求一个相关器。码锁定环电路不要求单独的瑞克检测器。因为每个时间片偏离仅要求一个瑞克相关器,一个适当数目的相关器能够覆盖信号的延迟扩频。因为各瑞克相关器覆盖整个的信号延迟扩频,所以这些相关器还可以用作搜索器。实质上,与每个瑞克相关器相联系的硬件/软件独立地判定是否该相关器的输出应被包括在组合器和之中。
参照图2,以框图形式表示出一种并联瑞克差分二进制相移键控(DBPSK)接收机。
在图2中表示出多个并行的瑞克检测器2、4、6、8、10和12。十分明显,每个瑞克检测器包括一些电路部件,这些部件在下文中将参照瑞克检测器2予以描述。
复数移位寄存器14接收输入数据和具有连接到在每个瑞克检测器的复数数字相关器16的相应的一个相关器的输入端的每一级。复数数字相关器16具有两个输出端,每个输出端连接到一个1比特延迟装置18、20的输入端且还连接到线性乘法器30、32的一个输入端。1比特延迟装置18的输出端连接到半线性乘法器22的一个输入端,该乘法器22具有一个连接到韦纳型滤波器26的输入端。滤波器26的输出端连接到线性乘法器30的另外一个输入端。同样,1比特延迟装置20的输出端连接到半线性乘法器24的一个输入端,乘法器的输出端连接到韦纳型滤波器28的输入端。韦纳型滤波器28的输出端连接到线性乘法器32的另外一个输入端。线性乘法器30、32的输出端连接到加法器电路34的相应输入端,加法器34的输出端连接到1比特延迟电路36的输入端。1比特延迟电路36的输出端连接到另外一个半线性乘法器38的一个输入端,乘法器38的输出端连接到一个α跟踪器电路40。该α跟踪器电路是一个RC低通滤波器的数字化等效电路。它是一个具有漏电的积分器,其中的输出Sn=α·In+(1-α)Sn-1(In是第n个输入样值)。α跟踪器电路40的输出端连接到阈值电路42的输入端。每个瑞克检测器具有连接到加法电路46的输出线。这个输出线具有通过开关装置44使加法器电路34的输出端与它相连的输出,开关装置44是在阈值电路42的控制下操作的。加法器电路46的输出端连接到限幅电路48的输入端和差分解码电路50的输入端。限幅电路48产生一个输出,该输出被馈送到半线性乘法器22、24和38的第二输入端。差分解码电路50在输出端产生接收的数据信号。
下面将描述图2所示的电路的操作。
图2所示的接收机专门用于差分二进制相移键控(DBPSK)接收机。每个瑞克检测器2~12被提供一个连续的一时间片延迟方式的信号,当该信号通过复数移位寄存器14时,复数数字相关器16用于对在相关时间到达的信号的那部分的I和Q分量去扩频。该信号的I分量被传送到1比特延迟电路18而Q分量被传送到1比特延迟电路20。该I和Q分量而后被传送到各自的半线性乘法器22、24,该乘法器排除对应于各分量的在前比特的调制。该I和Q分量而后被馈送到韦纳型滤波器26、28。这些滤波器早于输入信号一个比特的时刻对应于所接收信号单元给出良好的I和Q值的测算。这种预测对输入延迟电路进行补偿。在各自的线性乘法器30、32中进行信号I和Q分量与相应未调制信号的I和Q测算值的相乘而这些乘法器的输出在求和电路34中求和,给出用于进行组合的可用信号的经校正的相位与已加权形式的幅度。
在这个时间点上,并不清楚这个输出是否应当施加到加法电路46上,因为该输出可能仅包含噪声。如果韦纳型滤波器的测算是理想的,则这些滤波器应当指示真正的信号的I和Q分量实际上为零且前面的相乘应当产生一个零输出。然而,该测算器输出不可能是理想的且将总是输出某些噪声,甚至当没有信号分量存在的时候。因此,要求一个第二级,以确定是否信号分量足够大到可以判别实际上是存在的。对于潜在包含的信号提取出来并由延迟电路36延迟一个1比特周期并利用线性乘法器30、32将前一个比特的数据重新予以去除。这一级的输出现在是在前一个比特期间该相关器输出的噪声的能量测量。这个输出被馈送到平均滤波器40。在该例子中,平均滤波器是一个α跟踪器。滤波器40的输出而后与由阈值电路42提供的阈值进行比较,确定什么时候该信号分量应能包括在整个组合器中。加法器电路46产生一个总输出,该输出被硬限幅以产生在下一个解调帧中进行去除的调制。这是由限幅电路48实现的。电路48接收加法器电路46的输出且该硬限幅器的输出被连接到半线性乘法器22、24、38点上。当信号首先出现在限幅电路48的输出端上,它将是随机的。取决于瑞克检测器的数量和信号的总特性,接收机或许能使其本身与这个条件相分开。在另外一种情况下,每个长传输(包括若干个传输帧)可以以传输一段已知数据为开端。在这段传输期间,本地已知数据用于仅当已知数据由未知数据所替代时,获得为了分离和分离输入被转换到瑞克输出限幅电路的调制。
加法器46的输出的常规的方式通过每个样值输出被以前的一个样值输出相乘,相差分解码。这一处理是在差分解码电路50中进行的。
如果乘法器对两个输入都是线性的,即若干比特是精确的,若差错控制编码已应用到该数据传输之中,则输出的幅度适合于供结合软判决纤错解码使用的软判决度量。
正如一个可替代上述实施方案的另外一个实施方案,现将参照表示一种串行瑞克差分相移键控(DPSK)接收机的图3予以描述。
参照图3,复数数字匹配滤波器52接收在相应I、Q线上的同相和正交相位信号。滤波器52具有两个输出线,一个连接到1比特延迟装置56的输入端而另一个连接到1比特延迟装置58的输入端。1比特延迟装置56的输出端连接到半线性乘法器60的输入端,乘法器的输出端连接到韦纳型滤波器64的输入端。韦纳型滤波器64的输出端连接到线性乘法器68的输入端,乘法器68的输出端连接到加法器电路72的输入端。1比特延迟装置58的输出端连接到另外一个半线性乘法器62的输入端,乘法器62的输出端连接到韦纳型滤波器66的输入端。韦纳型滤波器66的输出端连接到线性乘法器70的输入端,乘法器70的输出端连接到加法器电路72的另外一个输入端。加法器电路72的输入端连接到另外一个1比特延迟电路74的输入端并连接到开关装置84的输入端。1比特延迟装置74的输出端连接到另外一个半线性乘法器76,半线性乘法器76的输出端连接到α跟踪电路78。α跟踪电路的输出端连接到阈值装置80的输入端,装置80的输出端用于控制开关装置84。开关装置84连接到积分电路82的输入端。积分电路82的输出端连接到限幅装置86的输入端并连接到差分解码电路88的输入端。差分解码电路88产生接收数据。限幅装置86的输出端连接到半线性乘法器60、62、76的另外的输入端。
存储器54连接到1比特延迟装置56、58和74的另外的输入端且还连接到韦纳型滤波器64和66的另外的输入端,以及连接到α跟踪电路78的另外一个输入端。
下面将要描述如图3所示的电路的操作。
该电路在每个时间片的延迟窗中为每个时间片产生一个输出。基本操作与图2相同,除了当每个新的输出产生时,对于每个连续的时间片偏移可以取决于该时间片所接收的平均信号强度被馈送到一个如积分器82所示的累加器。该信号的I分量经由1比特延迟电路56、半线性乘法器60、韦纳型滤波器64、线性乘法器68和加法器电路72被传送。该信号的Q分量经由1比特延迟电路58、半线性乘法器62、韦纳型滤波器66、线性乘法器70和加法器电路72被传送。当到达当前的比特的接收期间终点时,加法器电路72的输出被硬限幅,以便分离数据,和被差分解码,提供总的接收输出。加法器电路72的输出控制是由受控于阈值电路80、α跟踪器78、另外的半线性乘法器76和1比特延迟装置74的开关装置84实现的,与参照图2描述的一样。积分电路82的输出被加到硬限幅装置86,装置86的输出被反馈到半线性乘法器60、62、76的另外的输入端。积分电路82的输出还被传送到差分解码电路88,产生接收输出数据。
在这个实施例中需要存储器54,因为每个韦纳型滤波器和α跟踪器电路以及1比特延迟装置的内容必须将对应于前一个时间片中去扩频操作时它们所具有的内容进行复位。存储器54的内容能使韦纳型滤波器和α跟踪器电路进行恰如已经设置的那么多操作。
参照图4,现将描述适合利用引导信号的一种二进制相移键控(BPSK)接收机。图4表示这种接收机的一种串行方法和包括一个用于引导信号的复数数字匹配滤波器90,和用于数据信号的复数数字匹配滤波器92。输入信号的I和Q分量被各自施加到滤波器90、92的相应输入端。滤波器90具有两个各自连接到相应韦纳型滤波器94、96的输出端。韦纳型滤波器的输出端被分别连接到线性乘法器102和104的一个输入端且还分别连接到另外的线性乘法器108、110的第一和第二输入端。来自每个线性乘法器102、104的输出被施加到加法器106的相应输入端,加法器的输出端被连接到开关装置118的一侧。开关装置118的另一侧被连接到积分电路120的输入端,积分器的输出端产生接收的数据信号。
乘法器108、110的输出端被各自连接到另外一个加法器112的相应输入端,加法器的输出端被连接到α跟踪电路114的输入端。α跟踪电路114的输出端被连接到阈值电路116的输入端,阈值电路的输出控制开关装置118。存储器112连接到韦纳型滤波器94、96,延迟电路98、100以及α跟踪电路114,复位上述电路的内容,这些内容是去扩频相应于前一个比特的时间片时这些电路所具有的。
现在将描述图4所示的接收机的操作。显然易见,尽管这种描述是应用到一种串联接收机的,但是BPSK接收机也将能够在并行形式中实现。
要求各个分别的相关器在信号的延迟扩频期间对每个时间片的引导信号和数据信号两种信号的I和Q分量进行去扩频。各相关器基本上相同的,但是将利用不同的时间片序列。在引导信号输出通路上I和Q分量被分别送到韦纳型滤波器94、96,这些滤波器具有对称的结构和延迟。这种方式通过在一个较长的时间期间进行平均,并且避免了进行预测,在一个特定的去扩频延迟中提供更可靠的载波分量测算。应注意的是,因为引导信号是未调制的,所以不需要与数据的分离。在延迟扩频的相关点上载波I和Q分量的测算被用于合适的延迟去扩频信号的相位和幅度的补偿。各滤波器的内容在一个比特内的每个时间片位置将需要由存储器122复位,同样在BPSK接收机的情况下,也要施加同样的要求。分别对I和Q分量韦纳型滤波器94、96的输出和延迟电路98、100的输出由线性乘法器102、104组合起来。线性乘法器102、104的输出信号被送到加法器电路106,加法器106的输出端通过开关装置118连接到积分电路120。开关装置118的控制是由一个接收来自α跟踪器电路114的输出信号的阈值电路116予以操纵的。α跟踪器电路的输入是从加法器电路112得到的,加法器电路112接收来自另外两个线性乘法器108、110的输出信号,乘法器108、110在其两个各自的输入端接收分别来自韦纳型滤波器94、96的输出信号。
如上所述,来自加法器电路106的输出经开关装置118在产生的平均信号电平为条件的阈值的阈值电路116的控制下馈送到积分电路120。积分电路120起执行组合各个跨接的瑞克分量的作用。
利用另外一对乘法电路108、110,由引导信号获得用于阈值确定的信号测量。这是因为引导信号一般比数据信号强,从而能给出一更为精确(无噪声)的信号电平测算。参照图4描述的这个实施例,由于引导信号没有任何数据可以利用,所以不要数据分离,因此能够避免了任何差错判决的影响。
在数据信号比引导信号强的情况下,这可能是应用于高速率传输的情况下,这种情况以与参照图3描述的相同的方式,基于数据信号执行信号测量可能是有优点的。
参照图5,下面将描述一种多相差分相移键控接收机。
复数数字匹配滤波器124接收同相位I信号和正交相位Q信号。滤波器124具有两个输出线,每个被连接到一个各自的线性乘法器136、138的第一输入端。滤波器124的输出线还被连接到各自的1比特延迟电路126、128的输入端。1比特延迟电路的输出端被分别连接到复数线性乘法电路130的输入端,电路130具有两个分别连接到韦纳型滤波器132、134输入端的输出端。韦纳型滤波器132、134的每个输出端分别连接到线性乘法器136、138的第二输入端。线性乘法器136、138的输出端被连接到另外的1比特延迟电路140、142的输入端,电路140、142的输出分别连接到另外一个复数线性乘法电路144的输入端。复数线性乘法电路144具有两个连接到加法器电路146输入端的输出端,加法电路146的输出端连接到α跟踪电路148。1比特延迟电路126、128、140、142、韦纳型滤波器132、134和α跟踪器电路148,每个都具有连接到存储器174的用于刷新目的的一个附加输入端。α跟踪器电路148的输出端连接到阈值检测电路149的一个输入端,电路149的输出端以控制两个开关装置164、166的方式予以连接。开关装置164、166被分别连接到线性乘法电路136、138的输出端,且用于施加该输出信号分别到积分电路160、162的输入端。每个积分电路的输出被加到差分解码电路172,电路172产生数据输出信号。积分电路160、162的输出被连接到在初始阶段将幅度和阈值规格化到最接近相位的电路170的输入端。这个电路具有两个分别连接到复数共轭电路168的输入端的输出线,电路168具有两个输出线,每个分别被连接到复数线性乘法电路130、144的另外的输入端。
下面将描述图5所示接收机的操作。
基本操作与DBPSK接收机一样,除了现在对于引导信号提取的分离必须由复数线性乘法器130来执行。此外,在相位和幅度补偿以后,信号能量存在于I和Q两个分量之上,这样瑞克组合必须对两个分量分别进行。为此目的,设置了两个分别的积分电路160、162,这些电路对执行跨接的不同多径分量的I和Q信号进行组合。出于确定阈值的目的,信号能量测量现在要求从经相位补偿的信号中去掉数据,且这是由利用具有数据测算功能的另外的复数线性乘法器144实现的。两个开关装置164、166用于控制积分电路160、162的输入。为了数据分离的目的,积分电路160、162的输出被规格化为仅含有相位信息的复数。这个操作是由电路170进行的。在规格化以后,再次由电路170在调制初阶电路中该相位被旋转到最接近的相位。数据分离要求与该数据复数共轭的复数相乘,从而从电路170的输出被加到复数共轭电路168。因为利用差分调制,所以用户的数据必须由差分解码器172获得。积分电路160、162的当前输出称为复数Zn而前次输出称为Zn-1,且在第n与第n-1信号间隔之间差分编码数据可以由调制初阶中选择最接近于Zn·Zn-1的相位来得到。
出于确定阈值目的的信号测量可以更为方便地利用图6所示的结构予以描述。
图6类似于图5且相同的部件由相同的标号表示而它们的功能类似于参照图5所描述的功能。
人们将会注意到,两个图之间的差别是去掉了1比特延迟电路140、142和第二复数线性乘法器电路144。这个电路已经为另外两个线性乘法器174、176代替,该乘法器174、176分别在其输入端接收来自韦纳型滤波器132、134的输出。该另外的线性乘法器174、176的输出端被连接到加法器电路146。
能量测量是由直接在I和Q信号信道上平方该测算执行的。由于平均包括在韦纳型滤波之中,所以不再需要执行每比特一次那么频繁的第二次相乘。
图7表示对于具有引导信号的多路相移键控(MPSK)的可能的结构。
图7表示一种综合瑞克MPSK接收机。该接收机包括用于引导信号的第一复数数字匹配滤波器180和用于数据信号的第二复数数字匹配滤波器182。输入信号的同相I和正交Q分量被施加到两个滤波器上。该引导滤波器180具有两个输出线,每个分别连接到韦纳型滤波器184、186上。数据信号滤波器182具有两个输出线,每个连接到一个相应的延迟电路188、190的输入端。韦纳型滤波器184的输出端和延迟电路188的输出端分别连接到线性乘法器192的输入端。韦纳型滤波器186的输出端和延迟电路190的输出端分别连接到线性乘法器194的输入端。另外两个线性乘法器196、198在其各自的输入端分别接收来自韦纳型滤波器184、186的输出。来自线性乘法器192、194的输出被连接到开关装置210、212的各自输入端。来自另外的线性乘法器196、198的输出被分别施加到加法器电路200的输入端。加法器电路200的输出端连接到α跟踪器电路202的输入端,电路202的输出施加到阈值检测电路204的输入端。来自阈值检测电路204的输出被用于控制开关装置210、212。两个积分电路206、208具有其分别连接到开关装置210、212的另外输入端的输入端,和从积分电路的输出被送到电路214,该电路在初始阶段选择最接近的相位,产生数据输出。
多电平PSK接收机与BPSK接收机之间仅有的区别是同相位I和正交相位Q分量必须在各组合器中单独处理和通过在调制初始阶段选择最接近接收信号的相位实现解调的。如果所接收的信号和发送源已被前向纠错编码,则在两个积分电路206、208的输出端的复数信号将直接被利用,提供自判决信息。
参照图2至7描述的上述接收机假设扩频码已被直接同步到落入与各相关器组相联系的去扩频函数间隔中的所有明显多径分量范围。
初始同步可以由多种方式实现。假设,对于无引导信号的情况下,在初始同步相位期间,发送一个未调制信号。因为相关器组以并行方式覆盖一个很宽的延迟扩频信号,可能利用分组搜索策略,在这种策略中,将一组码状态施加到各相关器和测量电路检查明显强的能量。如果在任何能量测量电路中未发现明显能量,则该组施加到相关器的码状态向前或向后步进,覆盖下一个延迟信号的相邻范围(不重叠),依此类推,直至或者找到一个信号,或者覆盖整个不确定的窗口。另外一种搜索策略可以是从这个点反向运行。当至少一个相关器找到明显能量时,终止主搜索策略。在这一阶段,部分扩频延迟信号由相关器组的码间隔所覆盖。第二搜索策略而后被要求执行将码间隔初始中心对准该延迟扩频信号。一旦所有明显的多径分量已被检测到,利用接收机的扩频时间窗识别检测到的最早和最迟明显多径分量。在这个阶段,有可能多径分量存在于时间窗的任何一侧,但不是两侧,仅一种方法将是肯定的,即所实现的正确对准的实现是依次测试如下两个假设1)移动码相位,以便找到的最早通路移动到接近该覆盖间隔的始端。在进行平均的时间间隔以后,将出现一个新的最后的通路。最早的与最后的通路之间的时间差(相关器数)给出对于这种情况下捕捉到的延迟扩频信号。
2)移动码相位,以便使原来找到的最后通路移动到接近该覆盖间隔的末端。在进行平均的时间间隔以后,将出现一个新的最早通路。最早的与最后的通路之间的时间差给出对于这种情况的捕捉到的延迟扩频信号。
按照哪种情况给出较大的捕捉到的延迟扩频信号,在情况1或情况2的位置最后对准码的时序。
码的相位移动可以通过存储器中移动地址指示器位置来实现。不需要物理上复制各滤波器或延迟电路的内容。在并行的情况下,或者移位各种滤波器与延迟电路的内容,或者有效地在每个瑞克检测器与整个移位寄存器之间重新布线,成为必要的。
一旦实现了初始同步,则必须维持整个同步,以保持接收机的码覆盖集中在延迟扩频信号上。这可以由以下方式实现1)如果接收机的扩频时间窗足够大,以便可以保证窗将永远通过明显的边界超过延迟扩频信号,而后定时控制可以通过有规律地修改码定时来实现,以保持当前所找到的最早的和最后的信号分量集中在扩频时间窗中。
2)如果上述不能保证,则将必须利用一个单独的滑动相关器搜索窗以外的范围。然而,对于这种情况,一个简单的相关器应当是足够了,因为整个延迟扩频信号集中应当变化得非常慢,它仅取决于在通路长度中整个的变化。
对于本专业的技术人员而言将十分容易理解,上述接收机的结构能够很容易地扩展到在诸如在申请号为9309748.4的英国专利申请中所描述的双通路接收机的结构中。
权利要求
1.供在固定的与移动的无线单元之间利用直接序列扩频提供数字无线链路的设备中使用的装置,所述装置的特征在于包括一个含有多个各提供一个瑞克检测器的数字相关器的瑞克接收机,其中数字相关函数的一个块覆盖要接收的最大扩频信号相同数量级的扩频码相位的一个邻接的间隔,和加法器装置用于组合来自若干相关器的各个多径分量的能量。
2.按照权利要求1的装置,其特征在于瑞克接收机包括奈奎斯特型的接收和发送滤波器,用于产生一个接收相关函数,允许恢复在相关器输出信号中的定时不准确的信号分量。
3.按照权利要求2的装置,其特征在于各瑞克检测器被安排为并联方式且每个瑞克检测器分别连接到移位寄存器装置的一个级的数字相关器装置,通过该寄存器传送输入信号,所述数字相关器装置具有两个输出线,连接到第一乘法装置的第一输入端和经由延迟装置到第二乘法装置的第一输入端,所述第二乘法装置具有连接到韦纳型滤波器的一个输出端,该滤波器具有连接到所述第一乘法装置的第二输入端,所述第一乘法装置具有其相应的连接到另外的加法器装置的输出端,该加法器具有连接到一个开关装置的输出端和经另外的延迟装置连接到第三乘法装置的一个输出端,所述第三乘法装置的输出端被连接到跟踪装置的输入端,该跟踪装置具有连接到产生用于控制所述开关装置的输出信号的阈值装置的输出端,和当所述开关装置操作时,来自所述另外的加法器装置的输出被施加到所述加法器装置的输入端,该所述加法器接收来自每个所述瑞克检测器的信号,所述加法器装置产生一个输出信号,该信号被加到一个积分装置,用于产生对每个第二乘法装置的反馈控制信号,所述来自加法器电路的输出还被加到一个差分解码电路,用于产生接收数据输出信号。
4.按照权利要求2的装置,其特征在于仅具有一个由一个数字滤波器装置组成的瑞克检测器,该数字滤波器被安排为接收同相和正交相位的输入信号分量,所述滤波器装置具有两个输出线,连接到第一乘法装置的第一输入端和经一个延迟电路连接到第二乘法装置的一个输入端,所述第二乘法装置具有连接到一个韦纳型滤波器的输入端,韦纳型滤波器的输出端连接到所述第一乘法装置的第二输入端,来自每个第一乘法装置的输出被加到加法器装置的输入端,加法器装置的输出经一个延迟装置加到具有其输出端连接到跟踪装置的输入端的第三乘法装置,来自所述跟踪装置的输出被加到阈值装置;该阈值装置的输出用于控制一个开关装置,所述开关装置被连接到所述加法器装置的输出端和被安排去转换到积分电路的所述输出,积分装置的输出端连接到一个限幅装置的输入端,限幅装置产生的输出被加到所述第二乘法装置的另外一个输入端,来自所述积分装置的输出还被加到一个差分解码电路,该电路被安排为产生接收的数据输出信号。
5.按照权利要求3或4的装置,其特征在于瑞克接收机被安排用来处理差分相移键控信号。
6.按照权利要求2的装置,其特征在于分别为引导信号和数据信号设置数字滤波器装置,每个数字滤波器被安排接收输入信号的同相和正交相位分量,所述用于处理引导信号的滤波器具有其连接到韦纳型滤波器的输出端,该韦纳型滤波器的输出端连接到第一乘法装置的第一输入端和到第二乘法装置的第一和第二输入端,所述用于处理数据信号的滤波器具有其经延迟装置连接到所述第一乘法装置的第二输入端的输出端,来自所述第一乘法装置的输出被加到相应的第一加法器装置,所述第一加法器装置具有连接到开关装置的输出端,所述第二乘法装置具有连接到相应的第二加法器装置输入端的输出端,第二加法器的输出端连接到一个跟踪装置的输入端,所述跟踪装置被连接到安排为控制所述开关装置的阈值装置,和当所述开关装置操作时,来自所述第一加法器装置的输出被加到积分装置的输入端,该积分装置在输出端产生接收数据信号。
7.按照权利要求6的装置,其特征在于是被安排用来处理二进制相移键控信号。
8.按照权利要求6或7所要求的装置,其特征在于可以以并联方式安排多个瑞克检测器。
9.按照权利要求8所要求的装置,其特征在于瑞克接收机可以包括各瑞克检测器的串联和并联的组合。
10.按照权利要求2所要求的装置,其特征在于被安排为处理多电平差分相移键控信号,所述装置包括安排为接收输入信号的同相和正交相位分量的数字滤波器装置,所述滤波器具有两个输出线,连接到乘法装置的第一输入端和经延迟装置连接到第一复数线性乘法装置,所述复数线性乘法装置具有连接到相应韦纳型滤波器的输出端,所述滤波器具有连接到所述乘法装置的第二输入端,所述乘法装置的输出端经延迟装置被连接到另外一个复数线性乘法装置的输入端和连接到一个相应的开关装置,所述另外的复数线性乘法装置具有其连接到另外的加法器装置的输出端,该加法器的输出端连接到跟踪装置的输入端,所述跟踪装置的输出端被连接到安排为控制所述开关装置提供输出信号的一个阈值装置,所述开关装置被引起操作将所述乘法装置的输出转换到相应积分电路的输入端,所述积分装置具有其连接到一个差分解码电路的输出端,该解码电路被安排为产生数据输出信号,来自积分装置的上述输出还被加到安排为在初始阶段将幅度和阈值规格到最接近的相位的电路装置和产生由共轭电路装置进行处理的输出信号,所述共轭电路装置产生分别加到所述复数线性乘法装置和所述另外的复数线性乘法装置的另外的两个输入端。
11.按照权利要求10所要求的装置,其特征在于所述另外的复数线性乘法装置和与此相连的延迟装置由两个另外的乘法装置所代替,每个乘法装置被安排在其输入端接收分别来自韦纳型滤波器的输出信号。
12.按照权利要求10所要求的装置,其特征在于以并联方式安排多个瑞克检测器。
13.按照权利要求11所要求的装置,其特征在于以并联方式安排多个瑞克检测器。
14.按照权利要求10或11所要求的装置,其特征在于包括瑞克检测器的串联/并联的组合。
15.按照权利要求2所要求的装置,其特征在于为引导信号设置一个数字滤波器装置和为数据信号设置另外一个数字滤波器装置,所述各滤波器被安排为接收输入信号的同相和正交相位分量,所述处理引导信号的滤波器具有两个输出端,每个输出端被安排为连接到一个相应的韦纳型滤波器的输入端,该滤波器的输出端被连接到第一乘法装置的一个输入端和到另外一个乘法装置的第一和第二输入端,所述处理数据信号的滤波器具有两个输出端,被安排为分别经延迟装置连接到所述第一乘法装置的第二输入端,所述第一乘法装置的输出端被分别连接到一个开关装置的输入端,所述另外的乘法装置具有分别连接到另外的加法器装置的输入端,被加法器的输出端连接到跟踪装置,所述跟踪装置的输出被加到安排为产生用于控制所述开关装置的输出信号的一个阈值装置,所述开关装置使来自第一乘法装置的输出被加到相应积分装置的输入端,所述积分装置具有连接到在初始阶段选择最接近的相位产生数据输出信号的电路装置上的输出端。
16.按照权利要求15所要求的装置,其特征在于该装置被安排为以串联、并联或串/并联组合处理多电平相移键控信号。
17.按照权利要求4、6、10、11或15之一所要求的装置,其特征在于存储器装置被连接到所述延迟装置、韦纳型滤波器和跟踪装置,用于利用涉及前一个比特持续期的信息刷新它们的内容。
18.按照前面任何一个权利要求所要求的装置,其特征在于为了提供同步,所述各相关器具有一组施加在其上的码相位,该码相位向前或向后步进,覆盖下一个相邻的延迟范围,直至找到每一个信号,覆盖了整个预定范围。
19.按照前面权利要求1至17的任何一个权利要求所要求的装置,其特征在于同步是由安排扫描外部要求范围的一个或多个滑动相关器提供的。
20.按照前面权利要求3至19的任何一个权利要求所要求的装置,其特征在于该韦纳型滤波器是双通路韦纳型滤波器。
全文摘要
用于扩频信号的常规瑞克接收机通常被限制在一定数量的多径分量能够被有用地组合。本发明提供的装置用于组合具有适度复杂性的输入信号中的所有有用多径分量。设置了一些数字相关器在一些预定的时间间隔中覆盖多径扩频延迟信号和它们的输出被最大变换效率组合。利用接近矩形传输接收滤波器,几乎所有信号能量可以在该组合器的输出端被恢复,甚至并不试图将各相关器的任何一个精确地对准一个特定的多径分量。
文档编号H04B1/707GK1109266SQ9419025
公开日1995年9月27日 申请日期1994年3月22日 优先权日1993年6月2日
发明者A·P·胡尔伯特, D·P·钱德勒 申请人:罗克马诺尔研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1