一种采用小球藻孵化石斑鱼的育苗方法与流程

文档序号:28420519发布日期:2022-01-11 21:50阅读:1466来源:国知局
一种采用小球藻孵化石斑鱼的育苗方法与流程

1.本发明涉及石斑鱼养殖领域,特别涉及一种采用小球藻孵化石斑鱼的育苗方法。


背景技术:

2.石斑鱼属于鲈形目,生活在温带和热带海域,多栖息在珊瑚礁和海底碎石的缝隙中,不作远距离洄游。石斑鱼体色多变,常呈褐色或红色,并具条纹和斑点,为暖水性的大中型海产鱼类。石斑鱼营养丰富,肉质细嫩洁白,类似鸡肉,素有“海鸡肉”之称。市面上石斑鱼被视为名贵海产。石斑鱼又是一种低脂肪、高蛋白的上等食用鱼,被推为我国四大名鱼之一。斑鱼常出现在高级酒店和餐厅,售价高且供不应求,在经济利益的拉动下,石斑鱼养殖业迅猛发展。
3.石斑鱼养殖是目前在国内的第四大养殖品种,近几年,由于市场对石斑鱼的需求量不断增长,我国石斑鱼产量逐年上升。石斑鱼的年度养殖增量超过21%,其增长率远超排名在前的鲈鱼,鲆鱼。石斑鱼成为除大黄鱼之外唯一一个持续且快速增长的品种。
4.目前石斑鱼外塘露天孵化(从鱼卵到03#号筛小苗的过程)因受天气、水质、饵料等因素影响,孵化成功率极低。即使孵化出鱼苗基本上成活率都低于5%,且鱼苗质量不高。当前在室内工厂循环水孵化这块,广东省海洋渔业试验中心最成功的一次,也才做到育苗成活率12.5%,但是同样存在着种种问题导致育苗成功率低。
5.石斑鱼从03#(3公分)小苗养殖到15公分的过程称之为标粗,该过程中由03#小苗转为4-5公分鱼苗阶段极其容易全军覆没,主要原因有两点:
6.1、03#小苗来自外塘孵化,自身潜在病毒感染风险、或是体质免疫力低下,极易夭折。
7.2、在这个阶段苗种本身抵抗力弱,更容易受外界水体中有害病菌感染。且越是感染,养殖户越用药物,导致病菌抗药性加大,同时受污染水质排放到沿海后,使得外源水质携带病菌数量也急剧增加,形成恶性循环。
8.20世纪70年代以后,东南亚各国、科威特及中国等地相继开展石斑鱼人工繁殖的研究,从产业化生产的角度,中国最早取得成功。
9.而在我国,石斑鱼人工繁殖技术研究始于上世纪80年代,最早是浙江省海洋水产研究所取得了青石斑人工繁殖的成功,此后中科院海洋所取得了赤点石斑鱼、巨石斑鱼人工繁殖的成功等。陈国华所在的海南大学海水鱼类繁育研究团队在1998年获得海南省百项农业新技术项目的资助,开始启动了具有海南特色、可推广的石斑鱼人工繁育研究。
10.国外品种研发目前呈现着高产和优质并重的发展趋势,国际种业体系呈现“以企业为主体、育繁推一体化”的发展特征,国际种业市场格局呈现垄断化发展态势。而反观中国水产种业的发展情况:遗传育种、原良种体系建设逐渐完善,育种技术创新、新品种培育取得较大的进展。但目前我国水产种业仍然存在着进口国外苗种多;良种化水平不高,遗传改良率低等问题,与国际化的大种业公司相比,多数水产种业公司还相对较小,其核心竞争力和行业优势尚未形成。
11.传统的石斑鱼孵化繁育模式,均是以外塘露天孵化为主。因受天气、水质、饵料等因素影响,孵化成功率极低。而就算孵化出鱼苗了,基本上成活率都是低于5%,且鱼苗质量不高。而当前室内工厂循环水孵化这块,广东省海洋渔业试验中心最成功的一次,也才做到育苗成活率12.5%,但是同样存在着种种问题导致育苗成功率低。同时,粗放式养殖、病虫害频发、鱼苗成活率极低,为保存货量滥用抗生素等违禁药品,导致鱼类含有药性产品品质下降,并严重污染水质。
12.石斑鱼苗的孵化环节的成功率是行业难点,孵化成功率较低,且十分不稳定,约0.1-10%。孵化过程中高死亡率的三个阶段为鱼苗开口期,开翅期和收翅期(表1)。
13.表1石斑鱼孵化育苗三大关
[0014][0015][0016]
小球藻富含二十碳五烯酸(epa)和二十二碳六烯酸(dha)等鱼苗生长必需脂肪酸,国际上对小球藻应用于饵料行业做了广泛而深入的研究,许多国家已进行小球藻的商品化生产,美国、日本、以色列等国家和我国将小球藻粉作为健康食品和优良饲料添加剂已经有30多年的历史。微藻培养是水产养殖及工厂化育苗生产中的一个重要环节,是解决鱼、虾、贝类养殖特别是种苗培育阶段饵料的一个重要方面,它的成功与否直接关系到人工育苗的成败。
[0017]
海水育苗离不开微藻,但因为大多数养殖户及企业在孵化育苗过程中无法保障鲜活微藻的稳定供给,为了提高育苗存活率,不得已选择藻粉。这也是导致孵化失败率高的一大因素,因为微藻在高温制粉过程中,氨基酸、活性物质均因高温而失去活性,使得藻粉营养成分大打折扣,最终并未达到预期育苗效果。
[0018]
微藻作为育苗的优良适口饵料,多用于鱼虾蟹贝类生长的苗种期。微藻的添加可提高养殖对象的生长性能,可补充配合饲料中不足的营养成分、降低饲料成本、提高成活率、增强抗病能力、增加体色、改善水产品品质等等。例如,青蛤育苗成败的关键是是否能培养出满足育苗需要的大量优质藻类;对虾种苗企业的生存主要由虾苗养殖效果来决定,投
喂单胞藻虾苗变态时间长短、活力、个头大小、水质均优于未投喂,而虾苗成活率的高低直接影响着产业链的上上下下。以单胞藻做为石斑鱼苗早期最适合的饵料,如果培育得当,不仅可以节约成本,减少育苗水体环境负荷,更重要的是能提高成活率,为鱼苗发育打下坚实基础。


技术实现要素:

[0019]
有鉴于此,本发明提供了一种采用小球藻孵化石斑鱼的育苗方法。该方法解决了石斑鱼孵化成活率极低、污染严重等难题。
[0020]
为了实现上述发明目的,本发明提供以下技术方案:
[0021]
本发明提供了石斑鱼孵化育苗的方法,包括如下步骤:
[0022]
养虫:放鱼卵前3~4天开始暂养ss轮虫,采用杀菌剂(菌克)以去除细菌、病毒、有机杂质及死虫;
[0023]
放卵:选择虫卵,确保1公两虫卵中死卵(沉底卵)低于40颗;向净化处理后的海水中放入所述虫卵,最终水体中鱼卵密度大于7000个/吨;
[0024]
以放卵当日计为第1日;自放卵第2日开始,添加光合菌50~100g(活菌量1.0~2.0
×
10
10
cfu/g)和芽孢杆菌50~100g(活菌量1.0~2.0
×
10
10
cfu/g),使水体中各个菌浓度达到1000cfu/ml;
[0025]
自放卵第3日开始,每日上午添加小球藻,按照每吨水体加入1.2~1.5l 小球藻藻液,所述小球藻藻液密度按照1400~2000万cells/ml计;添加完成后,等待1小时,取样检测水体中藻密度,使水体中的藻密度达到5~10万cells/ml;
[0026]
自放卵第3日开始,每日添加轮虫,上午、下午各测一次藻含量,确保养殖水体中藻含量大于15~30万个/ml;
[0027]
自放卵第3日开始,每日添加em菌10~30g(活菌量1.0~2.0
×
10
10
cfu/g);
[0028]
自放卵第10日开始,逐日减少小球藻的添加量,每日基于前一日减少小球藻添加量的20~30%,直至小球藻加入量达到1~2l小球藻藻液/吨水体,所述小球藻藻液的密度按照1400~2000万cells/ml计;
[0029]
根据鱼苗大小,逐渐更换虫子;
[0030]
每日持续换水;
[0031]
自放卵第21日,出苗。
[0032]
在本发明的一些具体实施方案中,自放卵第3~5日,每日投放30~50g(轮虫含量不少于1000个/g)轮虫/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于20个轮虫/ml则额外添加;全程灯照;
[0033]
所述轮虫的筛选采用套袋过滤,外袋350目,内袋250目,取所述外袋和所述内袋之间夹层的轮虫。
[0034]
在本发明的一些具体实施方案中,自放卵第6~7日,每日投放30~50g(轮虫含量不少于1000个/g)轮虫/吨水体,且投放100g(桡足类含量不少于200 个/g)桡足类/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于20个轮虫/ml水体或低于2个跳蚤/ml水体则额外添加;于早8点至晚7点光照;
[0035]
所述轮虫的筛选采用套袋过滤,外袋350目,内袋250目,取所述外袋和所述内袋之
间夹层的轮虫;所述桡足类的筛选采用200目滤网单袋过滤。
[0036]
在本发明的一些具体实施方案中,自放卵第8~9日,每日投放30~50g(轮虫含量不少于1000个/g)轮虫/吨水体,且投放200g(桡足类含量不少于200 个/g)桡足类/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于20个轮虫/ml水体或低于2个跳蚤/ml水体则额外添加;无光照;
[0037]
所述轮虫的筛选采用套袋过滤,外袋350目,内袋200目,取所述外袋和所述内袋之间夹层的轮虫;所述桡足类的筛选采用200目滤网单袋过滤。
[0038]
在本发明的一些具体实施方案中,自放卵第10~13日,每日投放15~30g (轮虫含量不少于1000个/g)轮虫/吨水体,且投放200~300g(桡足类含量不少于200个/g)桡足类/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于2个桡足类/ml水体则额外添加;无光照;
[0039]
所述轮虫的筛选采用套袋过滤,外袋350目,内袋200目,取所述外袋和所述内袋之间夹层的轮虫;所述桡足类的筛选采用200目滤网单袋过滤。
[0040]
在本发明的一些具体实施方案中,自放卵第13~20日,每日投放300~800g (桡足类含量不少于200个/g)桡足类/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于2个桡足类/ml水体则额外添加;无光照;
[0041]
所述桡足类的筛选采用150目滤网单袋过滤。
[0042]
在本发明的一些具体实施方案中,自放卵第21日之后,每日投放 800~1500g(桡足类含量不少于200个/g)桡足类/吨水体,每隔2~3小时喂一次虫,每隔3小时监测一次水体中虫的含量,低于2个桡足类/ml水体则额外添加;无光照;
[0043]
所述桡足类的筛选采用100目滤网单袋过滤。
[0044]
在本发明的一些具体实施方案中,ph范围:8.2~7.8,每日跌幅不可大于 0.15;do范围:4.5~6mg/l;orp范围:100~300。
[0045]
在本发明的一些具体实施方案中,氨氮范围:《0.15mg/l;亚盐范围:《 0.1mg/l。
[0046]
在本发明的一些具体实施方案中
[0047]
前期(收翅前):氨氮报警上限:《0.12mg/l,控制上限:《0.15mg/l;
[0048]
亚盐报警上限:《0.06mg/l,控制上限:《0.1mg/l;
[0049]
后期(收翅后):氨氮报警上限:《0.15mg/l,控制上限:《0.2mg/l;
[0050]
亚盐报警上限:《0.06mg/l,控制上限:《0.1mg/l。
[0051]
本发明通过自行生产的天然绿色微藻产品,运用到石斑鱼室内工厂化育苗环节,突破石斑鱼孵化成活率极低、污染严重等难题,打通室内工厂化育苗全过程,为的石斑鱼室内工厂化育苗转型提供助力。
附图说明
[0052]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
[0053]
图1示养殖过程水质溶解氧变化;
[0054]
图2示养殖过程水质ph变化;
[0055]
图3示石斑鱼用小球藻养殖过程成活率变化。
具体实施方式
[0056]
本发明公开了一种采用小球藻孵化石斑鱼的育苗方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
[0057]
本发明通过自行生产的天然绿色微藻产品,运用到石斑鱼室内工厂化育苗环节,突破石斑鱼孵化成活率极低、污染严重等难题,打通室内工厂化育苗全过程,为的石斑鱼室内工厂化育苗转型提供助力。
[0058]
以下为我司产品与市售产品区别:
[0059]
表2
[0060][0061]
下面结合实施例,进一步阐述本发明:
[0062]
实施例1培养前准备
[0063]
1)放卵前,将孵化桶清洗干净,接好气石气饼、灯管水管。
[0064]
2)用漂白水消毒孵化桶,浸泡1晚,排放干净。
[0065]
3)再次清洗孵化桶,确保将孵化桶内壁残留的漂白水清洗干净。
[0066]
4)检测电线、水管、气泵等设备是否正常。
[0067]
实施例2养虫
[0068]
放卵前3-4天开始暂养ss轮虫,将外塘引进的轮虫进行清洗暂养,每天进行筛选再清洗,同时加入杀菌剂(菌克)以去除细菌、病毒、有机杂质及死虫。
[0069]
实施例3 day 1放卵
[0070]
1)放卵前一天,将海水净化处理后加入孵化池中。
[0071]
2)放卵当天,选购合适卵体,并对鱼卵进行检测。检测方法:死卵少(死卵:下沉或发白),活卵通透性高,悬浮性好,显微镜镜检卵囊饱满,无空胞或死胚。确保每袋虫卵(1公两)中死卵低于40颗(沉底卵)
[0072]
3)计算单位水体用卵量,将所有鱼卵混合均匀后根据计算量加入到孵化池中,确保最终水体中鱼卵密度大于7000个/吨。计算方法:将鱼卵加入水体后,充分混合半小时用烧杯舀取500ml水体,统计鱼卵数量,再乘以2000即得到一吨水体中鱼卵数量。
[0073]
4)设定在线传感器,确保数据实时远传及报警,报警下限为do:4.8、ph:8.0。
[0074]
实施例4 day 2-day 3加菌、加藻
[0075]
1)第2天开始,每日添加光合菌100g(活菌量1.0
×
10
10
cfu/g)和芽孢杆菌100g (活菌量1.0
×
10
10
cfu/g),使水体中各个菌浓度达到1000cfu/ml
[0076]
2)第3天开始,每天上午补入小球藻产品,按照每吨水体加入1.2-1.5l鲜活小球藻藻液(鲜活小球藻藻液密度按照1400-2000万cells/ml计)如达不到,则重新计算体积,进行添加。添加完成后,等待1小时,取样检测水体中藻密度,使水体中的藻密度达到5-10万cells/ml。
[0077]
实施例5 day 9加虫、加菌、加藻
[0078]
表3 喂虫工艺
[0079]
[0080]
[0081][0082]
实施例6轮虫强化:以小球藻进行强化。桡足类(水蚤)强化:以小球藻、鳗鱼粉、虾片、酵母粉共同强化
[0083]
1)第3天开始加虫,喂虫方式见表3喂虫工艺。
[0084]
2)从加虫开始,藻加入量加倍,上下午各测一次藻含量,需确保养殖水体中藻含量大于15~30万个/ml,如低于该值,或下午藻含量迅速下降,则需要额外补入。
[0085]
3)每日加入em菌1-5ppm(克/吨水体)。
[0086]
4)换水,
[0087]
过料后即开始做微流水换水方式:以1-2根400升立柱进行蓄水,以虹吸的方式将立柱中的水吸入养殖池中,调整进水速率来减缓对鱼苗的应激,每次换水过程不可操之过急,应在3h以上。
[0088]
5)该阶段需时刻关注ph、do及orp变化,确保ph及do平稳,如ph呈下降趋势,则需要额外补入藻液。如do呈下降趋势,检查气泵是否正常,调整气石出气大小,维稳do值。
[0089]
ph范围:7.8~8.5,每日跌幅不可大于0.15;
[0090]
do范围:4.5-6mg/l;
[0091]
orp范围:100-300;
[0092]
6)每日检测一次水质氨氮、亚盐情况。如出现异常,复检一次,并及时汇报。
[0093]
氨氮范围:《0.15mg/l;
[0094]
亚盐范围:《0.1mg/l;
[0095]
如氨氮及亚盐持续上升,则应采取应急措施:加大换水量(换水比例
[0096]
30-50%),使水质指标恢复到工艺设定标准。
[0097]
实施例7day 10-day 20加虫、加菌、加藻、换水
[0098]
1)持续换水
[0099]
2)逐日减少鲜活小球藻用量,每日减少20-30%(基于前一日),直至鲜活小球藻加入量每吨水体加入1-2l鲜活小球藻藻液(鲜活小球藻藻液密度按照
[0100]
1400-2000万个细胞/毫升计),不可骤然停藻,不可迅速减量。
[0101]
3)根据鱼苗大小,逐渐更换虫子,虫子喂养同表3喂虫工艺。
[0102]
实施例8 day 21-出苗
[0103]
1)持续换水
[0104]
氨氮范围:《0.2mg/l,亚盐范围:《0.1mg/l
[0105]
2)根据鱼苗大小,逐渐更换更大跳蚤,虫子喂养时间变更为每日3-5次,喂养工艺同喂虫工艺。
[0106]
实施例9氨氮及亚盐控制
[0107]
1)一次性换水量不超过30%。
[0108]
2)前期鱼苗较弱时,换水应慢而稳,后期鱼苗活力强后,换水应迅速(半小时内),将底部的高浓度氨氮亚盐水质交换出去。
[0109]
3)换水完成后,再次检测氨氮和亚盐情况,如有明显下降,则达到控制目的,如无下降或继续上升则进行吸底操作(吸底前应跟现场负责人充分沟通)。
[0110]
前期(收翅前):氨氮报警上限:《0.12mg/l,控制上限:《0.15mg/l
[0111]
亚盐报警上限:《0.06mg/l,控制上限:《0.1mg/l
[0112]
后期(收翅后):氨氮报警上限:《0.15mg/l,控制上限:《0.2mg/l
[0113]
亚盐报警上限:《0.06mg/l,控制上限:《0.1mg/l
[0114]
效果例1溶解氧
[0115]
1)调节养殖池送气用风机,使气压维持0.2-0.4mpa;
[0116]
2)调节养殖池进气阀,使气泡均匀分散在养殖池中。
[0117]
3)每日通过实施例3-7进行加藻操作。
[0118]
结果如图1所示。
[0119]
石斑鱼孵化过程,水体溶氧应维持在4mg/l以上。根据图1可看出溶氧均维持在正常值以上,加入小球藻可保证水体溶解氧水平。同时也可看出,在养殖前三天,溶氧出现上升趋势,这个阶段为鱼卵向鱼花孵化过程,耗氧量低,在添加小球藻后,溶氧处于较高水平。后面几天出现下降趋势,为鱼苗孵化出来后耗氧量增加,且加入虫子及em菌,均为耗氧生物,导致溶氧持续下降。这也提示在养殖第五天开始,应加大藻用量,以提高水体溶氧水平,同时降低水体氨氮值。
[0120]
效果例2 ph值
[0121]
通过实施例4-7进行加藻、换水操作;
[0122]
结果如图2所示。
[0123]
石斑鱼孵化最适ph范围7.9-8.3。通过图2可看出ph均处于合适范围,但养殖中后期,ph明显下降,比最适范围低。同时也可看出,ph曲线跟溶氧曲线的变化高度一致,溶氧高,ph高,溶氧低,ph低,呈明显的正相关。因为小球藻在光合作用过程中,吸收二氧化碳、亚硝酸盐等酸根离子,产生氧气,同时提升水体ph值。结果如图2所示,专利所述工艺可维持养殖水体 ph在鱼苗最适生长ph范围。
[0124]
效果例3
[0125]
根据实施例1-9所述工艺进行相关实验。结果如图3所示。
[0126]
通过本发明提供的养殖方法,石斑鱼孵化育苗成活率可由原先的3%提高至20%
以上。
[0127]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1