一种基于多模态超图学习的微博情感预测方法与流程技术资料下载

技术编号:12464636

提示:您尚未登录,请点 登 陆 后下载,如果您还没有账户请点 注 册 ,登陆完成后,请刷新本页查看技术详细信息。

本发明属于多模态情感分析领域,尤其是涉及一种基于多模态超图学习的微博情感预测方法。背景技术近来,随着新浪微博等大型社交平台的迅速发展,每天社交网络的多媒体数据规模不断增长,以新浪微博为例,截止2014年5月,新浪微博月活跃用户达到1.4亿,相比2013年12月增长了10.9%。作为最受欢迎的平台之一,新浪微博使得互联网用户能够在他们感兴趣的话题下表达他们的情感。因此,它吸引了大量的关于情感信息挖掘的研究,这些研究涉及一些新兴的应用包括事件检测、社交网络分析和商业推荐。微博发展的一个明显特征在于多...
注意:该技术已申请专利,请尊重研发人员的辛勤研发付出,在未取得专利权人授权前,仅供技术研究参考不得用于商业用途。
该专利适合技术人员进行技术研发参考以及查看自身技术是否侵权,增加技术思路,做技术知识储备,不适合论文引用。
请注意,此类技术没有源代码,用于学习研究技术思路。

详细技术文档下载地址↓↓

提示:您尚未登录,请点 登 陆 后下载,如果您还没有账户请点 注 册 ,登陆完成后,请刷新本页查看技术详细信息。
该分类下的技术专家--如需求助专家,请联系客服
  • 李老师:1.计算力学 2.无损检测
  • 毕老师:机构动力学与控制
  • 袁老师:1.计算机视觉 2.无线网络及物联网
  • 王老师:1.计算机网络安全 2.计算机仿真技术
  • 王老师:1.网络安全;物联网安全 、大数据安全 2.安全态势感知、舆情分析和控制 3.区块链及应用
  • 孙老师:1.机机器人技术 2.机器视觉 3.网络控制系统
  • 葛老师:1.机器人技术 2.计算机辅助技术
  • 张老师:1.内燃机燃烧及能效管理技术 2.计算机数据采集与智能算法 3.助航设备开发