细菌芽胞的制作方法

文档序号:1024526阅读:400来源:国知局
专利名称:细菌芽胞的制作方法
技术领域
本发明涉及一种在诱发免疫应答中芽胞的应用、诱发所述免疫应答的方法、以及制备所述芽胞的方法。
感染是导致人群死亡的首要原因。在过去100年中,环境卫生及接种疫苗对人类健康做出了最重要的贡献,它们的存在显著地减少了因感染性疾病而导致的死亡。
不断改进的接种疫苗策略一直起着至关重要的作用,这主要基于以下几个原因。
首先,可以提供更佳水平的免疫性,从而对抗主要是通过粘膜表面而进入体内的病原体。疫苗一般是双亲给予。然而,许多疾病利用胃肠(GI)道作为主要入口。因而,霍乱和伤寒是通过摄入病原体伤寒沙门菌(Salmonella typhi)和霍乱弧菌(Vibrio cholera)并其后在(霍乱弧菌)移殖或穿过粘膜上皮易位(伤寒沙门菌S.typhi)(嵌入胃肠道)所引起。类似地,TB起初是由结核分枝杆菌(Mycobacterium tuberculi)对肺的感染所引起。经注射的免疫法产生血清应答(体液免疫),其包括主要的IgG应答,而IgG应答在预防感染时是较少有效的。这是为何许多疫苗部分有效或给出较短保护时间的一个原因。
第二,提供无针的给药途径。目前接种疫苗程序的一个主要问题是至少需要一次注射(例如,破伤风疫苗)。虽然保护持续10年,但儿童起初要通过注射给予3个剂量,然后每5年要给予加强剂量。在发达国家许多人由于“害怕注射”将不选择采用加强剂量。相反,发展中国家破伤风死亡率较高,原因就在于使用了重复使用过的针头或未经消毒过的针头。
第三,安全性得到改善,副作用被降至最低。许多疫苗由活生物组成,其以某种方式被变得非致病的(被减弱)或被灭活。虽然在原理上,这被认为是安全的,但有证据表明必须开发更安全的方法。例如,在1949年(Kyoto事件)68个儿童因接受受污染的白喉疫苗而致死(Health 1996)。同样,在1995年的Cutter事件中,105个儿童发生脊髓灰质炎。研究发现,脊髓灰质炎疫苗没有用福尔马林进行正确灭活。许多其它疫苗,例如,MMR(麻疹-腮腺炎-风疹)疫苗和百日咳疫苗(Health,1996)受副作用传闻的影响。
第四,为发展中国家提供经济型疫苗,这些国家薄弱的储运设施有碍于免疫计划的有效实施。在疫苗必须进口的发展中国家,需要正确的保存和分配疫苗。对于发展中国家而言,用于在冷冻、适宜的卫生条件下维护疫苗的相关费用是相当巨大的。对某些疫苗而言,如口服脊髓灰质炎疫苗和BCG疫苗,这些疫苗在2-8℃仅存活1年(Health,1996)。现在对发展中国家来说,对能够在环境温度下长期存储的强壮疫苗是首先要考虑的问题。这类疫苗应该具备热稳定性,能够耐受剧烈的温度变化以及干燥的状况。最后,一种易于生产的疫苗将会为发展中国家带来巨大的好处,并且应该具有在该国生产的潜力。
人们已寻求改善这些问题的方法。
相应地,本发明提供了一种用遗传密码进行遗传修饰的芽胞,包括至少一种编码抗原的遗传结构以及作为嵌合基因的芽胞外壳蛋白,所述遗传修饰的芽胞具有所述抗原,其表达为具有所述芽胞外壳蛋白的融合蛋白。
本发明的一个优点在于,使用芽胞给予疫苗将消除对注射的需要以及在发展中国家与针有关的问题。除此之外,芽胞是稳定的并且耐热和干燥,因而克服了在发展中国家存储疫苗的问题。芽胞易于生产,并可以低成本生产,这使根据本发明的疫苗的生产是经济的并且最后,作为非病原体以及其目前作为口服前生命期的(probiotic)的应用,枯草杆菌(Bacillus subtilis)的使用使得其成为比那些目前可获得的疫苗系统更安全的疫苗系统。
本发明的另外的优点在于,芽胞在粘膜表面诱发免疫应答。这使该接种疫苗对抗粘膜病原体更有效,例如,伤寒沙门菌、霍乱弧菌、以及结核分枝杆菌。
在粘膜表面释放的疫苗在对抗那些经粘膜途径感染的疾病时将更有效。疫苗给予的粘膜途径可以包括口服、鼻内途径和/或直肠途径。
优选地,芽胞是芽胞杆菌属(Bacillus species)。
优选地,营养细胞是芽胞杆菌属。
遗传密码包括DNA或cDNA。应当知道,术语“遗传密码”包括密码子使用的简并性。
优选地,遗传结构包括至少部分芽胞外壳蛋白基因和至少部分抗原基因,以嵌合基因的形式。
优选地,抗原基因位于芽胞外壳蛋白基因的3′端。可替换地,该抗原基因可位于芽胞外壳蛋白基因的5′端或在芽胞外壳蛋白基因的内部。
优选地,遗传结构包括在嵌合基因的5′端的芽胞外被启动基因(启动子)。
该遗传结构包括质粒或其它载体,其中嵌合基因是位于由至少部分amyE基因位于侧面的多克隆位点。可替换地,该遗传结构可包括质粒或其它载体,其中嵌合基因是位于由至少部分thrC基因位于侧面的多克隆位点。应当明白,本发明并不限于在amyE基因和thrC基因中插入。插入任何基因是容许的,只要生物的生长和芽胞形成不受损害,即,插入就其功能作用而言是多余的。
优选地,该遗传结构是用来通过双交换重组转化营养母细胞。可替换地,该遗传结构可以是整合载体,例如p JH101,其用来通过单交换重组转化营养母细胞。
抗原优选为至少破伤风毒素片段C或不稳定毒素B亚单位之一。可替换地,该抗原可以是任何抗原,其适合用于诱发免疫应答。
芽胞外壳蛋白优选为cotB。可替换地,该芽胞外壳蛋白是选自由cotA、cotC、cotD、cotE、以及cotF组成的组。可替换地,该芽胞外壳蛋白是选自由cotG、cotH、cotJA、cotJC、cotM、cotSA、cotS、cotT、cotV、cotW、cotX、cotY、以及cotZ组成的组。
芽胞可以通过口服或鼻内或直肠途径给予。芽胞可以利用所述口服或鼻内或直肠途径的一种或多种给予。
芽胞的口服给予可以适当地通过片剂、胶囊剂、或液体混悬剂或乳剂。可替换地,这些芽胞可以借助于Dischaler或Turbohaler、以细散剂或气雾剂的形式给予。
鼻内给予可以适当地以细散剂或鼻喷雾剂或改进的Dischaler或Turbohaler的形式。
直肠给予可以适当地通过栓剂。
根据本发明的芽胞在给予之前被热灭活,以致它们不会发芽进入营养细胞。
根据另外的方面,本发明提供了根据本发明的遗传修饰的芽胞,用作活性药物组合物。
根据另外的方面,本发明提供了至少两种不同的遗传修饰的芽胞,每种修饰的芽胞表达至少一种不同的抗原,根据本发明用作活性药物组合物。
根据另外的方面,本发明提供制备遗传修饰的芽胞的方法,该方法包括以下步骤制备遗传密码,包括至少一种编码抗原的遗传结构和作为嵌合基因的芽胞外壳蛋白;利用所述至少一种遗传结构来转化营养母细胞;诱导所述转化的母细胞以形成芽胞;分离生成的遗传修饰的芽胞。
这些芽胞在给予之前被热灭活,以致它们不会发芽进入营养细胞。
根据另外的方面,本发明提供了一种组合物,包括根据本发明的遗传修饰的芽胞,该芽胞与药用赋形剂或载体结合。
适当的药用载体对于本领域技术人员来说是已知的并且取决于药物组合物是否用于口服、直肠或鼻给药。
根据另外的方面,本发明提供了根据本发明的遗传修饰的芽胞,用于内科治疗的方法。
根据另外的方面,本发明提供根据本发明的遗传修饰的芽胞,用于制备药剂、以及用于内科治疗的方法。
内科治疗的方法优选为通过给予疫苗使人或动物对疾病具有免疫力。
根据另外的方面,本发明提供一种内科治疗的方法,该方法包括以下步骤对需要内科治疗的人或动物,口服或鼻内或直肠给予根据本发明的遗传修饰的芽胞;所述遗传修饰的芽胞诱发免疫应答,用于预防疾病。
本发明将仅用实施例的方法进行描述,并参照附图,其中

图1显示通过免疫荧光检测CotB和TTFC的存在。枯草杆菌株的芽胞形成是通过重悬浮法进行诱导(1),并在芽胞形成开始后5小时取样。样品用兔抗CotB和小鼠抗TTFC抗血清、接着用抗兔IgG-FITC(绿色荧光素,A和C组)和抗小鼠IgG-TRITC(红色荧光素,B和D组)结合物进行标记。A和B组,PY79(野生型);C和D组,RH103(CotB-TTFC表达株)。
图2显示粘膜免疫后的系统应答。在用表达CotB-TTFC的重组枯草杆菌芽胞口服(A组)或鼻内(B组)免疫以后,血清抗TTFC特异IgG应答。7只小鼠为一组用表达CotB-TTFC的芽胞(RH103;●)或非重组芽胞(PY79;○)进行口服或鼻内免疫(↑)。1.67×1010芽胞的剂量用于每个口服剂量而1.1×109芽胞的剂量用于鼻内途径,并且通过ELISA对来自各组的单个血清样品测定TTFC特异性IgG。对来自自然对照组(△)和用4mg/剂量的提纯TTFC蛋白口服免疫组(◇)的血清也进行了测定。数据表示为算术平均值而误差线条是标准偏差。
图3显示抗体同种型(isotype)分布图。用表达CotB-TTFC(RH103)的重组芽胞或非重组(PY79)枯草杆菌芽胞口服免疫后54天或鼻内免疫后48天的抗TTFC抗体同种型分布图,如在图2A和图2B的图例中所描述的。TTFC特异性IgG1、IG2a、IgG2b、IgG3、IgM、以及IgA同种型是通过间接ELISA进行测定。还测定了来自自然对照组的血清。终点滴度计算为血清的稀释度,其和1/40稀释度的混合预先免疫血清产生相同的光密度。数据表示为算术平均值而误差线条是标准偏差。
图4显示TTFC特异性排泄物IgA应答。7只小鼠为一组用表达CotBTTFC的重组芽胞(RH103)或非重组芽胞(PY79)进行口服免疫(A组)或鼻内免疫(B组),如分别在图2A和图2B的图例中所描述的。新鲜排泄物颗粒收集自这些经免疫的小鼠以及自然 组,然后测定TTFC特异性IgA的存在,如在实施例2的材料和方法部分所描述的。终点滴度计算为排泄物提取物的稀释度,其和未稀释的预先免疫排泄物提取物产生相同的光密度。数据表示为算术平均值而误差线条是标准偏差。
图5显示抗芽胞血清IgG和粘膜IgA应答。7只小鼠为一组用表达CotB-TTFC的重组芽胞(●)或非重组芽胞(○)通过口服(A和B组)或鼻内途径(C和D组)进行免疫(↑),如在图2的图例中所描述的。通过间接ELISA对各个样品测定枯草杆菌芽胞外被特异性血清IgG(A和C组)或芽胞外被特异性排泄物IgA(B和D组)。还测定了来自自然组(△)的血清。终点IgG滴度计算为血清的稀释度,其和1/40稀释度的混合预先免疫血清产生相同的光密度。终点IgA滴度计算为排泄物提取物的稀释度,其和未稀释的预先免疫排泄物提取物产生相同的光密度。数据表示为算术平均值而误差线条是标准偏差。
现参照下述非限制性实施例对本发明进行说明。
实施例1构造了嵌合基因,其中TTFC或LTB基因序列在框架内(inframe)被融合到特异性cot基因。然后将这些结构引入枯草杆菌的染色体。然后证实嵌合基因的表达并利用近亲交配小鼠(黑色C57近亲交配)进行免疫。然后测定免疫应答。除非另有说明,cot基因指cotA、cotB、cotC、cotD、cotE、以及cotF。
表1重组嵌合基因
1放置在amyE基因座(部位)2放置在thrC基因座a)嵌合基因的构造PCR(聚合酶链反应)被用来扩增特异性cot基因以使扩增cot基因序列的3′端可以融合到携带TTFC或LTB的5′端的类似PCR产物的5′端。通过限制性消化PCR产物获得了连接PCR产物。这是通过PCR扩增来实现的,其中利用携带包埋的限制部位的引物。合适的克隆载体(见下文)用识别cot基因的5′端和抗原基因的3′端的限制性内切酶进行限制酶切(切割)。切割的PCR产物连接于切割的载体而重组体则利用本领域技术人员已知的标准技术进行确定。
(在该方法中,cot基因在5′端携带其自身的启动基因序列是必需的。)b)用于染色体插入的载体载体pDG364的主要特点是amyE基因的右和左旁侧臂(称作amyE前部和amyE后部)。克隆的DNA(即,cot抗原嵌合体)利用一般的PCR技术被引入多克隆位点,然后证实该克隆,而选择的质粒克隆用识别有关主链序列(例如,PstI)的酶通过消化作用进行直线化。直线化的DNA现用来转化枯草杆菌的反应潜能细胞。通过利用质粒(氯霉素耐药性)携带的抗生素抗性基因来选择转化体。直线化的质粒将仅通过双交换重组事件进行整合,其中利用amyE的前和后旁侧臂用于重组。在该过程中,克隆的DNA被引入amyE基因而amyE基因在该过程中被灭活。这种程序将对染色体的损伤降至最低程度并且不会损害细胞生长、代谢、或芽胞形成。因为插入的基因嵌合体是在染色体中的amyE基因座,所以该基因是处于正常cot基因座的反式。例如,当cotA基因被融合到TTFC并被引入amyE基因座时,在染色体的别处也存在正常cotA基因。因而,细胞现在是部分二倍体,它携带一个正常cotA基因和一个嵌合基因。
除pDG364之外,另一个合适的载体是pDG1664。该载体几乎相同于pDG364,但在下述方面不同i)它携带红霉素耐药性基因erm。这使得可以利用红霉素而不是氯霉素来选择转化的枯草杆菌细胞,以及
ii)它携带thrC基因的前和后部分而不是amyE基因的前和后部分。thrC是多余的。
克隆的最后途径是利用整合载体。存在许多这样的载体,但pSGMU2或pJH101是优选的。在此方法中,克隆中的cot基因和固有的染色体cot基因可借助于共有的同源性将cot抗原嵌合体引入染色体。在单交换重组以后,带有cot抗原嵌合体的整个质粒在cot基因的染色体位置被引入染色体。因而,在这情况下,固有的cot基因被修饰。这与pDG364/pDG1664载体相反,其是放置在别处并且不会修饰固有的cot基因。
c)多抗原呈递为了在芽胞外被上实现多抗原呈递,必需使用两种不同的质粒载体,例如pDG364和pDG1664。一个嵌合基因形成在pDG364中并且该嵌合体在amyE基因座被引入而第二个嵌合体形成在pDG1664中并且在thrC基因座被引入。在这种情况下,每个转化事件需要单独的抗生素抗性选择。应当知道,本领域技术人员已知的任何有关技术都可以用来在芽胞外被上产生多抗原呈递。
d)菌株的证实已证实携带示于表1的嵌合体的同基因株可以表达外来抗原。特别地,利用已建立的程序,菌株获得生长并被诱导从而形成芽胞。在诱导芽胞形成以后约20-24小时收获芽胞并利用SDS-DTT提取法或NaOH提取法回收总的芽胞外壳蛋白。使用抗TTFC或抗LTB抗体的蛋白质印迹被用来证明外来抗原的存在。在cotE和cotF嵌合体中蛋白质的水平通常较低。该证实证明,这些抗原不易发生偶然的蛋白水解或降解。
TTFC可以在thrC基因座表达而来自amyE基因座的LTB具有相同水平的基因表达。
菌株的最后证实涉及确定芽胞的抗性性能是否以任何方式受到影响。制备了各个菌株的芽胞悬浮液(示于表1)。这些芽胞悬浮液在80℃加热30分钟并显示出在热处理前后携带大约相同数目的活芽胞单位。外来抗原的表达对芽胞抗性性能没有影响。
e)腹膜内免疫从每个示于表1的重组菌株制备芽胞并且通过重复洗涤提纯悬浮液以除去污染的营养细胞。然后这些悬浮液在65℃热处理以灭活任何残余的营养(未形成芽胞的细胞),接着用来通过腹膜内途径配药给小鼠,剂量为1×109芽胞/ml,时间为0、14、和28天。其后取血清样品并通过ELISA确定抗体滴度。与自然小鼠或用非重组芽胞免疫的小鼠相比,所有结构都给出较高水平的血清IgG。这些结果表明,TTFC和LTB嵌合体均是致免疫的且能够诱发免疫应答。
f)粘膜免疫性为了实现粘膜免疫性使用了两种方法口服给药和鼻内给药。对于口服给予表达TTFC融合蛋白的芽胞,在35天内使用多剂量并通过胃内灌服将1×1010芽胞/剂量给予黑色C57近亲交配小鼠。在适当的时间取尾部流出血(tail bleeds)和排泄物样品并分析尾部流出血中的血清IgG和排泄物样品中的IgA。研究发现,具有高水平的抗TTFC IgG和IgA。已观察到,在用表达LTB的芽胞(未示出)对小鼠口服免疫以后,具有类似高水平的免疫性(IgG和IgA两者)。
类似地,用表达LTB的芽胞对小鼠的鼻内给药是利用1×109芽胞/剂量来实现,其中利用微量取样器来给予芽胞(20μl),时间为0、14、和28天。产生了高水平的粘膜免疫性,这证明利用鼻内递药途径芽胞具有作为粘膜疫苗载体的潜力。我们已观察到,在用表达TTFC的芽胞对小鼠鼻内免疫以后,具有类似高水平的免疫性(IgG和IgA两者)。
利用表达TTFC和LTB两者的芽胞,在口服和鼻内免疫以后,我们能够获得类似高水平的抗TTFC和抗LTB IgG和IgA。
g)剂量在试验研究中,我们知道,约1×109芽胞/剂量是口服免疫所需的芽胞的最小剂量而1×108芽胞/剂量是鼻内免疫所需的芽胞的最小剂量。用其它的给药方案(有许多)则可能使用更低的剂量。
根据本发明的芽胞可用于呈现任何生物活性分子。例如,用于工业应用的酶。
任何芽胞形成物种可用于异源抗原呈递。然而,其它芽胞形成微生物不可能携带芽胞外壳蛋白的相同补体。确实,一些芽胞样板如芽胞杆菌仙人山属(Bacillus cereus)可仅含有一种cat蛋白。然而,对我们收集的cotA、cotB、cotC、cotD、cotE、以及cotF使用抗血清,则可能识别来自芽胞样板的外被的同源或交叉反应外壳蛋白,然后通过反求遗传学克隆这些基因。
根据本发明的芽胞也可以和佐剂一起使用。这些佐剂可以包括霍乱毒素、壳聚糖、或抑肽酶。
实施例2材料和方法芽胞的制备枯草杆菌(B.subtilis)株RH103(amyE∷cotB-tetC)和其同基因原种PY79一起被用于所有免疫作用(2)。RH103已在别处进行描述(3)并且携带破伤风毒素片段C(TTFC;47kDa)到外芽胞外壳蛋白CotB(59kDa)的C末端的融合。嵌合cotB-tetC基因被携带在枯草杆菌的amyE基因座并且因而处于内源性cotB基因的反式。RH103或PY79的芽胞形成是在DSM(Difco芽胞形成培养基)培养基中利用消耗法进行,如在别处所述(1)。在开始芽胞形成后22小时收获芽胞形成培养物。芽胞的提纯悬浮液如Nicholson和Setlow所述(1)进行制备,其中利用溶菌酶处理以断裂任何残余的芽胞囊细胞,接着在1M NaCl、1M KCl和水(两次)中洗涤。包括有PMSF以抑制蛋白水解。在最后悬浮在水中后,芽胞在68℃处理1小时以杀死任何残余细胞。接着,在-20℃冷冻前立即滴定芽胞悬浮液的CFU/ml。利用该方法我们能够可靠地在每升DSM培养物中产生6×1010芽胞。对于每批以这种方法制备的芽胞,检测了在芽胞外壳蛋白的提取物中106kDa杂交CotB-TTFC蛋白的存在,该方法是借助于蛋白质印迹并利用多克隆TTFC抗血清。
免疫荧光显微镜检查通过重悬浮法(1)诱导枯草杆菌株(PY79,RH103)以形成芽胞。在开始形成芽胞后的规定时间收集样品并利用Harry等人描述的程序(4)(具有下述改进)直接固定在重悬浮介质中。悬浮在GTE-溶菌酶(50mM葡萄糖,20mM Tris-HCl pH7.5,10mM EDTA,溶菌酶2mg/ml)之后,样品(10μl)被立即施加于显微镜盖玻片(BDH),其已经用0.01%(w/v)的多聚L-赖氨酸(Sigma)进行处理。4分钟后,从盖玻片吸出该液体,然后允许其在室温完全干燥2小时。盖玻片在PBS pH7.4中洗涤3次,在室温下用PBS中的2%的BSA阻断15分钟,然后再洗涤9次。在室温下样品用兔抗CotB和小鼠抗TTFC血清保温45分钟,洗涤3次,然后进一步用抗兔IgG-FITC和抗小鼠IgG-TRITC结合物(Sigma)在室温下保温45分钟。3次洗涤后,盖玻片被固定于显微镜玻璃片并在NikonEclipse E600荧光显微镜下进行观察。利用Nikon DMX1200数字摄像机拍摄图像,用Lucia GF软件处理,并以TIFF格式保存。
TTFC蛋白重组TTFC是制备在来自pET28b表达载体(Novagen)的大肠杆菌(E.coli)BL21(DE3 pLys)中,其携带融合到C末端多组氨酸标签的tetC基因。在诱导细菌后,观察到高水平的表达,而TTFC的提纯则是借助于细胞溶胞产物流过镍亲合柱来进行。
通过SDS-PAGE检测了冼脱的TTFC-组氨酸蛋白的完整性,而浓度则利用BioRad DC蛋白测定试剂盒进行确定。
间接ELISA用于测定抗原特异性血清和粘膜抗体平皿涂布以50μl/孔的特异性抗原(2μg/ml,在碳酸盐/碳酸氢盐缓冲液中)并留在室温过夜。抗原是提取的芽胞外壳蛋白或提纯的TTFC蛋白。在37℃用PBS中的0.5%BSA阻断1小时后,利用2倍稀释系列施加血清样品,其中稀释系列起始于在ELISA稀释剂缓冲液中的1/40稀释(0.1M Tris-HCl,pH7.4;3%(w/v)NaCl;0.5%(w/v)BSA;10%(v/v)羊血清(Sigma);0.1%(v/v)Triton-X-100;0.05%(v/v)吐温-20)。每个平皿携带阴性对照(1/40稀释的预先免疫血清)、阳性对照(来自用TTFC蛋白或芽胞双亲免疫小鼠的血清)的重复孔。在加入抗小鼠HRP结合物(除Serotec用于子类之外,全部获自Sigma)之前,平皿在37℃保温2小时。板在37℃再保温1小时,然后利用底物TMB(3,3′,5,5′-四甲基-联苯胺;Sigma)进行显影。利用2M H2SO4停止反应。绘制了每个样品的稀释曲线而终点滴度计算为稀释度,其和1/40稀释度的混合预先免疫血清产生相同的光密度。利用Mann-Whitney U检验在组之间进行了统计比较。大于0.05的p值被认为是不显著的。对于排泄物IgA的ELISA分析,我们按照Robinson等人的程序(5),其中利用大约0.1克排泄物颗粒,其已经悬浮在带有BSA(1%)和PMSF(1mM)的PBS中,在4℃保温过夜,然后在ELISA之前保存于-20℃。对于每个样品,终点滴度计算为稀释度,其和未稀释的预先免疫排泄物提取物产生相同的光密度。
免疫作用7只或8只小鼠(雌性,C57 BL/6,8周)为一组被口服、鼻内或通过腹膜内途径给予表达CotB-TTFC(RH103)的芽胞悬浮液或对照的非表达芽胞(菌株PY79)悬浮液。对于口服和鼻内给药,用氟烷对小鼠进行轻微麻醉。口服和鼻内途径使用多次给药方案,其先前用于最佳粘膜免疫(6、5)。还包括自然、非免疫对照组。口服给药还包括一组7只小鼠,其接受4μg/剂量的经提纯的TTFC蛋白。
a)在0.15ml体积中含有1.67×1010芽胞的口服免疫是通过胃内灌服法在0、2、4、18、20、22、34、35、以及36天给予。血清样品在-1、17、33、以及54天收集,而排泄物在-2、17、33、以及52天收集。
b)鼻内免疫使用在20μl的体积中有1.11×109芽胞的剂量并利用微量取样器在0、2、16、17、30、以及31天给药。血清样品在-1、15、29、及48天收集。排泄物在-1、15、29、以及47天收集。
c)经腹膜内途径免疫,在0.15ml体积中含有1.5×109芽胞,在0、14、及28天给予。血清样品在-1、7、22、36、以及43天收集。
破伤风毒素激发在最初口服免疫后60天,RH103免疫的小鼠被皮下注射破伤风毒素的等效于10或20 LD50的激发剂量。经提纯的毒素(20μg蛋白/Lf;Lf=结絮单位)被悬浮在无菌的0.9%NaCl。首次实验确定破伤风毒素的LD50为0.0003 Lf(即,1 LD50=6ng蛋白)而注射体积是200μl/小鼠。仔细地监测这些动物的破伤风症状,而出现麻痹症状的小鼠则人道地给予安乐死。在14天后未显示症状的个体则被认为是免疫的。接受TTFC提纯蛋白口服免疫的小鼠用10 LD50进行激发。自然小鼠或用PY79芽胞免疫的小鼠则用2 LD50进行激发。
提取芽胞外壳蛋白芽胞外壳蛋白是利用SDS-DTT提取缓冲液提取自高密度(>1×1010芽胞/ml)芽胞悬浮液,如在别处(1)所详细描述的。
通过SDS-PAGE测定提取蛋白的完整性而浓度则是利用BioRad DC蛋白测定试剂盒进行测定。
播散(dissemination)实验Balb/c小鼠(雌性,5周)连续5天被口服给予1×109芽胞/剂量的菌株SC2362(rrnO-lacZ cat)。SC2362提供Lac显型(表现型),其可识别为在营养琼脂(含有Xgal)上的蓝色菌落,以及氯霉素耐药性(5μg/ml;由cat基因编码)。在其后的时间点,4只小鼠为一组被处死并按下述顺序解剖样本器官和组织。
首先,收集新鲜排泄物颗粒,其后通过吸入CO2杀死动物并用70%酒精消除污染。通过将3ml无菌PBS注射进腹腔,接着温和按摩,来收集腹膜巨噬细胞。然后利用21规格针和注射器收集腹膜渗出物,并立即处理。然后打开腹腔并将肝切除。肠被分类并除去肠系膜。接着收集脾和肾,其后定位并切除派尔集合淋巴结,以避免来自肠腔内容物的污染(周围组织也被切除,作为阴性对照)。最后,收集颈腺和下颌下腺。在器官之间无菌解剖仪器是变化的。通过在1ml PBS中用3ml玻璃珠(2mm和4mm直径的混合物)旋转使样品匀浆化,然后立即平皿培养CFU(在含有Xgal和氯霉素的营养琼脂上)以确定总活细胞计数或在平皿接种之前热处理(65℃,1小时)以确定芽胞计数。
结果在芽胞表面上异源抗原的表面表达表达TTFC(作为嵌合体融合到芽胞外壳蛋白CotB)的重组芽胞(RH103)已在别处描述(3)。在评估对表达TTFC的芽胞的免疫应答之前,通过免疫荧光我们证实了TTFC是表面暴露的,如图1所示。利用抗TTFC和CotB的多克隆血清,我们可以检测芽胞形成培养物中的TTFC,其中培养物是在开始芽胞形成以后5小时收集的。我们也可以在4小时和6小时检测CotB和TTFC(数据未显出)。芽胞囊细胞被用于标记,因为其它研究已表明,高水平的背景标记禁止使用释放的内生芽胞(4)。我们的研究表明用抗TTFC血清标记的完整的卵圆形前芽胞。用cotB抗血清标记在重组和非重组芽胞中检测CotB(A和C组)。
在腹膜内注射表达TTFC的重组芽胞以后血清抗TTFC应答在开始口服和鼻内免疫之前,我们利用实验研究来评估重组芽胞的免疫原性。8只C57小鼠为一组被注射(腹膜内)重组或非重组芽胞。我们的免疫程序使用标准方案,即三次注射(含有1.5×109芽胞/剂量)重组RH103芽胞(表达杂交CotB-TTFC)或非重组PY79芽胞。在先前的研究(3)中,RH103芽胞显示出携带大约9.75×10-5pg的TTFC多肽/芽胞,因而我们的免疫剂量将含有0.15μg的TTFC。用RH103芽胞的免疫导致1.5×103的峰值抗TTFC IgG滴度,由间接ELISA确定(数据未示出),其显著不同(p<0.05)于对照组(对于PY79组为1.1×102而对于自然组为0.8×101),这说明当呈现在芽胞表面时TTFC被稳定表达且是适当地致免疫的。
在口服和鼻内免疫以后血清抗TTFC应答为了测定粘膜和系统应答的诱导,7只小鼠为一组通过口服(1.67×1010芽胞/剂量;1.65μg TTFC/剂量)或鼻内(1.11×109芽胞/剂量;0.11μg TTFC/剂量)进行免疫。注意,在技术上,通过鼻途径不可能给予更大的剂量。如图2A所示,小鼠用RH103(CotB-TTFC)芽胞口服免疫到33天给出大于1×103的滴度,显著高于(p<0.05)给予非重组芽胞(PY79)的小鼠、给予提纯TTFC蛋白(4μg/剂量)的小鼠、或对照自然组。TTFC蛋白没有用作鼻内途径的对照,因为先前的工作已表明鼻递送TTFC(用低剂量,即小于10μg/剂量)并不是致免疫的(8)。
研究发现,在鼻内免疫以后48天有稍微更低水平的TTFC特异性IgG终点滴度(图2B)。我们的数据表明,通过每一个途径,自然和非重组免疫的滴度并不具有显著差异(p>0.05)。给予表达TTFC(融合到CotB)的芽胞的组比其相应的对照组(p<0.05)具有显著更高的TTFC特异性IgG滴度对于口服组从33天算起而对于鼻内组从29天算起。在未描述的工作中,我们还发现,在带有或不带有霍乱毒素(类型Inaba 569B,0.33μg/剂量)的情况下口服给予的RH103芽胞在抗TTFC IgG滴度方面并不产生显著差异。
血清抗TTFC抗体同种型对于来自粘膜免疫小鼠的血清还检验是否存在TTFC特异性IgG、IgA和IgM抗体同种型以及IgG1、IgG2a、IgG2b和IgG3子类(图3)。用表达CotB-TTFC的RH103芽胞口服免疫的小鼠,在54天,显示高水平的IgG1和IgG2b同种型。对于IgG1、IgG2a和IgG2b子类,平均滴度显著不同于两个对照组的基准滴度i)自然小鼠和ii)用非重组芽胞免疫的小鼠(p<0.05)。对于IgG3、IgM和IgA子类几乎观察不到变化。在鼻内免疫的小鼠中,在48天的血清显示IgG1、IgG2b和IgM子类占优势。对于这些子类,滴度显著高于对照组(p<0.05)。相反,在给予非重组芽胞组和自然组之间没有观察到在任何同种型中有显著变化(p>0.05)。
粘膜抗TTFC IgA应答对于来自口服或鼻内免疫小鼠的新鲜排泄物颗粒,通过ELISA测定了TTFC特异性分泌性IgA(sIgA)的存在(图4)。通过每一种途径用表达CotB-TTFC的芽胞的免疫诱发明显的TTFC特异性sIgA应答。在口服或鼻内免疫小鼠的组中,TTFC特异性sIgA滴度在33天出现峰值(图4A和4B)。排泄物TTFC特异性sIgA的终点滴度显著高于对照组(p<0.05),而在对照组之间没有显著差异(非重组芽胞和自然组;p>0.05)。
在口服免疫后防止遭受破伤风毒素激发(challenge)在口服免疫后观察到的高血清IgG滴度(>103)是在潜在的保护水平。为了测试诱发的抗毒素应答的生物活性和相联的保护水平,用表达枯草杆菌芽胞(RH103)的CotB-TTFC口服免疫的小鼠用皮下给予的致死剂量的破伤风毒素(10或20 LD50)进行激发(表2)。
表2在口服免疫后保护小鼠免遭破伤风毒素的致死系统激发 表2表示8只小鼠为一组的处理结果,其是在60天被皮下注射激发剂量的破伤风毒素之前的0、2、4、18、20、22、34、35和36天用枯草杆菌的1.67×1010芽胞或4μg TTFC提纯蛋白进行口服免疫。在14天后没有产生症状的个体被认为是免疫的。
小鼠受到完全保护以免遭10 LD50的激发。在8只受20 LD50激发的小鼠当中,1只小鼠在72小时后具有明显的症状。所有自然小鼠和用野生型枯草杆菌芽胞(PY79)免疫的小鼠在2 LD50激发之后的72小时内均显示出明显的破伤风症状。用TTFC提纯蛋白(4μg/剂量)进行的口服免疫并不产生对抗10 LD50的保护作用并且所有小鼠在24小时内显示明显的破伤风症状。因而通过用表达CotB-TTFC的枯草杆菌芽胞口服免疫而诱发的系统抗体应答是保护性的。
抗芽胞应答除了抗TTFC应答之外,还测定了在口服和鼻内免疫以后的抗芽胞IgG和sIgA应答(图5)。用CotB-TTFC表达芽胞(RH103)和非重组芽胞(PY79)两者进行的口服免疫产生系统芽胞外被特异性IgG水平(图5A),其显著高于自然组(p<0.05)。不管使用重组或非重组芽胞在鼻内免疫以后观察到更低、但仍然显著水平(p<0.05)的芽胞外被特异性IgG滴度(图5C)。
在口服免疫小鼠的排泄物中观察到的芽胞外被特异性sIgA水平(图5B)显示对抗芽胞的显著应答。相对于非重组芽胞用于免疫,这些水平显著更高(p<0.05)。当鼻内途径(图5D)用于免疫时,观察到芽胞外被特异性sIgA水平的类似分布图,其中在给予非重组芽胞的小鼠中IgA水平随时间下降。再一次,芽胞外被特异性sIgA的水平显著高于自然小鼠(p<0.05)。
芽胞的扩散近亲交配Balb/c小鼠被每日给予1×109芽胞/剂量,连续5天。实验研究已表明这种连续给药方案足以建立可恢复的和统计相关的计数。在最后给药以后的时点,4只小鼠为一组被处死并解剖关键的淋巴器官。此外,收集排泄物,使匀浆化并确定计数。测定了在匀浆化组织和排泄物中的活细胞总计数和耐热计数。回收的活细胞计数列于表3并显示细菌从肠派尔集合淋巴结和肠系膜淋巴结的恢复水平,表明与GALT的相互作用。
表3
表3显示4只Balb/c小鼠为一组的处理结果,其连续5天口服给予枯草杆菌株SC2362(rrnO-lacZ)的1×109芽胞(总剂量,5×109)。给出的结果是每个小鼠器官的菌落形成单位的平均数,其是在给药的最后一天之后指定的时间获取的。表示为总计数(没有热处理)和芽胞计数(样品65℃处理1小时)。ND,未测定;NS,不显著(每个样品<10个活细胞单位)。数据表示为算术平均值±标准偏差。
在表3中,PP/MLN是派尔集合(Peyer’s patches)淋巴结和肠系膜淋巴结的缩写;SMG/CLN是下颌下腺和颈淋巴结的缩写;以及PM是腹膜巨噬细胞的缩写。
最有趣的是在下颌下腺和颈淋巴结中活细胞计数的恢复,而从肝和脾没有显著计数的恢复。细菌从头和颈组织恢复而从广泛扩散的系统部位很少或没有恢复表明芽胞可能已经穿过鼻咽粘膜。当细菌被从GIT清除时排泄物中的计数平稳地下降,虽然在总和芽胞计数之间几乎观察不到差异。
参考文献(1)Nicholson,W.L.,and P.Setlow.1990.Sporulation,germinationand outgrowth.,p.391-450.In C.R.Harwood.,and S.M.Cutting.(eds),Molecular Biological Methods for Bacillus.John Wiley & SonsLtd.,Chichester,UK(2)Youngman,P.,J.Perkins,and R.Losick.1984.Construction ofa cloning site near one end of Tn917 into which foreign DNA may beinserted without affecting transposition in Bacillus subtilis or expressionof the transposon-borne erm gene.Plasmid 121-9.
(3)Isticato,R.,G.Cangiano,H.T.Tran,A.Ciabattini,D.Medaglini,M.R.Oggioni,M.De Felice,G.Pozzi,and E.Ricca.2001.Surface display of recombinant proteins on Bacillus subtilis spores.J.Bacteriol.1836294-6301.
(4)Harry,E.J.,K.Pogliano,and R.Losick.1995.Use ofimmunoflurescence to visualize cell-specific gene expression duringsporulation in Bacillus subtilis.J.Bacteriol.1773386-3393.
(5)Robinson,K.,L.M.Chamberlain,K.M.Schofield,J.M.Wells,and R.W.F.Le Page.1997.Oral vaccination of mice againsttetanus with recombinant Lactococcus lactis.Nat.Biotechnol.15653-657.
(6)Challacombe,S.J.1983. Salivary antibodies and systemictolerance in mice after oral immunisation with bacterial antigens.Ann.N.Y.Acad.Sci.409177-192.
(7)Driks,A.1999.Bacillus subtilis spore coat.Microbiol.Mol.Biol.Rev.631-20.
(8)Douce,G.,C.Turcotte,I.Cropley,M.Roberts,M.Pizza,M.Domenghini,R. Rappuoli,and G. Dougan.1995.Mutants ofEscherichia coli heat-labile toxin lacking ADP-ribosyltransferase activityact as nontoxic,mucosal adjuvants.Proc.Natl. Acad.Sci.U.S.A.921644-1648.
(9)Hoa,T.T.,L.H.Duc,R.Isticato,L.Baccigalupi,E.Ricca,P.H.Van,and S.M.Cutting.2001.The fate and dissemination of B.subtilis spores in a murine model.Appl.Environ.Microbiol.673819-3823.
权利要求
1.一种用遗传密码进行遗传修饰的芽胞,包括至少一种编码抗原的遗传结构以及作为嵌合基因的芽胞外壳蛋白,所述遗传修饰的芽胞具有所述抗原,其表达为具有所述芽胞外壳蛋白的融合蛋白。
2.根据权利要求1所述的芽胞,其特征在于,所述芽胞是芽胞杆菌属。
3.根据权利要求1或2所述的芽胞,其特征在于,所述遗传结构包括至少部分芽胞外壳蛋白基因和至少部分抗原基因,以嵌合基因的形式。
4.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述抗原基因是位于所述芽胞外壳蛋白基因的3′端。
5.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述遗传结构在所述嵌合基因的5′端包括芽胞外被启动基因。
6.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述抗原至少是破伤风毒素片段C或不稳定毒素B亚单位之一。
7.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述芽胞外壳蛋白是选自由cotA、cotB、cotC、cotD、cotE、cotF、cotG、cotH、cotJA、cotJC、cotM、cotSA、cotS、cotT、cotV、cotW、cotX、cotY、以及cotZ组成的组。
8.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述芽胞被热灭活以致在使用中它不会发芽进入营养细胞。
9.根据前述权利要求中任一权利要求所述的芽胞,用于内科疾病的治疗。
10.一种组合物,包括至少两种不同的如前述权利要求中任一权利要求所述的芽胞,其特征在于,所述至少两种不同的芽胞表达至少两种不同的抗原。
11.根据权利要求10所述的组合物,其特征在于,所述组合物进一步包括药用赋形剂或载体。
12.一种组合物,包括根据权利要求1至9中任一权利要求所述的芽胞,其中所述芽胞与药用赋形剂或载体结合。
13.根据权利要求10至12中任一权利要求所述的组合物,用于内科疾病治疗,优选地,所述内科疾病是炎症、疼痛、激素不平衡、和/或肠障碍。
14.根据权利要求1至9中任一权利要求所述的芽胞在制备用于治疗内科疾病的药剂中的应用,优选地,所述内科疾病是炎症、疼痛、激素不平衡、和/或肠障碍。
15.一种内科治疗方法,所述方法包括以下步骤a)将根据权利要求1至9中任一权利要求所述的芽胞给予需要医疗的人或动物;b)所述遗传修饰的芽胞诱发免疫应答,用于预防疾病。
16.根据权利要求15所述的方法,其特征在于,所述芽胞是口服、鼻内、或直肠给予。
17.一种制备遗传修饰的芽胞的方法,所述方法包括以下步骤制备遗传密码,包括至少一种编码抗原的遗传结构以及作为嵌合基因的芽胞外壳蛋白;利用所述至少一种遗传结构以转化营养母细胞;诱导所述转化的母细胞以形成芽胞;以及分离所述生成的遗传修饰的芽胞。
全文摘要
本发明提供了一种用遗传密码进行遗传修饰的芽胞,包括至少一种编码抗原的遗传结构以及作为嵌合基因的芽胞外壳蛋白,所述遗传修饰的芽胞具有所述抗原,其表达为具有所述芽胞外壳蛋白的融合蛋白。
文档编号A61K48/00GK1639321SQ03805423
公开日2005年7月13日 申请日期2003年3月7日 优先权日2002年3月7日
发明者西蒙·迈克尔·卡廷 申请人:伦敦大学皇家霍洛威学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1