基于可变电阻网络的直流漏电绝缘检测系统的制作方法

文档序号:10441102阅读:140来源:国知局
基于可变电阻网络的直流漏电绝缘检测系统的制作方法
【技术领域】
[0001]本实用新型属于动力电池系统、储能电池系统的绝缘检测技术领域,具体涉及基于可变电阻网络的直流漏电绝缘检测系统。
【背景技术】
[0002]电动汽车包含多种高压电器部件,例如动力电池、电机、车载充电机、DC/DC等。由于空气的潮湿、绝缘介质的老化以及车内恶劣的工作环境等,都可能导致绝缘材料的老化或损坏,进而导致动力电池系统的工作性能降低,情况严重的时候还会危及车内人员的安全。
[0003]现有电阻网络检测技术是基于固定电阻分压的原理,这种原理存在检测精度不够高的情况,不能同时保证严重漏电和轻微漏电都具备高精度检测的能力。
【实用新型内容】
[0004]为了克服现有技术的缺点与不足,本实用新型的目的在于提供一种基于可变电阻网络的直流漏电绝缘检测系统,该系统可实现绝缘检测电阻网络可变,可同时保证严重漏电和轻微漏电时的高精度检测能力,为电池系统提供更可靠的检测数据,提升电池系统的安全性。
[0005]本实用新型的目的通过下述技术方案实现:
[0006]基于可变电阻网络的直流漏电绝缘检测系统,包括:串接在电池系统与地之间的待检漏电电阻电路;
[0007]与待检漏电电阻电路并联连接的分压采样电路;
[0008]与分压采样电路连接的采样单元;
[0009]与采样单元连接的控制单元;
[0010]其中,分压采样电路包括依次串联连接的分压电阻单元及采样电阻单元,还包括用于调节分压电阻单元阻值的开关单元,所述开关单元由控制单元控制。
[0011]作为优选方式,所述分压电阻单元包括一个以上串联连接的分压电阻。
[0012]作为优选方式,所述待检漏电电阻电路包括串联在电池系统正极端与地之间的第一待测漏电电阻Rp以及串联在电池系统负极端与地之间的第二待测漏电电阻Rn。
[0013]作为优选方式,分压采样电路包括第一分压采样模块和第二分压采样模块,所述第一分压采样模块与第一待测漏电电阻Rp并联连接,所述第二分压采样模块与第二待测漏电电阻Rn并联连接;
[0014]所述第一分压采样模块包括依次串联连接的第一分压电阻及第一采样电阻,所述第一采样电阻的两端作为电压采样点与采样单元连接,还包括用于调节第一分压电阻阻值的第一开关,所述第一开关由控制单元控制;
[0015]所述第二分压采样模块包括依次串联连接的第二分压电阻及第二采样电阻,所述第二采样电阻的两端作为电压采样点与采样单元连接,还包括用于调节第二分压电阻单元阻值的第二开关,所述第二开关由控制单元控制。
[0016]作为优选,所述第一分压电阻包括依次串联连接的第一电阻、第二电阻,所述第一开关与第一电阻或第二电阻并联。
[0017]作为优选,所述第二分压电阻包括依次串联连接的第四电阻、第五电阻,所述第二开关与第三电阻或第四电阻并联。
[0018]采用上述基于可变电阻网络的直流漏电绝缘检测系统进行绝缘检测的方法,包括以下步骤:
[0019](I)通过采样单元采集采样电阻单元的电压,并输入到控制单元;
[0020](2)控制单元判断采样电阻单元的电压是否低于预设的漏电电压阈值;
[0021](3)若采样电阻单元的电压低于预设的漏电电压阈值,则控制单元调整开关单元的工作状态,减小分压电阻单元的阻值。
[0022]当待检漏电电阻电路处于严重漏电时,待检漏电电阻电路内的漏电电阻的等效阻值低,采样电阻单元的电压较低,导致采样单元的采样信号电压较小,在固有的采样率和采样精度下,检测精度受到严重影响。此时,控制单元根据分压采样电路输入的采样电压控制开关单元闭合,减小分压电阻单元的阻值,从而使采样电阻单元的电压增大,从而输入控制单元的采样电压增大,进而保证良好的采集精度。
[0023]作为优选方式,若采样电阻单元的电压低于预设的漏电电压阈值,则控制单元闭合开关单元,减少接入的分压电阻的个数,以减小分压电阻单元的阻值。
[0024]本实用新型相对于现有技术具有如下的优点及效果:所述可变电阻网络直流漏电绝缘监测系统可实现绝缘监测电阻网络可变,可同时保证严重漏电和轻微漏电的高精度检测能力,为电池系统提供的更可靠的检测数据,提升电池系统的安全性。
【附图说明】
[0025]图1为实施例1所述可变电阻网络直流漏电绝缘监测系统的结构示意图。
[0026]图2为实施例2所述绝缘检测方法的流程图。
【具体实施方式】
[0027]下面结合实施例及附图对本实用新型作进一步详细的描述,但本实用新型的实施方式不限于此。
[0028]实施例1
[0029]如图1所示,一种基于可变电阻网络的直流漏电绝缘检测系统,包括:
[0030]串接在电池系统I与地之间的待检漏电电阻电路2;
[0031 ]与待检漏电电阻电路2并联连接的分压采样电路3;
[0032]与分压采样电路3连接的采样单元4;
[0033]与采样单元4连接的控制单元5;
[0034]其中,分压采样电路包括依次串联连接的分压电阻单元及采样电阻单元,还包括用于调节分压电阻单元阻值的开关单元,所述开关单元由控制单元5控制。
[0035]具体的:
[0036]所述待检漏电电阻电路2包括串联在电池系统I正极端与地之间的第一待测漏电电阻Rp以及串联在电池系统I负极端与地之间的第二待测漏电电阻Rn。
[0037]所述分压采样电路3包括第一分压采样模块和第二分压采样模块。所述第一分压采样模块与第一待测漏电电阻Rp并联连接,所述第二分压采样模块与第二待测漏电电阻Rn并联连接;所述第一分压采样模块包括依次串联连接的第一分压电阻6及第一采样电阻Rll,所述第一采样电阻Rll的两端作为电压采样点与采样单元4连接,还包括用于调节第一分压电阻6阻值的第一开关SI,所述第一开关SI由控制单元5控制;
[0038]所述第二分压采样模块包括依次串联连接的第二分压电阻7及第二采样电阻R12,所述第二采样电阻R12的两端作为电压采样点与采样单元4连接,还包括用于调节第二分压电阻7单元阻值的第二开关S2,所述第二开关S2由控制单元5控制。
[0039]所述第一分压电阻6包括依次串联连接的第一电阻R1、第二电阻R2,所述第一开关SI与第一电阻Rl或第二电阻R2并联。
[0040]所述第二分压电阻7包括依次串联连接的第三电阻R3、第四电阻R4,所述第二开关S2与第三电阻R3或第四电阻R4并联。
[0041]本实施例中,采样单元采用模数转换器(ADC),控制单元为单片机(MCU)。
[0042]实施例2
[0043]如图2所示,采用实施例1所述基于可变电阻网络的直流漏电绝缘检测系统进行绝缘检测的方法,所述方法包括以下步骤:
[0044](I)通过采样单元采集采样电阻单元的电压,并输入到控制单元;
[0045](2)控制单元判断采样电阻单元的电压是否低于预设的漏电电压阈值;
[0046](3)若采样电阻单元的电压低于预设的漏电电压阈值,则控制单元调整开关单元的工作状态,减小分压电阻单元的阻值。
[0047]当待检漏电电阻电路处于严重漏电时,待检漏电电阻电路内的漏电电阻的等效阻值低,采样电阻单元的电压较低,导致采样单元的采样信号电压较小,在固有的采样率和采样精度下,检测精度受到严重影响。此时,控制单元根据分压采样电路输入的采样电压控制开关单元闭合,减小分压电阻单元的阻值,从而使采样电阻单元的电压增大,从而输入控制单元的采样电压增大,进而保证良好的采集精度。
[0048]若采样电阻单元的电压低于预设的漏电电压阈值,则控制单元闭合开关单元,减少接入的分压电阻的个数,以减小分压电阻单元的阻值。
[0049]上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。
【主权项】
1.一种基于可变电阻网络的直流漏电绝缘检测系统,包括:串接在电池系统与地之间的待检漏电电阻电路; 与待检漏电电阻电路并联连接的分压采样电路; 与分压采样电路连接的采样单元; 与采样单元连接的控制单元; 其中,分压采样电路包括依次串联连接的分压电阻单元及采样电阻单元,还包括用于调节分压电阻单元阻值的开关单元,所述开关单元由控制单元控制。2.根据权利要求1所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:所述分压电阻单元包括一个以上串联连接的分压电阻。3.根据权利要求1所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:所述待检漏电电阻电路包括串联在电池系统正极端与地之间的第一待测漏电电阻Rp以及串联在电池系统负极端与地之间的第二待测漏电电阻Rn。4.根据权利要求1所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:分压采样电路包括第一分压采样模块和第二分压采样模块,所述第一分压采样模块与第一待测漏电电阻Rp并联连接,所述第二分压采样模块与第二待测漏电电阻Rn并联连接。5.根据权利要求4所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:所述第一分压采样模块包括依次串联连接的第一分压电阻及第一采样电阻,所述第一采样电阻的两端作为电压采样点与采样单元连接,还包括用于调节第一分压电阻阻值的第一开关,所述第一开关由控制单元控制; 所述第二分压采样模块包括依次串联连接的第二分压电阻及第二采样电阻,所述第二采样电阻的两端作为电压采样点与采样单元连接,还包括用于调节第二分压电阻单元阻值的第二开关,所述第二开关由控制单元控制。6.根据权利要求5所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:所述第一分压电阻包括依次串联连接的第一电阻、第二电阻,所述第一开关与第一电阻或第二电阻并联。7.根据权利要求5所述的基于可变电阻网络的直流漏电绝缘检测系统,其特征在于:所述第二分压电阻包括依次串联连接的第四电阻、第五电阻,所述第二开关与第三电阻或第四电阻并联。
【专利摘要】本实用新型属于动力电池系统、储能电池系统的绝缘检测技术领域,具体涉及一种基于可变电阻网络的直流漏电绝缘检测系统。所述基于可变电阻网络的直流漏电绝缘检测系统包括:串接在电池系统与地之间的待检漏电电阻电路;与待检漏电电阻电路并联连接的分压采样电路;与分压采样电路连接的采样单元;与采样单元连接的控制单元;其中,分压采样电路包括依次串联连接的分压电阻单元及采样电阻单元,还包括用于调节分压电阻单元阻值的开关单元,所述开关单元由控制单元控制。所述基于可变电阻网络的直流漏电绝缘检测系统可实现电阻网络可变,可同时保证严重漏电和轻微漏电的高精度检测能力,为电池系统提供的更可靠的检测数据,提升安全性。
【IPC分类】G01R31/02, G01R31/12, G01R31/36
【公开号】CN205353257
【申请号】CN201620018903
【发明人】徐文赋, 任素云, 王延聪
【申请人】惠州市蓝微新源技术有限公司
【公开日】2016年6月29日
【申请日】2016年1月5日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1