用于确定可变速率数据的传输速率的装置和方法

文档序号:7582323阅读:510来源:国知局
专利名称:用于确定可变速率数据的传输速率的装置和方法
一般来说,本发明涉及支持多种数据传输速率的数据通信系统。更具体地说,本发明涉及用于确定数据传输速率的机制。
近年来,蜂窝通信系统已经极为普及。迄今为止,已经实现了多种蜂窝通信网,其中一种日益普及的通信网被称为码分多址(CDMA)系统。CDMA的无线电接口程序是由电信工业协会和电子工业协会(TIL/EIA)暂行标准IS-95规定的。按照CDMA,每个用户信号包括一个不同的正交码和伪随机二进制序列,该序列用于调制载波,扩展波形频谱,从而使得大量的用户信号可以共享相同的频谱。
用户信号在接收机中利用一个环形解码器(解扩器)分离,该解扩器只允许选定正交码的信号能量被解扩。而其它代码不匹配的用户信号则不被解扩,因而,只对噪声有贡献,所以代表由系统产生的自干扰。系统的信噪比是由所需信号功率与被系统处理增益增强的所有干扰信号功率之和的比值,或扩展带宽与基带数据速率的比值确定的。
IS-95标准所规定的CDMA系统使用一种基于CELP的可变速率声音编码(声码器)算法,按照这种算法,数据速率作为语音模式(声音活性)的函数逐帧地动态变化。通信信道数据帧可以以全速率、1/2、1/4或1/8速率(例如对于速率集1分别为9600、4800、2400和1200bps)传输。在各种较低数据速率下,所传输的符号功率(Es)成正比地降低,因此能够增加信道中用户信号数量。由于无法预先知道向接收机传输的数据速率,所以常规的维特比解码器对于所有可能的速率进行顺序解码,然后确定当前数据帧的速率。
因此,一个20毫秒的通信信道速率集1的数据帧对于全速率、1/2、1/4、和1/8分别包含192、96、48和24数据比特。在卷积编码之前,用一个CRC(循环冗余码校验)多项式对于全速率和半速率的数据比特进行编码,并在该数据比特上附加12和8比特(分别地)的CRC字段。但是,1/4和1/8速率是不受CRC保护的。所以,至少对于两个较高的速率,可以使用CRC确定速率。
但是,如果在相关的CRC字段中出现一个错误,则所接收的信息在速率确定处理中价值不大。此外,按照IS-95暂行标准的规定,数据速率集1仅仅用CRC多项式保护两个最高的数据速率(9600bps和4800bps)。两个较低的数据速率(2400bps和1200bps)根本不受到CRC的保护。因而,必须利用CRC以外的标准来进行速率确定。
有两种其它的标准可以用于进行速率确定。SER(符号误码率)和在维特比解码过程中计算出的ML(最可能)路径的以维特比方式确定的累积路径量度的大小。但是,在任何实际系统中这两种参数都是非常不可靠的,因为第一种参数主要作为SNR(信噪比)的函数变化,而第二种参数通常受到在解码过程中ML路径累积量度定标的干扰。
更具体地说,在诸如IS-95这样的无线通信系统中,通信信道支持在速率集1的9600、4800、2400和1200bps和速率集2的14400、7200、3600和1800bps的可变数据速率下工作。在可变速率系统中,发射机可以根据整个信道状态逐帧改变速率。此外,在诸如由IS-95规定的扩频系统中,系统保持恒定的信道速率19.2kHz,而与实际的数据传输速率无关。这是通过将符号重复2次、4次或8次(对于各种较低数据速率)实现的。
在信号解调之后,接收机必须在将当前数据帧发送到一个声码器或一个数据文件之前确定该数据帧的数据速率。这个功能通常是由维特比解码器实现的,它对所有可能的数据速率进行连续解码,然后确定传输速率。在这个处理过程中,维特比解码器使用CRC多项式以及再编码的SER,或许还有解码器累积量度。
如上所述,对于IS-95数据速率集1,只有两个较高的数据速率受到CRC多项式的保护。因而,可以利用CRC确定9600和4800bps的速率,而利用SER确定2400和1200bps的速率。本领域熟知CRC比特的错误检测能力主要是由G(x),或CRC比特数的等级r确定的。特别是,检测任何长度r或较短的单猝发错误。未检测出的长度r+1的单猝发错误为1/2,长度大于r+1的单猝发错误为1/2。
考虑到CRC的可靠性,显然它不能单独用作传输数据速率的唯一指示物。进而通常需要考虑一个辅助参数,亦即SER。在这种情况下这些符号是再编码的,并与接收到的符号比较,计算SER。然后将计算出的SER与一个预定的(对于每种速率)SER比较,并且在确定速率过程中予以考虑。但是,由于SER能够显著地变化(大约1%至10%的衰落),所以这种标准是极不可靠的。
在速率确定过程中可以使用的最后一种标准是维特比解码器累积路径量度的大小。但是,按照IS-95规定的维特比算法的任何具体实施方式
,必须将累积路径量度归一化以便能够有效地实施。在这种情况下,各种数据速率的累积路径量度归一化量值之间的比较是非常困难的,因而,在速率确定程序中这种参数的置信度较低。
上述的这些速率确定方案都需要维特比解码器对所有四种速率的各个数据帧进行解码。然后通过检查在每个解码的数据帧中的错误(例如检查CRC或SER)来确定速率。就是说,实施一种错误检查方案确定哪一个解码数据帧中包含最少的错误。不过,这种速率确定方案需要使用大量的解码器资源,因为它需要对所有四种速率的各个数据帧进行解码。
由于前述原因,需要有一种改进的方法和装置来确定可变速率编码信号的速率。具体地说,需要能够减少解码器总操作和解码时间的方法和装置。
因此,本发明提供用于确定以可变速率编码的数据帧的速率的一种装置和方法。
按照本发明的一个方面,公开了用于一种通信系统的接收机中的速率确定单元,所说接收机可以接收多种不同数据速率的的通信信号。该速率确定单元可以接收一个编码信号和确定编码信号的数据速率,而不需要首先对编码信号进行解码。可取的是,该通信系统是一种基于码分多址标准的蜂窝电话系统,并应用符号重复保持恒定的符号速率。
在一个优选实施例中,通信系统是一种基于数据帧的系统,其包括一个数据帧序列,每个数据帧包含多个符号,所说速率确定单元用于确定每个数据帧的帧数据速率。此外,该速率确定单元包括多个假设单元和一个假设分析器。每个假设单元用于确定一种相关数据速率的编码信号的数据帧的一个假设值。假设分析器用于将选定的假设值进行比较,根据这种比较结果确定帧数据速率,并根据所确定的帧数据速率输出一个速率指示信号。可取的是,一个第一假设单元用于将与分立采样值相关的一个第一组绝对值相加,一个第二假设单元用于将一个第二组绝对值相加。所说第二组绝对值中的每一个值是一组采样值之和。
按照本发明的另一个方面,公开了一种用于接收包含用户通信信号的无线电频率信号的一种接收机。所说用户通信信号是以数据比特帧形式传输的,每一个数据帧是以从包含一个最高速率和一个最低速率的一组数据速率中选定的一种数据速率传输的。该接收机包括用于将用户通信信号解调的一个解调器、用于接收经过解调的用户通信信号并确定经过解调的用户通信信号的速率的一个速率确定单元、和用于根据所确定的速率对经过解调的通信信号进行解码的一个解码器。这种速率确定单元用于确定经过解调的用户通信信号的数据速率,而无需先对经过解调的用户通信信号进行解码。
按照本发明的再一个方面,公开了用于确定包含多个符号的一个编码信号的速率的一种方法。所说编码信号是以从多个数据速率中选定的一个速率传输的。确定分别与所说的多个数据速率之一相关的多个假设绝对值。将一个第一组选定假设值进行比较以确定传输速率是否等于所说的多个数据速率中的第一个。所说确定过程是在对该编码信号进行解码之前完成的。按照一种优选方法,是在此之后根据所确定的速率对所说编码信号进行解码的。
可取的是,所说比较步骤是通过确定与所说第一组选定假设值相关的一组比值并将每个所确定的比值与一个相关的预定比值进行比较而实现的。按照另一个优选实施例,如果每个所确定的比值都小于相关的预定比值,则将所说第一数据速率限定为所确定的速率。
通过以下对于本发明的说明和以示例方式表示本发明原理的附图可以更加详细地了解本发明的这些和其它优点。
通过以下结合附图所作的详细描述可以比较容易地理解本发明,图中相同的参照标号指示相同的结构部件,在所说附图中

图1A是根据本发明的一个实施例的可变速率发射机的一个部分的简化示意图。
图1B是根据本发明的一个实施例的可变速率接收机的一个部分的简化示意图。
图2A至2D为根据本发明的一个实施例的以每种速率传输的符号幅值(或功率电平)的四个示例的示意图。
图3为根据本发明的一个实施例的图1B中所示速率确定单元208的示意图。
图4为表示根据本发明的一个实施例按照所确定的速率确定一个数据帧的速率并对该数据帧进行解码的一个程序的一个流程图。
图5为表示根据本发明的一个实施例确定特定数据帧的速率的图4所示程序流程图。
图6A为以四种不同速率传输的四个软符号数据信号的一个第一示例以及已经在正确速率下确定的对应H值的示意图。
图6B为以两种不同速率传输的两个软符号数据信号的一个第二示例以及已经在正确速率下确定的对应H值的示意图。
图7为根据本发明的速率确定方法和装置的扩频蜂窝电话系统700的示意图。
下面详细地描述本发明的优选实施例。在附图中表示了优选实施例的一个示例。虽然本发明是结合优选实施例进行介绍的,但是应当理解,本发明并不局限于一个优选实施例。相反,本发明覆盖所有包括在由利要求书所限定的发明构思和范围内的各种替换、改进和等效物。在以下的描述中,提供了许多具体细节以使得能够彻底地理解本发明。本发明可以无需这些具体细节中的某些或者全部而实现。在其它情况下,对于众所周知的程序操作不予详述,以免对本发明的说明变得不清楚。
一般来说,本发明包括用于在对编码信号进行解码之前确定编码信号速率的装置和方法。然后一个解码器可以利用所确定的速率对于在所确定速率下的编码信号进行解码。因此,只需对一个速率,即所确定的速率的编码信号进行解码。由于仅仅在所确定的速率下进行解码,本发明能够明显地减少解码时间,功率消耗、和解码器的复杂性。
本发明可以在可以接收可变速率编码信号的任何适合类型的接收机上实施。该接收机可以是与任何适合类型的通信系统成一体的。为了较好地说明本发明的特征,下面在码分多址(CDMA)蜂窝电话系统的范围内介绍几个实施例。虽然下面这些实施例是针对CDMA蜂窝电话系统进行描述的,但是,本发明当然可以在任何其它类型的通信系统,例如个人通信系统,第三代宽带CDMA系统、或其它系统中实施。这些实施例只是说明性的,而不是用于限定本发明的范围。
图1A为根据本发明的一个实施例的一种可变速率发射机100的一部分的简化示意图。如图所示,发射机100包括一个声码器104、一个编码器116、一个扩频器106、一个RF调制器108、和一个发射天线116。声码器104用于接收用户通信信号102和将声码器数据112输出到编码器116。编码器116用于接收声码器数据112和将编码器数据118输出到扩频器106。扩频器106用于接收经过编码的数据118和将一个扩频信号114输出到RF调制器108。RF调制器用于向天线116输出一个经过调制的编码信号110。天线116用于通过空气将编码信号110发射到一个接收机。
用户通信信号102可以是任何适合形式的。例如,一个用户可以对一个麦克风(未示出)讲话,语音被转换成数字声音信号。举其它例子,用户通信信号102可以是其它非声音数字数据,诸如因特网数据。非声音数据可以与声音数据结合作为用户通信信号102或者单独发射。
简而言之,声码器104用于将用户数据102编码,以将其格式化为多种数据速率的多个数据帧。声码器104根据在发射机中的语音活性量为每一数据帧选择一个速率,而对于数据传送,速率依赖于所承载的有效负载类型。扩频器106用于根据声码器数据112产生一个扩频信号114。当然,如果采用除CDMA以外的其它传输方案(例如非扩频频谱),例如TDMA,则不需要扩频器106。调制器108用于将一个编码无线电频率(RF)信号110内的扩频信号相结合,使得用户通信信号可以通过空气传输到一个接收机。
可取的是,发射机按照TIA/EIA暂行标准,即有关双模式宽带扩频蜂窝系统的移动式地面站-基站兼容标准TIA/EIA IS-95(1993年7月)操作。但是,符合这个标准不能被认为是对实施本发明的一种限制。按照IS-95标准,CDMA系统目前使用速率集1(全速率9600、半速率4800、四分之一速率2400、和八分之一速率1200bps)或者速率集2(14400、7200、3600、和1800bps)。因此,对于速率集1,一个数据帧在全速率、半速率、四分之一速率和八分之一速率下分别包含192、96、48、和24数据比特。对于速率集2,一个数据帧分别包含288、144、72和36数据比特。
尽管本发明是针对具体的速率值加以介绍的,但是这些速率可以随着CDMA系统的发展或者开发和实现了其它新型通信系统而改变。就是说,本发明可以应用于其它速率。此外,虽然只针对四种速率讨论了本发明,但是本发明也可以应用于较少或较多的速率。
速率集1是利用速率1/2卷积代码编码的,速率集2是利用速率3/4卷积代码编码的。这使得对于两个速率集具有相似子速率的每个数据帧包含相同数目的编码符号(或数据比特)。就是说,对于全速率、半速率、四分之一、和八分之一子速率,每个速率集的数据帧将具有384、192、96和48数据比特或符号。
如上所述,对于IS-95前向信道(发射的编码数据),所有数据帧的持续时间都为20毫秒。为了维持19.2kHz(384个符号/20毫秒)的恒定比特速率,对于半速率将这些符号重复两次,对于四分之一速率重复四次,对于八分之一速率重复八次。此外,每个符号的发射功率比每个相继的较低数据速率的全速率发射功率低3dB(对于半速率为-3dB,对于四分之一速率为-6dB,对于八分之一速率为-9dB)。
图2A至图2D为根据本发明的一个实施例每种速率的发射符号幅值(或功率电平)的四个示例的示意图。如图所示,每个符号可以具有1比特的一个负值,或者0比特的一个正值。特定速率的每组符号数据具有相同的编码数据。例如,以全速率发射的一组符号120包括一个0、1和0比特(分别为S1、S2、S3)。同样,其它速率示例分别包括一个0、1、和0比特,其中每个比特对于1/2速率重复两次,对于1/4速率重复四次,对于1/8速率重复8次。
每种速率的符号具有不同的幅值。例如,全速率传输的符号120中的每一个具有一个最大绝对幅值(S1在+1,S2在-1,S3在+1)。半速率传输符号122包括三对符号(两个S1符号、两个S2符号、和两个S3符号),每个重复的符号(例如S1)以低于全速率符号的最大幅值3dB的绝对功率电平发射。同样,四分之一速率符号124包括重复的符号,其功率电平的幅值分别比最大幅值低6dB。类似地,八分之一速率的重复符号的幅值比全速率符号的最大幅值低9dB。
虽然是利用其功率电平根据速率递增3dB变化的发射信号来描述本发明的,但是,本发明当然可以用其功率电平以不同量变化的发射信号来实施。此外,虽然描述本发明在全速率下对于编码二进制0和1利用具有+1或-1幅值的发射信号实施,但是,当然可以使用其它幅值对二进制数据进行编码。
图1B为根据本发明的一个实施例的一个可变速率接收机的一部分的简化示意图。该接收机部分200可以在例如一个移动式地面站接收机或一个基站接收机内实现。如图所示,所说接收机部分200包括一个天线201、一个解调器204、一个解扩器206、一个速率确定单元208、和一个解码器210。
概括地说,天线201用于接收编码信号202(例如,从发射机100发射的信号)并将编码信号202传递到解调器204。解调器204用于接收编码信号202和将编码数据202解调,并将经过解调的编码数据212输出到解扩器206。
解扩器206用于接收经过解调的编码数据212,对编码数据进行解扩,并将软符号数据214输出到速率确定单元208和解码器210。所说经过解扩的编码数据214可以是“软”符号数据形式或“硬”数据。此外,如果编码数据的传输方案不使用扩频方法,则无需解扩器206。
速率确定单元208用于接收软符号数据214和确定所说软符号数据214的传输速率。速率确定单元208还用于向解码器210输出一个速率指示信号216。可以使用任何适合类型的解码器,例如维特比解码器。解码器210用于根据速率指示信号216输出解码数据218。就是说,只对以所指示速率传输的软符号数据214进行一次解码。
发射机100和接收机200可以构成如图7所示的蜂窝电话系统700,例如与IS-95标准,码分多址(CDMA)技术规程兼容的电话系统的一部分。电话系统700的其它部分,如图7所示和如下所述,包括用于将接收的数据转换为数字格式的一个模数(A/D)转换器和用于分析解码数据或用户通信数据的一个处理器。
图3为根据本发明的一个实施例构成的如图1B所示的速率确定单元208的示意图。如图所示,速率确定单元208包括一组假设单元(例如320a至320d)和一个假设分析器322。开关S1和S2由一个速率信号控制,以便将假设单元320a至320d的输入端与软数据214连接,和将假设单元的输出端与假设分析器322相连。或者,如果假设单元用于接收软数据,计算假设值,同时并行地输出到假设分析器322,则可以不需要开关S1和S2。
计算出一组假设值,并使每个假设值与一个特定速率相关。例如,HF、H1/2、H1/4、H1/8分别与全速率、半速率、四分之一速率、和八分之一速率相关。这些假设值基于一个预定的采样速率,在所述实施例中该采样速率等于全符号速率。对于全速率,假设单元320a将一个数据帧内的每个采样值(符号)幅值的绝对值相加。对于半速率,假设单元320b首先计算每个连续采样值对的幅值之和。接着,假设单元320b将所计算的采样值对幅值之和的绝对值相加。如果实际传输速率为半速率,则每个采样值对包括两个重复的符号,因为在半速率时每个符号重复两次。
利用假设单元320c和320d可以类似地确定四分之一速率和八分之一速率的假设值。对于四分之一速率,假设单元320c首先计算采样值每个相继的四位字节的幅值之和。接着,假设单元320c将所计算的采样值四位字节幅值之和的绝对值相加。如果实际的传输速率为四分之一速率,则每个相继的四位字节之和包括四个重复的符号,因为在四分之一速率时每个符号重复四次。
对于八分之一速率,假设单元320d首先计算采样值每个相继的八位字节的幅值之和。然后,假设单元320d将所计算的采样值八位字节幅值之和的绝对值相加。如果实际的传输速率为八分之一速率,则每个相继的八位字节之和包括八个重复符号,因为在八分之一速率时每个符号重复八次。可以利用例如下列的一组方程式计算假设值HF=Σk=0383|Sk|]]>H1/2=Σk=0.2382|Sk+Sk+1|]]>H1/4=Σk=0.4380|Sk+Sk+1+Sk+2+Sk+3|]]>H1/8=Σk=0.8376|Sk+Sk+1+Sk+2+Sk+3+Sk+4+Sk+5+Sk+6+Sk+7|]]>在上列方程式中,“k=0,2”的意思是第一个k等于0,第二个k等于2。例如,H1/2是通过首先将前两个符号(S0+S1)相加,然后将后两个符号(S2+S3)相加,等等步骤计算出来的。接着,将这些相加符号对的绝对值相加。
然后,假设分析器322读取从假设单元320输出的各个假设值,并分析这些假设值以确定软符号数据214的传输速率。预期每个传输速率导致产生一组特定的H值比值。就是说,对于特定的传输速率,预期一个特定的H值与其它H值之间的变化量为多个预定值中的一个。于是,所说假设分析器可以连续地将一个特定H值与其它H值进行比较,并确定特定H值相对于其它各个H值是否具有足够的变化量。下面参照图6A和图6B介绍H值结果的具体示例。
当假设分析器322找到满足上述比较要求的一组特定H值时,就将与特定组H值相关的速率判定为所确定的速率。在利用假设分析器判定一个确定速率之后,不再分析不同速率的其它H值。然后,假设分析器向解码器210(图1B)输出速率指示信号216,该信号指示所确定的速率。
图4为根据本发明的一个实施例用于确定一个数据帧的速率并根据所确定的速率将该数据帧解码的一个程序400的流程图。开始时,在操作步骤302,接收一个数据帧的软符号数据。在一个实施例中,以四种速率,即全速率、半速率、四分之一速率和八分之一速率中选定的一个速率传输所说数据帧。该传输速率是接收机未知的。
在接收到该数据帧之后,在操作步骤304计算四个速率中每一个的H值。在操作步骤306,确定所说速率。尽管未必可能,但是所接收数据帧的确定速率仍有可能是不正确的,或者无法确定,则程序进入操作步骤316,下面对此进行讨论。
在确定所说速率之后,在操作步骤308该帧数据与确定速率的指示信号一起传输到解码器。然后在操作步骤310该解码器根据确定速率对所说帧数据进行解码。换句话说,根据确定速率从所说数据帧中抽取数据。
在将所说帧数据解码之后,可以执行一个错误检查程序以验证所说数据是以正确速率解码的(操作步骤312)。可以使用任何适合的错误检查方法,例如检查CRC比特,这种信息是附加在某些帧数据上的(例如全速率和1/2速率数据)。然后在操作步骤314判断所说帧数据是否通过了错误检查。如果所说帧数据是以正确速率解码的,则该解码数据很可能通过了错误检查,程序结束。
但是,如果所说帧数据是以错误速率解码的,则所说解码数据很可能没有通过错误检查,于是可以在操作步骤316执行常规的速率确定和解码方法。就是说,以其它未确定速率中的每一个对所说帧数据进行解码。但是,由于已经排除了一个速率作为正确速率(确定速率),所以解码器仅仅需要对剩余的三个速率解码。
图5为表示根据本发明的一个实施例确定一个特定数据帧的速率的图4所示程序306的流程图。开始时,在操作步骤402中选择四个速率中的一个。然后,如上所述,在操作步骤404确定选定速率的H比值。接着在操作步骤406判断是否每个比值都小于一组最可能的预定比值中选定的一个。
最可能的比值是通过实验预先确定的,并选择用于使确定正确速率的概率最大。在下面的表1中给出了一组适合的最可能或期望比值。已经发现这些期望比值在以特定次序确定速率时具有有益的作用(例如,首先估算八分之一速率比值,然后估算四分之一速率比值,接着估算半速率比值)。
表1<
在这个例子中,期望所确定的比值小于三个预定比值2.0、1.5、或1.2中的一个。例如,如表1所示,对于八分之一速率估算,期望H1/4/H1/8小于大约1.2(第一比值)。同样,对于四分之一速率估算,期望H1/2/H1/4小于大约1.2,对于八分之一速率确定,期望HF/H1/8小于大约1.2。在这三种情况下,所有这些比值都是一个第一速率与一个第二速率的比值,所说第二速率为所说第一速率的一半。并且期望所说比值小于所说第一阈值。
如果所说比值为第一速率与是所说第一速率四分之一的一个第二速率的比值,则期望该速率小于大约1.5(第二比值)。如果所说比值为一个第一速率与是所说第一速率的八分之一的一个第二速率的比值,则期望所说比值小于2.0(第三比值)。
预先规定的比值可以是便于确定速率的任何适合值。在上述首先估算八分之一速率的示例中,已经发现大约1.15至1.25之间的第一范围对于第一比值十分适用。此外,已经发现大约1.4至1.55之间的第二范围对于第二比值十分适用,大约1.85至2.05的第三范围对于第三比值十分适用。但是,由于限幅和定标效应,这些比值可能有所变化。
这些速率可以按照任何适合的次序选择。但是,由于声音活性因子仅仅为大约0.5,在最低传输速率下比在较高速率下可以传输更多帧声音通信信号。因此,可取的是,首先估算最低速率(八分之一速率),因为它具有作为帧速率的最高几率。如果判定该最低速率就是传输帧速率,则不必估算其它速率的数据帧。或者,可以按照相反的次序(例如首先估算全速率)来分析速率。
回头参见图5,如果该比值满足预定的比值要求,则在操作步骤408将选定的速率作为确定速率,程序306结束。但是,如果该比值没有满足预定值要求,则在操作步骤410判断是否存在其它需要分析的速率。如果存在需要分析的其它速率,则选定其它速率并在操作步骤412至406中进行分析。对于每次新速率选择重复这些操作。下面用伪代码表示一个示例如果(HF/H1/8<2.0和H1/2/H1/8和H1/4/H1/8<1.2)则确定速率=八分之一速率否则如果(HF/H1/4<1.5和H1/2/H1/4<1.2)则确定速率=四分之一速率否则如果(HF/H1/2<1.2)则确定速率=半速率其它情况下,确定速率=全速率。或者,可以在相反次序的速率确定程序中使用伪代码。
如果没有新的速率可以选择,并且没有速率可以指定为确定速率,则程序可以跳到图4所示的操作步骤316,并且如上所述,可以实施常规的速率确定和解码方法。或者,可以选择这些速率中除最后一个以外的每一个速率并进行分析(例如,如以上在全速率伪代码中所示)。如果没有将所分析速率指定为确定速率,则将最后一个速率指定为确定速率,而不进行任何分析。换句话说,默认最后一个速率作为确定速率。当然,在这个替换实施例中不需要期望比值。
举例来说,首先将实际的八分之一速率比值与八分之一速率的期望比值进行比较,其示例列在表1中。如果该八分之一速率比值不满足期望比值的期望范围,则将实际的四分之一速率比值与四分之一速率的期望比值进行比较(参见表1)。如果四分之一比值不满足,则类似地将半速率比值进行比较。但是,如果,例如,半速率比值不在如表1所示的期望比值范围内,则将全速率指定为确定速率。
图6A为假设值(H)计算的一个第一示例的示意图。如图所示,以全速率和最大正负幅值(例如+1和-1)传输一第一组符号数据602。每个软符号数据信号只表示该数据帧的一部分。每个符号具有一个最大正值,其表示一个0比特值,或者具有一个最大负值,其表示一个1比特值。
如图所示,符号数据602包括为+1的S2、为-1的S2、和为+1的S3。如果从全速率符号数据602中计算出与全速率相关的一个H值,则该H值等于S1至S3的幅值绝对值之和。就是说,S1、S2和S3的绝对值之和都等于1,HF值等于3。
其它组符号具有与全速率相同的比特值,但是对于1/2速率每个符号重复两次,对于1/4速率每个符号重复4次,对于1/8速率每个符号重复8次,并以低于全速率最大幅值的一个较低幅值传输每个符号。因此,如果以半速率传输所说比特值(参见122),则同样计算出一个等于3的H1/2值。就是说,将每对符号相加,然后计算每对相加符号绝对值之和。
如上所述,以半速率传输的符号的幅值比全速率符号的幅值低3dB。因此,当将重复符号的幅值相加时(例如S1+S1),它们的总数大约等于全速率符号的最大幅值(例如1)。如图所示,将第一个S1的幅值612a与第二个重复S1的幅值612b相加。同样,将两个S2幅值和将两个S3幅值相加,其和值分别等于1。因此,H1/2值等于3(|S1+S1|+|S2+S2|+|S3+S3|)。类似地,如示例614和616所示,可以分别确定H1/4和H1/8值。
图6B为假设值计算的一个第二示例的示意图。如图所示,以全速率传输一第一组符号数据620。所说第一符号数据620包括为+1的S1、为-1的S2、为+1的S3、和为-1的S4。如果计算与半速率相关的H1/2值,则结果等于0(S1+S2=0和S3+S4=0)。应当指出,与全速率相关的HF值等于S1+S2+S3+S4的绝对值,即等于4。
同样,如果以半速率H1/4传输一第二组符号622,并确定与四分之一速率相关的H1/4值,则结果等于2(S1+S1+S2+S2=0和S3+S3+S4+S4=2)。应当指出,与半速率相关的H1/2值等于4。与传输速率相关的H值通常明显大于与其它速率相关的H值,当然除了HF以外,它总是具有最大值。这主要是由于取消了相反值符号。
在一个替换实施例中,可以考虑噪声效应。由于传输环境的缺陷,所接收的符号也包含有噪声分量。因为是将一个符号的绝对值或多个符号之和的累加构成速率假设值,所以在假设值中包含一个正的偏差。但是,在一个替换实施例中,在计算各个假设值时,不是将每对四分之一或八分之一速率符号之和的绝对值相加(如上所述),而是当和值中一半符号为正值,一半符号为负值时可以使用和值本身。这种微小变化有助于减小偏差,可以略微改变上述预定比值。
参见图7,图中表示适于实施上述速率确定单元的一个扩频蜂窝通信系统700。通信系统700中某些方框部分可以用分立电路元件实现,或者作为由一个适合的数字处理器,例如一个告诉信号处理器执行的软件程序。或者,可以将电路元件与软件程序结合使用。因而,以上具体描述并非将本发明的应用限制于任何特定的技术实施例。
在本发明的优选实施例中,所说扩频电话系统700按照TIA/EIAIS-95标准运行。但是,本发明的应用并不局限于与这种特定暂行标准兼容。
该通信系统包括用于从蜂窝电话站点,下文中称之为基站(未示出)接收RF信号和向所说基站发射RF信号的一个天线702。所说RF信号是相位调制的以传输语音和信号信息。一个天线收发转换开关704与所说天线702相连,用于转换接收和发射相位调制的RF信号。
接收到的RF信号并向下转换并输入一个相位解调器712中,该解调器从所说接收信号中获取同相(I)调制和正交调制(Q)信号。利用适合的A/D转换器714将所说I和Q信号转换为数字形式。所说A/D转换器714的输出传送到一个CDMA解扩器716和沃尔什解调器718,它们对接收信号进行进一步分析。
然后将沃尔什解调器718的输出传送到本发明的速率确定单元208,该速率确定单元208向本发明的维特比解码器218输出一个速率指示信号。所说维特比解码器210向一个处理器720输出一个数字信号,所说处理器用于分析该数字信号。该数字信号表示语音采样值或信号信息,并且,根据本发明的教导,确定接收数据帧的速率。
通信系统700还包括一个声码器726,用于对来自处理器720、并将以调制RF信号形式从天线702发射出去的数字数据进行语音编码,。声码器726的输出发送到一个编码器750,该编码器用于进行进一步的卷积编码和输出一个编码信号。一个沃尔什和长代码调制器724用于从编码器750接收编码信号和向一个CDMA扩频器和D/A转换器722输出一个调制信号。所说CDMA扩频器和D/A转换器722用于向一个RF调制器710输出一个扩频信号。所说RF调制器用于向一个RF功率放大器706输出一个RF调制信号,该放大器用于以对于所说通信系统700的特定蜂窝电话规模足够的功率电平发射所说RF调制信号。
总而言之,将成帧的语音和/或信号进行卷积编码和压缩。然后对所说成帧语音进行沃尔什和长代码调制,并利用一个PN扩频器扩频。所说PN扩频器的输出传送到一个限制带宽的脉冲整形滤波器,进行D/A转换,AGC(自动增益控制)控制,调制成I和Q信号分量,并向上转换和传送到一个发射功率放大器。
本发明具有诸多优点。例如,本发明的速率确定单元能够在解码之前确定速率。因此,可以以确定的速率对数据帧进行解码,而不是象常规的解码系统那样对所有可能的速率进行解码。所以,本发明能够显著地节省解码器资源、解码时间和功率消耗。
虽然为了便于清楚地理解,在上文中已经详细地描述了本发明,但是显然在权利要求书限定的范围内还可以作出一些变化和改进。应当指出,有许多种替换方式可以实现本发明的程序和装置。例如,可以始终将所有H值与所有其它H值比较以确定最可能的正确速率。
在另一个实施例中,可以用沃尔什覆盖辅助速率确定来实现本发明。沃尔什覆盖将所说半速率的每对第二符号倒置,将四分之一速率的每四位字节的第三和第四符号倒置,并将八分之一速率的每八位字节的最后四个符号倒置。当在解调器中使用正确的覆盖以使数据去覆盖时,在速率假设值计算中使用的和值对于不正确的速率应当接近零。当然对于全速率数据不是这样的。在这个替换实施例中,可能需要不同的预定比值,但是同样可以改善性能。
因此,这些实施例只是说明性的,而不是限制性的,本发明并不局限于所给出的细节,而是可以在权利要求书限定的范围和等效物内作出改进。
权利要求
1.一种速率确定单元,其应用于适于接收以多种不同数据速率传输的通信信息的通信系统的接收机中,所说速率确定单元用于接收编码信号和在无需首先对所说编码信号进行解码的前提下确定所说编码信号的数据速率。
2.如权利要求1所述的一种速率确定单元,其特征在于所说通信系统为一种码分多址蜂窝电话系统。
3.如权利要求1所述的一种速率确定单元,其特征在于所说速率确定单元还用于输出指示所确定数据速率的一个速率指示信号。
4.如权利要求1所述的一种速率确定单元,其特征在于所说通信系统是具有一数据帧序列的一个基于帧的系统,所说数据帧分别包含多个符号,所说速率确定单元用于确定每个数据帧的帧数据速率。
5.如权利要求4所述的一种速率确定单元,其特征在于它还包括多个假设单元,每个假设单元用于确定以所说数据速率中相关的一个速率传输的一帧编码信号的一个假设值;和一个假设分析器,用于比较选定的假设值并根据所说比较结果确定所说帧数据速率和根据所确定的帧数据速率输出一个速率指示信号。
6.如权利要求5所述的一种速率确定单元,其特征在于一个第一假设单元用于将与分立采样值相关的一第一组绝对值相加;和一个第二假设单元用于将一第二组绝对值相加,所说第二组绝对值中的每一个都是多个采样值之和。
7.如权利要求6所述的一种速率确定单元,其特征在于所说假设分析器将选定假设值的比值与预定比值进行比较以确定所说帧数据速率。
8.如权利要求5所述的一种速率确定单元,其特征在于所说帧数据速率是从包含全速率、半速率、四分之一速率和八分之一速率的一组中选择出的一个速率。
9.如权利要求8所述的一种速率确定单元,其特征在于所说假设分析器用于当全速率假设值与八分之一速率假设值的比值小于大约2.0,和半速率假设值与八分之一速率假设值的比值小于大约1.5,以及四分之一速率假设值与八分之一假设值的比值小于大约1.2时输出所说速率指示信号以指示所说八分之一速率;当全速率假设值与四分之一速率假设值的比值小于大约1.5,和半速率假设值与四分之一速率假设值的比值小于大约1.2时输出所说速率指示信号以指示所说四分之一速率;当全速率假设值与半速率假设值的比值小于大约1.2时输出所说速率指示信号以指示所说半速率;和在其它情况下,输出所说速率指示信号以指示所说全速率。
10.如权利要求1所述的一种速率确定单元,其特征在于所说通信信号是声音数据。
11.如权利要求5所述的一种速率确定单元,其特征在于所说假设值分析器用于通过判断与一第一数据速率相关的假设值与与为所说第一数据速率一半的一第二数据速率相关的假设值的比值是否小于在大约1.5至1.75范围内的一个阈值来比较所说假设值。
12.如权利要求5所述的一种速率确定单元,其特征在于所说假设分析器用于通过判断与一第一数据速率相关的假设值与与为所说第一数据速率四分之一的一第二数据速率相关的假设值的比值是否小于在大约1.4至1.55范围内的一个阈值来比较所说假设值。
13.如权利要求5所述的一种速率确定单元,其特征在于所说假设分析器用于通过判断与一第一数据速率相关的假设值与与为所说第一数据速率八分之一的一第二数据速率相关的假设值的比值是否小于在大约1.85至2.05范围内的一个阈值来比较所说假设值。
14.如权利要求1所述的一种速率确定单元,其特征在于所说编码信号是一种软数据信号。
15.如权利要求1所述的一种速率确定单元,其特征在于所说通信系统采用符号重复来维持恒定符号速率。
16.一种接收机,其用于接收包含用户通信信息的无线电频率信号,所说用户通信信息以数据比特帧形式传输,所说的每个数据帧以从包括一个最高速率和一个最低速率的一组数据速率中选择的一个数据速率传输,所说接收机包括一个解调器,用于对所说用户通信信号进行解调;一个速率确定单元,用于接收经过解调的用户通信信号和确定解调用户通信信号的速率;和一个解码器,用于根据所确定的速率对解调用户通信信号进行解码,其中所说速率确定单元用于在无需先对解调用户通信信号进行解码的前提下确定所说解调用户通信信号的数据速率。
17.如权利要求16所述的一种接收机,其特征在于所说解码器是一个维特比解码器。
18.如权利要求16所述的一种接收机,其特征在于所说速率确定单元还包括多个假设单元,每个假设单元用于确定以相关的一个数据速率传输的编码信号数据帧的一个假设值;和一个假设分析器,用于确定选定假设值之间的一组比值,将所确定的比值与预定比值进行比较,根据比较结果确定所说帧数据速率,并根据所确定的帧数据速率输出一个速率指示信号。
19.如权利要求18所述的一种接收机,其特征在于所说的多个假设单元中的一第一假设单元通过将分别与所说数据帧符号之一相关的第一组绝对值相加来确定一个第一假设值。
20.如权利要求19所述的一种接收机,其特征在于所说的多个假设单元中的一第二假设单元通过将分别与一第一组数据帧符号相关的第二组绝对值相加来确定一个第二假设值。
21.如权利要求20所述的一种接收机,其特征在于所说的多个假设单元中的一第三假设单元通过将分别与一第二组数据帧符号相关的第三组绝对值相加来确定一个第三假设值,所说多个假设单元中的一第四假设单元通过将分别与一第三组数据帧符号相关的第四组绝对值相加来确定一个第四假设值。
22.如权利要求21所述的一种接收机,其特征在于所说第一数据速率高于相关的所说第二数据速率、第三数据速率、和第四数据速率。
23.如权利要求18所述的一种接收机,其特征在于将所确定的比值与包含第一预定比值、第二预定比值、和第三预定比值的一组比值之一进行比较。
24.如权利要求23所述的一种接收机,其特征在于所说一组确定比值中一个第一比值等于与一个第一速率相关的假设值与与为所说第一速率一半的一个第二速率相关的假设值之比值,所说假设分析器将所说第一比值与所说第一预定比值进行比较以确定所说帧数据速率。
25.如权利要求24所述的一种接收机,其特征在于所说帧数据速率为包含全速率、半速率、四分之一速率和八分之一速率的一组速率之一,所说假设分析器判断所说帧速率是否等于半速率。
26.如权利要求24所述的一种接收机,其特征在于所说一组确定比值中一个第二比值等于与一个第三速率相关的假设值与与为所说第三速率四分之一的第二速率相关的假设值之比值,所说假设分析器将所说第二比值与所说第二预定比值进行比较以确定所说帧数据速率。
27.如权利要求26所述的一种接收机,其特征在于所说帧数据速率为包含全速率、半速率、四分之一速率和八分之一速率的一组速率之一,所说假设分析器判断所说帧速率是否等于四分之一速率。
28.如权利要求26所述的一种接收机,其特征在于所说一组确定比值中一个第三比值等于与一个第四速率相关的假设值与与为所说第一速率八分之一的第二速率相关的假设值之比值,所说假设分析器将所说第三比值与所说第三预定比值进行比较以确定所说帧数据速率。
29.如权利要求28所述的一种接收机,其特征在于所说帧数据速率为包含全速率、半速率、四分之一速率和八分之一速率的一组速率之一,所说假设分析器判断所说帧速率是否等于八分之一速率。
30.用于接收和发射包含用户通信信息的无线电频率信号的一种通信系统,所说用户通信信息以选自包含一个最高速率和一个最低速率的一组数据速率中的一个数据速率发射和接收,所说通信系统包括如权利要求16所述的一个接收机;用于发射无线电频率信号的一个发射机;和用于处理来自接收机的编码数据和由所说发射机发射的用户通信信息的一个处理器。
31.如权利要求30所述的一种通信系统,其特征在于所说无线电频率信号为码分多址(CDMA)无线电频率信号。
32.用于确定包含多个符号的一个编码信号的速率的一种方法,所说编码信号以从一组数据速率中选定的一个速率发射,该方法包括以下步骤确定分别与所说数据速率之一相关的一组假设值;和将一第一组选定假设值进行比较,以确定发射速率是否等于所说的一组数据速率中的一第一速率,所说确定操作是在对编码信号进行解码之前完成的。
33.如权利要求32所述的一种方法,其特征在于所说比较操作是通过确定与所说第一组选定假设值相关的一组比值和将所确定的每个比值与一个相关预定比值进行比较而完成的。
34.如权利要求33所述的一种方法,其特征在于当每个确定比值小于相关的预定比值时,将所说第一数据速率认定为所确定速率。
35.如权利要求34所述的一种方法,其特征在于该方法还包括根据所确定速率将所说编码信号解码。
36.如权利要求32所述的一种方法,其特征在于当确定所说传输速率不等于所说第一数据速率时,该方法还包括将一第二组选定假设值进行比较以确定所说传输速率是否等于所说的一组数据速率中一第二速率的步骤。
37.如权利要求36所述的一种方法,其特征在于所说第二数据速率大于所说第一数据速率。
38.如权利要求36所述的一种方法,其特征在于所说第二组选定假设值是所说第一组选定假设值的子集。
39.如权利要求36所述的一种方法,其特征在于当确定所说传输速率不等于所说第二数据速率时,该方法还包括将一第三组选定假设值进行比较以确定所说传输速率是否等于所说一组数据速率中一第三速率的步骤。
40.如权利要求39所述的一种方法,其特征在于所说第三数据速率大于所说第二数据速率,所说第二数据速率大于所说第一数据速率。
41.如权利要求40所述的一种方法,其特征在于所说第二组选定假设值为所说第一组选定假设值的一个子集。
42.如权利要求39所述的一种方法,其特征在于当确定所说传输速率不等于所说第三数据速率时,该方法还包括将所说一组数据速率中一第四速率认定为所说传输速率的步骤。
43.如权利要求35所述的一种方法,其特征在于该方法还包括错误检验以验证所确定速率的步骤。
44.如权利要求32所述的一种方法,其特征在于所说的多个符号构成一数据帧,并针对所说数据帧确定所说速率。
45.如权利要求32所述的一种方法,其特征在于该方法还包括指示所确定的速率。
全文摘要
本申请公开了用于适于接收以多个不同数据速率传输的通信信号的通信系统的接收机中的一种速率确定单元和方法。该速率确定单元用于接收一个编码信号和确定编码信号的数据速率,而无需首先将编码信号进行解码。在一个优选实施例中,所说速率确定单元包括一组假设单元和一个假设分析器。每个假设单元用于针对相关的一个数据速率发射和接收的一帧编码信号确定一个假设值。所说假设分析器用于比较选定的假设值,并根据比较结果确定所说帧数据速率,和根据所确定的帧数据速率输出一个速率指示信号。可取的是,一个第一假设单元用于将与分立采样值相关的一第一组绝对值相加,一个第二假设单元用于将一第二组绝对值相加。所说第二组绝对值中的每个绝对值是多个采样值之和。
文档编号H04Q7/38GK1239364SQ99108448
公开日1999年12月22日 申请日期1999年6月11日 优先权日1998年6月11日
发明者S·F·柴亚, K·L·安德森 申请人:因芬尼昂技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1