用于多灯独立操作的高频电子镇流器的制作方法

文档序号:8022221阅读:175来源:国知局
专利名称:用于多灯独立操作的高频电子镇流器的制作方法
技术领域
本发明涉及一种用于驱动一组气体放电灯的电子镇流器,所述电子镇流器能够和灯的负载无关地驱动所述的灯,即在所述的灯全部或不全部被打开、在接通和关断期间以及在灯被改变的期间,所述电子镇流器可以不受影响地驱动所述的灯。电子镇流器可以包括电流输入型或电压输入型谐振逆变器。本发明涉及包括电压输入型谐振逆变器的电子镇流器。
用于驱动一组气体放电灯的电子镇流器应当能够调节对所述灯的输出,以便在所述灯全部或者不全部被接通的情况下驱动所述的灯。因而,如果一个灯由于老化或者由于断开而停止发光,镇流器应当对其余的灯继续提供满意的输出。在所述灯启动或停止或者被改变期间的过渡期间应当能够正常地驱动。非常需要在换灯期间镇流器继续操作和其相连的其余的灯并且点燃新连接的灯,使得不需要在换灯期间切断镇流器的电源或在换一个灯之后再重新启动所有的灯。因而用于多灯操作的电子镇流器最好能够和灯负载无关地操作所述的灯,如上所述。这种镇流器也应当能够进行瞬时的与/或快速的启动操作。
具有电流输入型逆变器的电子镇流器需要大而重的和逆变器的输入串联的电感。由于具有大的输入电感,这种镇流器受负载的影响较小,因而能够和负载无关地多灯操作。然而,电流输入型逆变器所需的大的输入电感增加了镇流器的体积和重量。
美国专利5519289披露了一种用于多灯操作的具有调光功能的电子镇流器,其中包括推挽的自振荡逆变器。
美国专利5438243披露了一种和气体放电灯的瞬时启动无关地操作多灯的电子镇流器,其包括准电压输入型半桥并联谐振逆变器,如该专利的图2所示。固有地,电子镇流器以电流输入型并联谐振方式操作,其中电流源由和第一谐振电路串联的一个理想的电压源得到。为了维持一个高电压输出以便进行启动,这要求高的Q,提供第二谐振电路。因而,该专利中披露的电子镇流器电路具有两个串联的谐振电路。结果,增加了电路损失和成本。在输出端,提供和两个灯串联连接的两个镇流器电感,并提供和另外两个灯并联连接的两个镇流器电容,这减少了对输出变压器二次侧的无功功率需求。然而,这种电子镇流器在灯被除去而电路仍然接通时具有在输出端产生高电压的危险。在Power Semiconductor Applications Handbook 1995(Philips Seniconductor,1994)的583和584页披露了其它类型的具有电流输入推挽或半桥逆变器的用于多个荧光灯的电子镇流器电路。在这些结构中,每个灯通过一个串联的镇流器电容器和谐振逆变器的输出并联连接。电流源通常通过和电压源串联的扼流电感获得。通过输出的高频电压和输入的直流电压之间的恒定关系获得好的独立的灯操作。这种类型的电路的缺点包括较高的开关应力和附加的笨重的扼流电感器。
在另一方面,一种包括熟知的半桥LC或LLC谐振逆变器的具有电压输入型谐振逆变器的电子镇流器不需要大的输入电感,但是受灯负载的影响较大,因而需要附加的电路或谐振元件,以便实现多灯独立操作。
美国专利5438243,5394064,5075599,和4535399披露了一种用于多灯独立操作的电子镇流器,其包括电压输入型逆变器。在美国专利5394064中披露的能够进行调光操作的电子镇流器包括用于产生高频方波电压的电压输入型半桥谐振逆变器。通过改变逆变器的输入电压或逆变器频率,或者使用从输入端到逆变器的电压反馈和从灯电路到驱动逆变器开关的振荡器的反馈提供控制。如该专利的图1所示,一个变压器使灯和逆变器相连,每个灯由包括串联电感和并联电容的单独的谐振电路驱动。用于连接灯的电路可以认为是以一个灯为负载的并联连接的多个谐振电路。虽然实现了多个灯操作,但是需要大量的磁性元件和电容器,因而成本较高。
美国专利4535399中披露的电子镇流器包括电压输入型谐振逆变器和用于每个灯的单独的谐振电路(图6)。每个谐振电路包括一个小的电感器和电容器,这增加了镇流器的成本。这种镇流器还包括电流反馈环,其控制用于提供用来驱动逆变器的定时的脉宽调制器(“PWM”)的转换。电流反馈环包括锁相环(“PLL”),用于对PWM提供和在逆变器的输出端检测到的电流的相位改变成正比的直流输出。PLL迫使逆变器在这样一个频率下工作,在所述频率下,调制脉冲在负载电流过零时被接通。PLL包括低通滤波器(图2),并具有合适的低频响应,其使得PLL能够在稳态操作期间保持跟踪。不过,PLL的高频响应较差,这妨碍PLL跟踪例如在灯被断开或连接时发生的快速瞬变。结果,PLL可能停止跟踪,即在换灯期间不能锁相,这引起零电压转换损失和逆变器的损坏。
美国专利5075599和4277728披露了一种用于驱动一个气体放电灯的电子镇流器,具有用于控制的和相位相关的反馈环。在599专利中,当测量的相位差小于最小的参考相位差(图5)时,进行朝向目标相位差(例如0)的校正。如果测量的相位差大于参考相位差,则不能进行校正。在728专利中,相位检测器(图4a和4b)检测逆变器(图4a的推挽电路和图4b的半桥电路)的输入电压和负载上的电压之间的相位差。为了正确地操作,所述相位差应当是90度,这表示逆变器在谐振频率下操作。如果相位差不是90度,则相位检测器提供一个误差信号,使逆变器的频率朝向谐振频率改变。728专利披露的电子镇流器还包括在谐振电路中用于限制负载电流的电感器。
本发明的目的在于提供一种改进的电子镇流器,用于独立地操作一组气体放电灯中的各个灯,其具有数量较少的镇流器元件,并没有大的输入电感器,其操作不仅和与其相连的灯的数量以及是否所有的灯都被接通无关,而且能够在换灯期间保持可操作的灯的发光,并自动地点燃新接入的灯。
本发明的另一个目的在于,提供一种用于多灯独立操作的电子镇流器,其中具有用于调节被提供给灯的的功率的反馈环,即使在灯被除去或增加,被点燃或被熄灭时的过渡期间,所述反馈环也能跟踪。
本发明的另一个目的在于,提供一种结合上述的本发明的任一目的说明的电子镇流器,用于瞬时启动灯与/或快速启动灯。
本发明的另一个目的在于,提供一种结合上述的本发明的任一目的说明的电子镇流器,其也能提供快速启动的灯的调光操作。
具有LC或LLC谐振电路的电压输入型半桥并联谐振逆变器的输出电压在很大程度上和负载有关。例如,图1说明用于m个灯负载的电压输入型半桥并联谐振逆变器的电压增益(Vgain)对开关频率(f)的关系曲线,其中m为从1到4个灯,电压增益(Vgain)等于提供给灯负载(R1)的谐振输出电压(V0)除以谐振电路的输入电压(Vin),即,Vgain=V0/Vin。图1的曲线的灯负载是在高频操作下用线性电阻R1模拟而获得的。因而,频率控制是用于维持谐振逆变器的输出电压恒定的一种方法。不过,本发明人确定,利用频率作为直接控制变量,当由镇流器驱动的灯的数量改变时,维持谐振逆变器的输出恒定是困难的,如图1所示。在灯的数量改变时的过渡期间,因为气体放电灯可能熄灭,控制就更加困难。
按照本发明,发明人发现,电压输入型半桥谐振逆变器的电压增益,如果被定义为电压Vin和谐振电路中的电流ILR之间的相住差的相角Φin被用作直接控制变量并保持恒定,则即使在灯被熄灭、点燃、断开或连接时的过渡期间也能保持恒定。图2说明m(1-4)个灯负载的相角Φin对开关频率(f)的关系。图3表示对于m(1-4)个灯的灯负载电压增益Vgain和相角(Φin)之间的关系。电压增益曲线合并到一个小的频带中,特别是在较高的频率区域。这个接近表示,对于给定的相角Φin,电压增益几乎和灯数无关。在灯过渡期间,如果相角Φin被保持固定或者变化很小,则输出电压V0几乎保持恒定。结果,甚至在换灯期间或者在灯操作的过渡期间也能实现独立的多灯操作。
如图3所示,相角Φin和电压增益Vgain呈反比关系,电压增益随相角的增加而减少。按照本发明,这种关系被用于单个或者一组快速启动灯的调光操作。特别是,响应指令值信号改变相位可以使用和镇流器相连的灯变暗或变亮。图3表示的电压增益和相角的反比关系和与镇流器相连的灯数无关。此外,按照本发明,一个或一组快速启动灯的亮度通过改变相角可以和灯数无关地被控制。
本发明通过提供一种电子镇流器实现上述目的,所述电子镇流器包括电压输入型半桥谐振逆变器,以及和所述逆变器相连的控制与反馈电路,用于基本上维持电压和LC或LLC谐振电路中的电流之间的相角恒定,所述谐振电路具有镇流器的效果,用于提供基本上恒定的电压输出。控制和反馈电路的响应使得即使在灯被熄灭、点燃、断开或连接时,其反馈环路也能继续跟踪。如上所述,利用恒定的相位角控制提供交流输出的逆变器具有向灯提供基本上恒定的电压输出的效果,而和灯负载无关。在本发明的优选实施例中,这种控制和反馈电路使用其中不使用锁相环的相移技术。
在优选实施例中,控制和反馈电路包括控制器和反馈环。反馈环从谐振电路获得电流反馈信号和电压反馈信号,并对控制器提供相移信号作为反馈校正信号。作为被电压反馈信号调整的电流反馈信号的相移信号跟踪当和镇流器相连的灯数改变时以及在灯被熄灭点燃断开或连接时的过渡期间产生的相角的改变。反馈环路包括相移电路,其包括至少一个差动放大器级,在两个输入端接收电流反馈信号,在一个输入端接收电压反馈信号,从而移动电流反馈信号的相位,并在至少一个差动放大器级的输出端提供相移校正信号。即使在灯被熄灭、点燃、断开或接通时,所述反馈环和控制器使逆变器也能提供相位角基本上恒定的交流输出。此外,响应指令值信号改变相角可以提供快速启动的灯的调光操作。
在本发明的优选实施例中,控制器包括脉宽调制控制电路(PWM),其接收反馈环路中的相移校正信号,提供和逆变器相连的驱动信号,从而以基本上恒定的相位角向灯提供输出。在反馈环中的相移电路响应和逆变器的输出相连的谐振电路中检测的电流和电压对PWM控制电路提供相移校正信号。
在优选实施例中,灯通过变压器和谐振电路并联,一个小的镇流器电容器和每个灯串联。不需要感性的镇流器元件。
这种电子镇流器也可以利用反馈环路检测谐振电路中的过电压状态,响应过电压状态,控制器停止逆变器的操作,即停止向逆变器提供驱动信号。
本发明的电子镇流器利用在输出变压器的一次侧上的基本上相同的电路结构操作瞬时启动灯和快速启动灯。对于快速启动操作,输出变压器二次侧包括一个被连接作为每个灯的灯丝加热器的部分,并且谐振电路中的谐振电感具有一个和每个灯的灯丝相连的用于稳态操作的二次侧。在灯被预热和点燃期间,反馈环进行跟踪。
按照本发明的实施例,本发明的电子镇流器操作并联的和并联/串联的多个灯。本发明的电子镇流器也可以用于串联以及并联连接的多个快速启动灯的调光操作。
本发明具有以下优点(1)在电子镇流器中的循环电流小,因而效率高;(2)在逆变器功率开关上的电压应力小,这使得可以使用额定值较低的功率开关,因而降低成本;(3)通过反馈环,可以提供针对线路参数、温度和电路参数的变化而进行的灯电流和电压的调节;以及(4)对于瞬时启动和快速启动的多个灯独立操作,可以使用相同的电路拓扑和设计方法以及电路的实施方式。
下面结合


本发明,附图所示的只是例子而不是对本发明的限制,并且在不同的图中相同的标号表示相同的元件,其中图1是电子镇流器电路中的电压输入型的半桥谐振逆变器的电压增益对频率的曲线,所述电子镇流器电路用于操作包括4个灯的一组灯,图中分别示出了1个、2个、3个、和4个灯被接通的情况;图2是供给和电子镇流器电路中的电压输入型半桥谐振逆变器相连的1个、2个、3个和4个灯的电源的相位对频率的曲线;图3是操作一组4个灯的电子镇流器分别在1个、2个、3个、和4个灯被接通的情况下电压增益对相位的曲线;图4是包括本发明的电子镇流器的方块电路原理图;图5-8是图4的方块图中表示的各个电路的原理图;图9-11是按照本发明的用于和快速启动、调光配置操作无关地操作多个气体放电灯的电子镇流器电路的简化的方块原理图;以及图12是按照本发明的和灯的串联/并联配置无关地操作的用于操作多个瞬时启动气体放电灯的电子镇流器电路的简化方块原理图。
参见图4,本发明的电子镇流器10包括电压输入型半桥谐振逆变器12,LC谐振电路14和包括控制器16和对控制器16的反馈环18的反馈电路。对控制器16还提供有过压反馈环20。反馈环18进行电流和电压检测、移相,并和控制器16一道在22,23向逆变器12提供驱动信号,以便维持相角θin为恒定。反馈环20进行电压检测并和控制器16一道操作,以便在检测到过电压状态时断开逆变器12的驱动信号。
仍然参看图4,直流电压源Vbus输入到逆变器12。LC谐振电路14,其通过直流隔离电容Cbk和逆变器12相连,包括谐振电感Lr和谐振电容Cr。输出隔离变压器T1使谐振电路14和多个瞬时启动的灯30相连。灯30通过由32和33表示的连接器和电子镇流器相连,并被集中地表示为电子镇流器10的可变负载R1。在图4所示的实施例中,灯30通过由C1集中表示的镇流器电容器35并联。
继续参看图4,反馈环18包括电流检测部分18a,其具有电流检测器40,高通滤波器41和自动增益控制(AGC)电路42,以及电压检测部分18b,其具有电压比例器45和电压补偿电路46。反馈环18还包括移相器50,电流和电压检测部分18a,18b与其相连。
电流检测部分18a(图4)检测谐振电路14中的电流(电流检测器40),并提供Isense信号,高通滤波器41通过谐振频率的Isense信号,AGC电路42维持高频Isense信号的合适的信号电平,其被输入到移相器50。电压检测部分18b使在谐振电路14的输出端的电压(Vsense信号)和电压比例器45相连,其使Vsense电压减少到一个合适的电平,并向电压补偿器46提供被减少的电压,电压补偿器把和被改变的Vsense谐振输出电压与参考电压(Vref)的差值成比例的输出电压提供给移相器50。
由补偿器46提供的环部分18b的被调节的Vsense信号作为参考信号被提供给移相器50,并且反馈环部分18a的被调节的Isense信号由AGC电路42提供给移相器50作为未校正的相角信号。响应这些信号,移相器50提供基本上是正弦的相角校正信号。波形整形电路55把正弦信号转换为方波,并把其提供给控制器16作为移相信号。
图4所示的控制器16包括PWM控制电路58,逻辑电路60和门驱动器62。波形整形电路55的输出(移相信号)触发PWM控制电路58,其向逻辑电路60输出PWM定时脉冲。组合的逻辑电路60把PWM定时脉冲或启动信号作为控制触发信号连接到控制极驱动器62,其在22和23把驱动信号提供给逆变器12中的功率开关64和65(图5),使其轮流地导通和截止。启动电路63和逆变器12相连,用于接收直流输入电压(Bus Vsense),并向逻辑电路60提供启动信号,以便点燃一组熄灭的灯30,例如,当镇流器10被首次接通时。利用这种系统结构,在接通1到4个灯30的情况下,对负载的输出电压VO被调节到一个恒定值,即使在灯被熄灭或点燃期间也能保持电压恒定。这种镇流器输出电压的调节一般能够得到灯电流的好的峰值系数。
过电压反馈环20(图4)包括电压比例器66,其被连接用于接收谐振输出电压(Vsense信号),以及和其相连的触发器67,其对逻辑电路60提供过电压信号,其接着断开输入给控制极驱动电路62的控制极触发信号,使得只要过电压状态存在,就关断镇流器。
图5表示逆变器12、控制极驱动器62、输入到反馈环电流部分18a的电流检测和输入到反馈环电压部分18b的电压检测的细节。由和交流线路相连的整流电路68提供的直流电压被提供给逆变器12的输入端。这个直流信号,经过一个或几个电阻相连,被提供给启动电路63(图4和图8)作为母线电压检测信号Bus Vsense。控制极驱动器62可以包括一个International Rectifier IR2111半桥驱动器。在逆变器12中的两个功率开关64和65对谐振电路14提供方波输出电压,其对变压器T1的一次侧提供谐振电路的谐振频率的正弦电压。电流检测器40包括和谐振电路14的返回线路串联的电阻69和连接在电阻69的两端上的差动放大器70。差动放大器70的输出提供Isense信号,其被连接到高通滤波器41(图4和6)。(由图5-8中的运算放大器表示的某些元件的操作,例如差动放大器70,缓冲级78-80以及电压比例器45和46,是常规的和熟知的,因此省略其详细说明。)电压检测环部分18b通过整流二极管72以及限流电阻或电阻73和谐振电路14的正输出相连,用于提供和电压比例器45相连的Vsense信号(图4和6)。
参看图6,高通滤波器41,其接收来自图5的Isense信号作为其输入信号,包括串联电阻75和并联电阻76。高通滤波器41的输出通过两个缓冲器级78和79被提供给AGC电路42。AGC电路42的输出(调整的Isense)通过另一个缓冲器级80被提供给相移电路50。来自图5的Vsense信号被输入给电压比例器45,其和补偿电路46相连。补偿电路46包括差动放大器82,其在反相输入端接收来自电压比例器45的输出,并在非反相输入端接收参考电压,并提供和比例电压Vsense与参考电压之间的差值相关的输出。补偿器差动放大器82的输出被提供给低通滤波器和电压限制器87,其输出(调整的Vsense)被输入给作为可变电阻的两个JFET晶体管84,85。
相移器50(图6)包括两级89,90,每级包括差动放大器91,92。第一级放大器91的反相和非反相输入端接收分别通过电阻94和隔直电容95由缓冲器80提供的滤波的并被增益控制的电流检测信号(调整的Isense)。第一级放大器91还在其非反相输入端上接收来自JFET84的可变的参考信号,其移动在非反相输入端上的调整的电流检测信号(调整的Isense)的相位。移动的数量由JEFT 84的导电率确定,JFET 84被由补偿器电路46的输出(调整的Vsense)提供给其控制极端子的输入信号控制。第一级放大器91的输出和被滤波并被增益控制的电流检测信号(Isense)和被移相的(被调整的Vsense移相)、被滤波的、被增益控制的电流检测信号的差值成正比,其中相移的数量表示电流检测信号Isense和Vin之间的相位差。第二级差动放大器92操作同样的第一级差动放大器91,从而通过电压滤波器级93提供检测的电路信号的扩展的移相范围,其被提供给波形整形电路55(图4和图7)。
图7说明波形整形电路55,PWM控制电路58,启动电路63和逻辑电路60的一部分的原理图。波形整形电路55包括电压缓冲器级95,其接收图6中来自电压滤波器级93的相移信号,以及比较器级97,其把被缓冲的正弦相移信号转换成方波信号。PWM控制电路58包括定时电路99(例如Motorola MC1455),其接收来自比较器级97的方波相移信号作为触发信号并在其输出端提供脉冲(PWM定时脉冲),其宽度和相移信号相关。
参见图7和图8,启动电路63包括图7中的电压控制的振荡器(VCO)102(例如AD654,市场上可以买到)和图8中的扫描触发器电路104,其提供扫描触发器信号。图8的扫描触发器电路104包括简单的电压比例器110,比较器110a,和触发器111。比例器110接收来自逆变器12的输入的母线电压检测信号Vsense(图4和图5),当母线电压检测信号Vsense超过由比较器110a确定的参考电压时,提供扫描触发信号。触发器111由比较器110a的输出同步,维持扫描触发信号直到母线电压检测信号Vsense达到和比较器110a相连的参考电压。在任何灯可以被点燃之前,需要一个最小的母线电压检测信号Vsense。当母线电压检测信号Vsense增加并超过最小的需要电压时,扫描触发信号使晶体管112(图7)截止,因而使电容器113充电,这对VCO 102产生一个增加的斜坡电压或扫描电压。扫描触发信号的宽度决定由VCO 102(脚1)输出的信号的频率范围。
电压比例器66(图4)和过电压反馈环20的触发器67的细节如图8所示。比例器66由比较器66a实现,其同步触发器67,从而提供上述的过电压信号,即,当Vsense信号超过输入到比较器66a的参考电压时提供所述的过电压信号。或门117在没有过电压信号时由触发信号提供控制极触发信号。
在图8中的逻辑电路60的另一部分提供环触发信号,并且包括由比较器115a实现的比例电路115和触发器116。触发器116当Vsense信号超过表示灯输出电平是正确的预定电平时提供环触发信号。环触发信号被提供给图7中的或门120,如果PWM定时脉冲存在(来自定时器118,表示正常的相移控制操作),或者环触发信号存在(图8中的触发器116,表示灯输出电压值不正确),则其向或门121提供一个输入信号。如果或门120提供一个输出(PWM定时脉冲或环触发信号),或者如果启动电路63(图7)正在利用被或门120的输出同步的触发器123向或门122提供扫描频率(启动信号),则或门121(图7)提供触发信号。提供所述触发信号以便使镇流器从启动(频率扫描)方式转换到稳态(相移控制)方式。或门117(图8)通过一个触发信号,从而在没有过电压信号时,提供控制极触发信号(低脉冲),如上所述。
图4-8表示用于瞬时启动灯30的镇流器10的结构,其通常并联连接,如图4所示。利用由图4-8所示的提供的基于相移的控制,在所有的负载条件下,镇流器10产生一个恒定的电压输出V0(例如550V)。用这种方式,一个或多个灯的除去将不影响其余灯的操作。当一个新灯或几个新灯被加于构成照明结构的一组灯时,输出电压V0被施加于灯的端子,并且足够高,以便使这些灯点燃。在点燃之后,灯电压V0降低到一个较低的值(例如140V),并且串联电容器C1执行镇流功能。再次利用上述的基于相移的控制方法,使得灯增加的过程不会对所述的组内的其余的灯的操作带来大的影响。
上述的镇流器可以被设计用于启动一组快速启动灯30a,如图9-11所示,并用于一组串联/并联连接的瞬时启动灯30,如图12所示。在图9-11的实施例中,在变压器T1a的一次侧上的镇流器10a基本上和镇流器10相同,其不同之处有谐振电感Lr1,其具有几个二次绕组Lr1’,和控制器16a。在图9-12中,电流反馈环部分18a,电压反馈环部分18b,移相器50,波形整形电路55,启动电路63,过压环部分(电压比例器66和触发器67)以及控制器16都用一个方块16a表示,被称为“控制和反馈电路”。
参看图9,5个二次绕组Lr1’通过各个电容器C3和C4和灯30a的各个灯丝132和131的一个端子相连,从而在启动期间提供正确的灯丝加热,为了延长灯的寿命,这是需要的。每个灯丝的另一端通过各个镇流电容器C2并联。
在图9中的灯丝131和132预热期间,半桥逆变器12被控制和反馈电路16a中的控制器以较高的频率操作,从而产生加于灯上的小的输出电压,因此减少加热电流。此时,谐振电路14a被如此设计使得二次侧电压的谐振电感(Lr1’)被保持为高的值。灯丝通过串联电容器C3和C4以几乎恒定的电压降被加热。在一个短的时间间隔之后(例如小于1秒),控制器16a的操作频率被减少,从而增加谐振电路输出电压。当在灯30a上的电压大于点燃电压时,一个或几个灯便相继发光。在稳态操作时,在控制和反馈电路16a中的控制器以比在预热启动期间低得多的频率操作。虽然Lr1的二次侧电压被增加,但是主要由频率决定灯丝电流和电压的变化。结果,在4个灯的全负荷的情况下,灯丝电压降低50%以上。这又使灯丝上的功率损失减少,因而增加了镇流器的效率。
图10表示一种镇流器10a,其被构成用于驱动一组两个串联连接的快速启动灯30a。谐振电感Lr1具有二次绕组Lr1’,通过电容器140分别和灯30a的灯丝131、132相连。附加的灯(例如3个或4个)可以按照图10所示的拓扑串联。
图11表示一种镇流器10a,其被构成用于驱动一组两个并联连接的快速启动灯30a。谐振电感Lr1具有二次绕组Lr1’通过电容器145分别和灯丝131,132相连。可以使用附加的电感147和每个灯串联,其可以和绕组147a,147b是绕在同一铁心上的一个元件。附加的灯(例如3个或4个)可以按照图11的拓扑并联连接,或者使用一个平衡扼流圈或几个平衡扼流圈并联连接。
在优选实施例中,谐振电感Lr1,谐振电容Cr,和输出隔离变压器T1都在一次侧上。如果谐振电感Lr1的二次侧Lr1’不被在LC或LLC谐振瞬时启动操作中使用,则对于瞬时启动和快速启动独立操作可以使用相同的电源电路。一个直接的利益是降低生产线的成本。
如上所述,可以使用相角控制进行调光操作。增加相角将减少电压增益(图3),因而使快速启动灯30a变暗。利用图9-11的拓扑可以进行调光操作,其中通过对控制和反馈电路16a提供用于电平控制的指令输入,并监视在变压器T1a的灯侧(二次侧)上的电流。响应指令电平输入,控制和反馈电路16a增加或减少相角,从而根据由变压器T1的灯侧的电流反馈提供的参考分别减少或增加增益。例如可以通过调整输入给图6中的比较器46的参考电平来调整相角。无论相角由提供给电平指令输入的信号如何设置,控制和反馈电路将基本上保持恒定。因而,在调光操作期间,可以调整灯的亮度,并且不管输入线路电压的变化,总可以维持所述的设置值。
除去图4和9-11所示的多灯结构之外,此处所述的具有基于相移控制的电压馈入型半桥LC或LLC谐振变换器可以用于瞬时启动灯30的串联/并联结构,如图12所示。
虽然本发明已经结合优选实施例进行了说明,但是,不脱离本发明的构思,本领域技术人员可以作出许多改变和改型。因而,在所附的权利要求中提出的本发明并不限于上述的结构的细节,在权利要求限定的本发明的范围和构思内,包括各种改变和改型。
权利要求
1.一种用于驱动包括一个或几个气体放电灯(30)的放电灯组的电子镇流器(10),包括电压输入型半桥逆变器(12),其具有适用于和直流电压源(Vbus)相连的输入端,输出端,以及一个或几个开关元件(64,65),用于把在逆变器的输入端的直流电压转换为逆变器输出端的交流电压,每个开关元件具有一个控制输入端;以给定的频率谐振的谐振电路(Lr,Cr),其和逆变器的输出端相连,所述谐振电路在其输出端提供输出电压,以便点燃和镇流器相连的灯,并维持所述灯发光;和每个灯相连的镇流装置(35);控制和反馈电路,其包括控制器(16),其具有和每个控制输入相连的输出(22,23),并向其提供控制信号用于控制开关器件的转换,以及被连接在所述谐振电路和控制器之间的反馈环(18);控制和反馈电路被这样构成,使得向逆变器提供使逆变器提供具有基本恒定的相角的交流输出的控制信号,所述反馈环通过操作用于跟踪相角的改变,所述相角改变发生在当灯被熄灭、点燃、断开或连接时的过渡期间或者当一个,一些或所有的灯被连接时,并向控制器提供校正信号,所述控制器作为响应向逆变器提供控制信号,借以向和镇流器相连的一个灯或几个灯提供基本上恒定的电压输出。
2.如权利要求1所述的镇流器,其中反馈环包括电压反馈环部分(18b)和电流反馈环部分(18a)以及相移电路(50),其响应由电流反馈环部分提供的和谐振电路中的电流有关的信号,以及和由电压反馈环部分提供的和谐振电路的输出电压相关的信号,向控制器提供相移的控制信号。
3.如权利要求2所述的镇流器,其中所述控制器包括脉宽调制控制电路(58),相移的控制信号被提供给脉宽调制控制电路。
4.如权利要求3所述的镇流器,其中相移电路包括至少一个相移级(89,90),其包括具有同相输入和反相输入的差动放大器(91,92),所述两个输入被连接,用于接收关于谐振电路中的电流的信号,其中的一个被连接用于接收关于谐振电路的输出电压的信号。
5.如权利要求1所述的镇流器,其中镇流器装置包括和各个灯串联的镇流电容器(35)。
6.如权利要求1所述的镇流器,其中镇流器(10a)适用于操作快速启动灯,并且包括用于加热和其相连的快速启动灯的灯丝(131,132)的装置(LR1’C3,C4,140)。
7.如权利要求1所述的镇流器,其中谐振电路包括至少一个谐振电感器和至少一个谐振电容器,并且其中变压器的一次侧绕组和谐振电路的输出端相连,变压器的二次绕组在操作期间和放电灯相连。
8.如权利要求6所述的镇流器,其中控制和反馈电路被连接,用于监视灯中的电流,包括用于调光操作的指令输入部分,并响应和指令输入相连的信号,改变相角,从而调整灯的亮度。
9.如权利要求1所述的镇流器(10b),包括一组4个瞬时启动灯,它们相互并联连接,并和各个镇流器件(c2)串联连接到谐振电路的输出。
10.如权利要求1所述的镇流器,包括一组4个瞬时启动灯,其中的第一对和一个镇流器件串联,第二对和另一个镇流器件串联,并且第一对和第二对和谐振电路的输出并联。
全文摘要
一种具有电压馈入型LC或LLC诸振逆变器的电子镇流器,用于多个气体放电灯独立操作,即使在一个或几个灯被点燃、熄灭、增加或除去时的过渡期间,也能维持一个或几个灯的电压基本恒定。所述镇流器包括基本上维持LC或LLC谐振电路的电压和电流之间的相角恒定的反馈环,其具有提供基本上恒定的电压输出的镇流效果。反馈环从谐振电路获得电流反馈信号和电压反馈信号,并提供相移信号作为反馈校正信号,其是被电压反馈信号进行过相位校正的电流反馈信号,用于跟踪当一个、一些或所有的灯和镇流器连接的过渡期间相位角的改变。所述反馈环包括相移电路,其包括至少一个差动放大器级,其在两个输入端接收电流反馈信号,在一个输入端接收电压反馈信号,从而使在所述一个输入端的电流反馈信号相移。所述镇流器操作瞬时启动或快速启动的包括调光配置在内的各种配置的放电灯。
文档编号H05B41/392GK1298625SQ99805339
公开日2001年6月6日 申请日期1999年12月14日 优先权日1998年12月22日
发明者G·W·布伦宁, 张劲 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1