在无线通信系统中用于动态频率分配的频率填充的制作方法

文档序号:7579927阅读:128来源:国知局
专利名称:在无线通信系统中用于动态频率分配的频率填充的制作方法
背景本发明涉及蜂窝电信系统,更具体地涉及一个蜂窝电话系统中对小区频率信道的自动分配。
在蜂窝电话网络中,保持或改进每个通信信道中的语音质量是非常重要的。影响语音质量的一个因素是共信道干扰电平。共信道干扰产生于当两个小区地理上彼此靠近且使用相同的频率的场合。避免此问题的一种方式是对网络中的每个小区分配一个专用的频率信道组,以便没有两个小区使用相同的频率信道。尽管这样明显地会避免共信道干扰的问题。但是网络将很快地使用完频率信道,因为仅有固定数量的频率信道可用。
为了避免使用完可用的频率信道,蜂窝电话网络使用重用方案。重用方案允许网络对一个以上的小区分配一个频率信道。尽管预期会有一些共信道干扰,但是通过保证两个或多个频率信道仅被分配于间隔足够远的小区内可以避免过量的共信道干扰。
通常,重用方案对本领域的技术人员是众所周知的。如本术语所指出,固定的重用方案涉及对网络中的每个小区分配一个固定的,专用频率信道组。频率信道可以分配给多个小区,只要这些小区相隔足够远以避免过量的共信道干扰。
如前面所提到的,在采用固定频率信道重用方案的网络中的每个小区将受限于所分配的特定频率信道;因此,尽管可以避免过量的共信道干扰,但每个小区的话务处理能力将受到限制。换句话说,固定的重用方案本质上是不灵活的;在给定的时间段内,在需求从小区到小区发生变化时,在每个小区内没有提供调整频率信道分配的能力。结果造成了语音质量和话务处理容量的下降。因此,人们想到了自适应重用方案,又称之为自适应或动态信道分配方案。
自适应频率信道重用方案通过提供更大的灵活性来试图避免语音质量和话务处理能力的下降。不是对网络中的每个小区分配一个固定的频率信道组,而是使分配随时间而变化以便符合每个小区的变化要求。该方式的实现是通过对每个小区中的每个频率信道的信号质量进行周期性测量来完成的。用于测量信号质量的技术包括使用专用的接收信号强度收发信机(RSSI)并且对接收信号的误比特率(BER)进行估价。当需要时,只要信道信号质量的测量结果符合或超过某个信号质量标准,小区将进行频率信道分配。例如,如果小区A需要一个另外的频率信道以处理电话业务的增加,则频率信道X当其已经被一个邻近的小区所使用时就不可能被分配。由于在邻近的小区使用频率信道X所造成的共信道干扰在小区A内将被测量为干扰。这样,频率信道X将不符合所要求的信号质量标准。
存在不同类型的自适应信道分配方案。每种方案的主要不同之处在于在给定的时间和给定的小区中用于确定一个频率信道是否应该进行分配时所使用的标准。例如,H.Eriksson,“通过自适应信道分配的容量增进”,IEEE全球电信会议,第1355-1359页,11月28日-12月1日,1988年,建议使用移动台来测量每个信道下行链路的信号质量,接着在具有最高的载波干扰(C/I)比的那些信道基础之上来分配信道。G.Riva表述了一种有些不同的方法,可参见“用于蜂窝移动无线系统的一种改进的动态信道分配方案的性能分析”,第42届IEEE车载技术会议,pp.794-797,Denver 1992,其中如果频率信道的信号质量测量结果符合或超过当前的C/I门限,则可以对这些频率信道进行分配。在Y.Furuya等人的文章中,即,“信道划分,一种用于移动通信信号的分布式自适应信道分配方案”,第二届北欧数字陆地移动无线通信研讨会,第311-315页,Stockholm,10月14-16日,1986年,描述了一种自适应信道分配方案,其中使用以前测量的每个信道信号质量的最近记录来作出信道分配决定。
当使用常规的自适应信道分配方案时,最有效的是对每个频率信道测量上行链路(即,从移动台至基站的无线通道)和下行链路(即,从基站至移动台的无线通道)两个链路的信号质量。在数字系统如D-AMPS(数字高级移动电话系统)中,上行链路的测量可以由位于基站中的设备来完成。下行链路的测量可以由每个移动台中的移动辅助切换(MAHO)部件来完成;移动台接着将测量结果发送给基站。
尽管自适应信道分配方案提供了一种更灵活的方案,其最终将导致更好的信号质量和话务处理容量,但是选择具体的频率信道用于分配给一个给定的小区所使用的标准还没有进行优化,以考虑分配过程所能影响的所有不同的系统参数。例如,在蜂窝基站中普遍使用的组合器,用于组合耦合给基站天线的来自多个频率信道的信号,它典型地包括多个谐振滤波器,其中每个都调谐到一个与无线信道有关的特定频率上,基站在该无线信道上进行发送。但是,为了避免将每个谐振滤波器调谐到所需频率上的困难,在所需的频率周围提供专用的带宽是重要的,这样谐振滤波器就不会还检测到来自邻近频率的信号能量,而该邻近频率是组合器中另一个滤波器所调谐的频率。例如,通常在谐振滤波器所调谐的每个频率周围提供高达630kHz的专用带宽,专用带宽的大小是根据,例如,频率范围和用于传送的输出功率来确定的。这意味着,实际上,在一个选定频率的每一边将要留出一个高达10个无线频率信道左右的缓冲区用作专用带宽,并且不能分配由基站使用。
但是,组合器的这个特征在常规的动态频率分配技术中没有被考虑到。因此,如在下文中所更详细地示出的,这些常规技术必然没有有效地利用每个基站可用的带宽。因而,本发明给出了一种用于频率填充的技术,其考虑到了任何例如由于组合器的作用所需的频率间隔或专用带宽,以更有效地使用每个基站和每个小区可用的有限带宽。
发明概要本发明的一个目的是提供一种信道分配策略,其考虑与一个特定的基站有关的专用和可用带宽作为用于为该基站选择另一个频率的因素之一,以便使随后选择的可用带宽最大化。按照本发明的典型实施方案,该目的可以通过使用一个可变的阻滞因子(hysteresisfactor)作为候选频率估价过程的一部分来实现。例如,对于那些更为靠近与已选择频率有关的专用带宽的边缘的频率,可以分配一个比分配给其他信道的更优先选择的阻滞因子,这些已选择频率可以是例如与已调谐谐振滤波器有关的那些频率,或者靠近可用于分配的频谱边界的那些频率。
以这种方式,信道分配策略将倾向于选择能够提供与专用带宽有较大交迭的频率。于是这将使得用于随后的选择的剩余可用带宽最大化。
附图简述通过结合附图阅读下面的详细描述,可以理解本发明的目的和优点,其中

图1是一个方框图,示出了本发明所适用的一个蜂窝移动无线电话系统中的十个小区;图2是示出了按照本发明的一个方面在一个蜂窝网络的每个小区中频率信道的组织结构的一张图表;图3A是一个典型的组合滤波器的第一视图;图3B是图3A中的组合滤波器的第二剖视图;图3C是图3A中的组合滤波器的顶部剖视图;图4是用于描述组合器调谐的部分基站传输电路的一个方框图;图5A是一个示出了按照一种典型情况的频谱可用性的图;图5B是一个示出了使用常规技术如何可能向图5A的情况中添加两个另外频率的图;图5C示出了一个按照本发明的典型实施例的可变阻滞因子的图;图5D是一个示出了典型频率分配的图,示出了按照本发明的典型实施方案两个另外的频率如何可能添加至图5A的情况中;图6是一个流程图,示出了按照本发明用于分配频率的一种方法;以及图7是一个流程图,示出了按照本发明用于分配频率的另一种方法。
详述下面将参考附图描述本发明的不同特征,其中相同的部分将用相同的参考符号来标识。
图1是一个示意图,示出了在诸如D-AMPS的一个典型的蜂窝电话网络1(这里称之为“蜂窝网络”)中,10个小区(C1-C10)之间的关系。通常,一个蜂窝网络具有远多于10个的包括拼合区域的小区以及包括宏小区、微小区、微微小区的分级小区结构;然而,10个对于说明性的目的已经足够。
在各小区C1至C10中,都有一个基站B1至B10。虽然图1示出了基站都靠近每个小区的中心,但是基站可以位于小区中的任何位置。基站靠近中心时典型地采用全向天线,而基站靠近小区的边界时则典型地采用定向天线。
移动台M1至M10代表移动电话装置。当然,移动台可以在一个小区内移动或者它们可以从一个小区移动至另一个小区。典型地,有远多于十个移动台。同样,示出10个移动台对于说明性的目的已经足够。
图1中示出的蜂窝网络1还具有一个移动交换中心(MSC)。MSC通过电缆、无线链路、或这二者(图1中未示出)连接每个基站。MSC还连接至一个固定电话交换装置(图1中也未示出)。
图1中示出的蜂窝网络1使用固定数量的无线频率(信道)进行通信。例如,对应于在800MHz波段或1900MHz波段频率的频率信道。虽然本发明的意图是用在数字系统中,用于为数字业务信道进行频率规划的目的,但是本发明也可以工作在双模系统中,其中在每个小区或在一个模拟系统中模拟或数字频率共享频谱。
在采用常规频率分配策略的(即固定或自适应的)蜂窝网络中,每个小区分配多个频率信道,其整体上对应于蜂窝网络可用的全部频率信道的一个子集。图2用本发明说明了该情况,网络中的每个小区可以从相同的频率全集中选择频率信道用于本小区。例如,在一个包括N个小区的蜂窝网络中如果有n个频率信道,则每个小区可以由整个频率信道集f1至fn进行定义。尽管从小区1到小区N可以具有相同的可从中进行选择的频率信道集,但每个小区将从符合选择标准的频率信道的一个子集中进行选择(即分配)。
本发明部分地通过在小区的频率集上进行多种信号质量测量来实现此目的。因此,信号质量测量不仅要对使用中或可用的那些频率信道进行,而且要对当前没有被使用或可用的那些频率信道进行,虽然它们在以后的时间才可能变得可用。这些不同的信号质量测量结果可以以许多不同的方式进行处理,筛选,或估价,其中的细节与本发明没有太多关系,因此,这些细节在此不作讨论。有兴趣的读者可以通过研究一份共同未决的美国专利申请(其序列号为No.08/609,994,题目为“电信系统中的频率分配”)以获得更多有关进行信号质量测量的典型技术的信息,其中公开的内容被结合在此处以供参考。
为了理解本发明,更关心的是组合器的工作和它们对频谱利用率的影响,在这里可将其用作产生频率间隔要求的系统设计约束的一个实例。如上面所提到的,组合器被用来准备用于耦合至天线调制到每个频率信道上的数据信号。组合器典型地包括许多带通滤波器,由于基站传输具有相对较大的输出功率,这些滤波器通常用大的谐振腔滤波器来实现。然而,本领域的技术人员懂得组合器可以用其他类型的滤波器来实现,例如,陶瓷滤波器。在图3A-3C中示出了一个谐振滤波器的实例。
现在参看图3A,这是一个典型的同轴谐振器的透视图。该同轴谐振器包括一个矩形腔10。在矩形腔10的顶部放置的是一个步进电机11或某些其他的调整装置,如调整螺杆。优选地,步进电机11能够在双箭头A-A方向横向移动。
现在参看图3B,提供的是沿图1中的折线2-2的剖面透视图。在矩形腔10里面配置有一个RF输出环20和一个工字梁形元件12,其中元件12对着构成电容器的极板之间的电场垂直放置。电容器的极板包括矩形腔10的前壁13与闭合极板16。当在电场中旋转工字梁时,工字梁形元件12具有在一个宽的范围内引入频率调整(调谐)的特性。
现在参看图3C,一个平视图示出了除去顶壁的矩形腔10。RF信号通过同轴电缆21和RF输入环19输入矩形腔。RF信号通过同轴电缆22和RF输出环20从矩形腔输出。谐振腔10的基本谐振器频率f0可以通过调整同轴中心导体15和/或其闭合极板16的长度(L)进行调谐。闭合极板16的设计和/或尺寸也影响基本谐振器频率f0的调整。工字梁12的旋转是通过使用与独立的旋转轴17相连的例如步进电机11、调整螺杆或其他已知的调整装置来实现的。
与这些类型的组合器滤波器有关的一个问题是它们对来自基站所使用的其他组合器滤波器所产生的信号的干扰。例如,考虑图4中的系统。
在该实例中,为了简单,组合器仅包括两个滤波器,然而,在一个实际的实施例中这样的一个组合器典型地具有多个(如八个)滤波器。被组合的信号包括来自放大器40a,40b的输出信号,这些信号通过功率检测器42a和42b馈送给各自的带通滤波器44a和44b(如谐振腔滤波器)进行组合并且传送给公共天线46。进入滤波器44a,44b的输入信号的功率Ia,Ib和由滤波器44a,44b所反射的信号的功率Ra,Rb在功率检测器42a,42b中用各自的二极管检测器进行测量。功率信号Ia,Ib,Ra,Rb输送给一个计算机48,该计算机分别计算比值Ia/Ra和Ib/Rb。按照已知的技术,计算机48使用控制信号Ca,Cb为各自的滤波器44a,44b调整谐振频率调整元件。只要各自的比值上升,该调整元件就被调整。此后就认为滤波器已被正确地调谐。
这种已知的调谐方法的一个缺点是,来自一个滤波器(如滤波器44b)的输出信号将影响对其他滤波器(如滤波器44a)的测量结果。其原因是来自滤波器44b的输出信号不仅馈送给天线46,而且还一直传至并且通过滤波器44a,如由箭头50所指示的。由于在检测器42a中的测量是宽带检测,来自滤波器44b的干扰信号50还将影响对滤波器44a的Ia,Ra的测量。在不利的情况下,例如当从放大器40a的输出功率较低而从放大器40b的输出功率较高时,通过滤波器44a后的干扰信号50可以与反射信号Ra具有相同的数量级。
对该问题的一种解决方案是在分配给一个特定基站的每个频率周围提供一个专用带宽,以便从一个组合器滤波器输出的信号能量不会影响另一个组合器滤波器的调谐。该专用带宽的大小(它有时被称之为组合器信道间隔)将基于多种系统参数(如输出发送功率和工作频带)来确定。例如,输出功率越强和频带越高,为避免组合器滤波器之间的干扰所需的专用带宽就越宽。于是,专用带宽可以是例如0-630kHz,在一个典型的800MHz宏小区基站中采用约360kHz的专用带宽,而在一个典型的1900MHz宏小区基站中采用约630kHz的专用带宽。
组合器的专用带宽对频率分配的影响在图5A中用图解示出。其中,一个基站当前已在此分配了三个传送频率f1,f2和f4。矩形100,102和104约以这三个频率中的每一个为中心,它们图解地表示围绕每个传送频率的专用带宽,这些传送频率基于频率f1,f2和f4的分配而被分配给该基站。直线106和108代表用于分配的可用频谱的边界,这些边界是由例如所适用的系统标准所决定的。
当该基站需要支持另一条连接时,将分配另一个频率来加入到图5A所示的样板组中。通常,另一个频率的选择是基于一个或多个预定的选择标准作出的,这些选择标准典型地集中于选择一个能够提供最高的接收信号质量的可用频率。例如,假定在图5A的实例中所涉及的特定基站需要添加两个多余的频率以支持两条另外的连接。进一步,假定根据可用频率,即位于边界106和108里面,但在专用带宽100,102和104的外面的那些频率的估价,基站(或网络)已识别出两个频率f0和f3为最佳的候选以支持新的连接。这将导致例如为该特定基站所分配的频谱如图5B所示。应注意已经分配了两个新的专用带宽110和112,它们分别对应于新分配的频率f0和f3。
虽然与其他的候选频率相比,新分配的频率f0和f3可以提供最优的接收信号质量,但是从频谱的有效性观点来看,它们的选择可能不是最优的。当该小区中的话务量增加时,该基站(或网络)将具有越来越少的可用频率供选择以支持新的连接,因为专用带宽之间的间隔变得越来越小。事实上,申请人已注意到为支持组合器工作所需的专用带宽可能导致呼叫被阻塞,因为缺少任何的剩余频率可供选择,特别是对于高功率的PCS设备。
因此,本发明通过把对于当前已分配频率及其它们相应的专用带宽的考虑引入到用于分配新频率的选择标准中,使得每个基站的可用带宽最大化。特别地,本发明倾向于使所分配的新频率的专用带宽与以下带宽或频率交迭(1)该基站现有的专用带宽,或者(2)在用于传送的可用带宽之外的频率。下面将参照图5C,描述本发明的一个典型实现。
在此,重复图5A中的实例,其中系统或基站在当前已分配的频率f1,f2和f4之外再次需要分配两个新频率。然而,除考虑可用频率的信号质量之外(使用上面所述的任何希望的信号质量标准),按照本发明的该技术还考虑候选频率与由专用带宽100,102和104的边缘所确定的边际频率之间以及与可用频谱的边界106和108之间的频率间隔。在该实例中,图5C中的虚线代表一种可变的阻滞作用,它可以从为被评价的每个候选频率而确定的信号质量中减掉。注意图5C中所示的阻滞作用作为频率的函数以这样的一种方式变化,即候选频率越靠近现有专用带宽的边际频率或可用频谱的边界,相关的阻滞作用越小。这样,假定认为经过调整的信号质量等于测量得到的信号质量减去该可变的阻滞值,即如以下的方程所示经过调整的sq=测量得到的sq-阻滞sq(f),那么本发明将倾向于选择位于以上所述的边际频率或边界频率的一个预定间隔之内的频率。如从图中可以看出,在离专用带宽的边际频率或边界频率的某些距离,按照本发明的分配策略,在一定频率范围之内可以提供相同的阻滞值。这是因为选择此范围内的任何频率,如,在频率fx和fz之间的那些频率,不会使该基站的可用带宽最大化,于是,对这些频率的选择彼此之间不存在任何偏好。
应用该可变的阻滞技术、或任何考虑了与当前已分配频率有关的专用带宽和它们的调谐组合器滤波器的其他技术,本发明可以与图5B中所描述的分配相反地改为分配新的频率fa和fb,如在图5D中所示。注意,由于在新分配专用带宽114和116与在可用频谱或与已分配频率有关的专用带宽之外频率之间的交迭,为新分配的信道所选择的频率fa和fb比图5B中的分配为该特定基站提供了更高程度的频谱有效性。特别地,注意与位于边界频率106的外面的专用带宽114有关的灰色区域。由于频谱的该灰色部分已经不能由该基站分配给另一个信道用于处理业务,频率fa的选择在频谱上具有有效性。类似地,fb的选择是这样的,其专用带宽116基本上和与频率f1有关的专用带宽100的一部分交迭。同样,专用带宽116的灰色部分代表交迭,并且因此在与例如图5B中的频率f3的选择相比的情况下,节省了频谱。
因此,按照本发明用于在动态基础上分配频率信道的方法,考虑了与例如组合器和频谱边界有关的专用带宽,该方法可以概述为图6中的流程图。其中,按照本发明典型实施方案的第一个步骤是在程序块130中测量候选或可用频率的信号质量。此外,本发明可以考虑任何类型的信号质量测量(如信号强度,误比特率等)。紧接着,在步骤140中,从测量得到的信号质量中减去与每个特定的候选频率有关的阻滞值,以提供一个经过调整的信号质量值,该信号质量值根据每个特定候选频率的频谱有效性进行了加权,这些特定的候选频率给出了与基站有关的特定的专用范围。接着,在步骤150中对具有最高排序的频率进行分配,这种排序实现了系统设计者所希望的信号质量和频谱有效性之间的折衷。用于在频率间隔的基础上定义阻滞作用的函数在经过处理后能够提供所期望的有效性和信号质量之间的折衷,其结果是令人满意的。例如,虽然在图5C的示例性的实施方案中描述了阻滞函数相对于离边际频率或可用频谱的边界的距离呈线性变化,但是本领域的技术人员可以理解这些阻滞函数也可以是非线性的。
图7中的流程图描述了另一种方法。其中,在步骤160中测量可用(候选)频率的信号质量。紧接着,在步骤170中,将测量得到的信号质量值与一个信号质量门限T相比较。门限T可以设置为例如一个期望值,该值代表用于分配的某个最低可接受信号质量。接着对被识别为超过门限T的那些频率进行进一步估价以确定其中哪个频率具有与其相应的最低的阻滞值。接着在步骤180中对该频率进行分配。
已参照几种典型的实施方案对本发明进行了描述。但是,对于本领域的技术人员容易明白,以除了以上所述的那些优选实施方案之外的特定形式实施本发明都是可能的。这可以在不脱离本发明的精神的前提下来实现。这些优选实施方案仅仅是示例性的,而不应该以任何方式考虑为是限制性的。本发明的范围由所附的权利要求而不是前面的描述给出,并且在权利要求范围之内的所有变体和等价物都规定包括在其中。
权利要求
1.在一个无线通信系统中,用于分配频率信道的一种方法,包括以下步骤(a)测量所述频率信道的信号质量;(b)将所述测量得到的信号质量与一个门限信号质量相比较,其中所述的门限信号质量可以根据所述频率信道与一个边际频率之间的间隔而变化;(c)根据所述的比较结果,选择性地识别所述频率信道为一个用于分配的候选者;(d)对其他的频率信道重复步骤(a)-(c);以及(e)如果所述的频率信道已被识别为一个候选者并且根据所述频率信道与其他候选频率信道的比较,则选择性地对所述的频率信道进行分配。
2.权利要求1中的方法,其特征在于,其中将所述测量得到的信号质量与一个门限信号质量相比较的步骤进一步包括以下步骤确定一个阻滞因子,它是距离一个边际频率的频率间隔的非定常函数;估价所述的非定常函数,以便为所述的频率信道确定一个所述阻滞因子的值;以及使用所述的值确定所述的门限信号质量。
3.权利要求2中的方法,其特征在于,其中所述的边际频率是为一个组合器滤波器所确定的专用频率范围的一端。
4.权利要求3中的方法,其特征在于,其中所述的组合器滤波器是一个已调谐的谐振滤波器。
5.权利要求3中的方法,其特征在于,其中所述的组合器滤波器是一个陶瓷滤波器。
6.一个无线通信系统,包括一个包括一个组合器的基站,该组合器用于组合无线信号以便进行传输,所述的组合器包括至少一个已调谐到一个预定频率的组合器滤波器;以及用于根据所述候选频率与所述预定频率周围的专用带宽之间的一个间隔来为所述基站分配一个候选频率的装置。
7.权利要求6中的无线通信系统,其特征在于,其中所述的组合器滤波器是一个谐振滤波器。
8.权利要求6中的无线通信系统,其特征在于,其中所述的组合器滤波器是一个陶瓷滤波器。
9.权利要求6中的无线通信系统,其特征在于,其中用于分配的所述装置配置在所述基站里面。
10.权利要求6中的无线通信系统,其特征在于,其中用于分配的所述装置使用一个作为所述间隔的函数而变化的阻滞值。
11.权利要求10中的无线通信系统,其特征在于,其中所述函数优选靠近所述专用带宽的频率。
12.在一个无线通信系统中用于分配频率信道的一种方法,包括以下步骤(a)测量所述频率信道的信号质量;(b)将所述测量得到的信号质量与一个门限信号质量相比较;(c)如果所述测量得到的信号质量超过所述的门限信号质量,则将所述频率信道识别为一个用于分配的候选者;(d)对其他的频率信道重复步骤(a)-(c);以及(e)如果所述的频率信道已被识别为一个候选者并且根据与所述的频率信道有关的一个阻滞值和与其他的候选频率信道有关的阻滞值的比较,对所述的频率信道进行分配。
13.权利要求12中的方法,其特征在于,其中分配所述频率信道的步骤进一步包括以下步骤确定距离一个边际频率的频率间隔的非定常阻滞函数;以及估价所述的阻滞函数,以便为所述的候选频率信道确定所述的阻滞值。
14.权利要求13中的方法,其特征在于,其中所述的边际频率是为一个组合器滤波器所确定的专用频率范围的一端。
15.权利要求14中的方法,其特征在于,其中所述的组合器滤波器是一个已调谐的谐振滤波器。
16.权利要求14中的方法,其特征在于,其中所述的组合器滤波器是一个陶瓷滤波器。
全文摘要
在一个电信网络中,用于分配信道的一种方法和装置包括为使用中的、或可用的以及可能变得可用的信道进行信号质量测量。通过考虑与调谐至当前已分配频率的组合器滤波器有关的专用带宽,使频谱有效性得以提高。
文档编号H04W16/10GK1269952SQ98803808
公开日2000年10月11日 申请日期1998年1月27日 优先权日1997年1月28日
发明者P·卡尔松, P·-A·桑德格伦 申请人:艾利森电话股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1