重组芽胞的制作方法

文档序号:1024527阅读:583来源:国知局
专利名称:重组芽胞的制作方法
技术领域
本发明涉及一种芽胞发芽,尤其但非专有地涉及一种细菌的杆状菌种芽胞及其应用。
感染是导致人死亡的首要原因。在过去100年中,环境卫生及接种疫苗对人类健康做出了最重要的贡献,它们的存在显著地减少了因感染性疾病而导致的死亡。
不断改进的接种疫苗策略一直起着至关重要的作用,这主要基于以下几个原因。
第一,可以提供更佳水平的免疫性,从而对抗主要是通过粘膜表面而进入体内的病原体。疫苗通常是通过肠胃外得以提供。然而,许多疾病利用胃肠(GI)道作为主要入口。因而,霍乱和伤寒是通过摄入病原体伤寒沙门菌(Salmonella typhi)和霍乱弧菌(Vibriocholera)并其后在(霍乱弧菌)移殖或穿过粘膜上皮易位(伤寒沙门菌S.typhi)(嵌入胃肠道)所引起。类似地,TB起初是由结核分枝杆菌(Mycobacterium tuberculi)对肺的感染所引起。经注射的免疫法产生血清应答(体液免疫),其包括主要的IgG应答,而IgG应答在预防感染时是较少有效的。这是为何许多疫苗部分有效或给出较短保护时间的一个原因。
第二,提供无针的给药途径。目前接种疫苗程序的一个主要问题是至少需要一次注射(例如,破伤风疫苗)。虽然保护持续10年,但儿童起初要通过注射给予3个剂量,然后每5年要给予加强剂量。在发达国家许多人由于“害怕注射”将不选择采用加强剂量。相反,发展中国家破伤风死亡率较高,原因就在于使用了重复使用过的针头或未经消毒过的针头。
第三,安全性得到改善,副作用被降至最低。许多疫苗由活生物组成,其以某种方式被变得非致病的(被减弱)或被灭活。虽然在原理上,这被认为是安全的,但有证据表明必须开发更安全的方法。例如,在1949年(Kyoto事件)68个儿童因接受受污染的白喉疫苗而致死(Health 1996)。同样,在1995年的Cutter事件中,105个儿童发生脊髓灰质炎。研究发现,脊髓灰质炎疫苗没有用福尔马林进行正确灭活。许多其它疫苗,例如,MMR(麻疹-腮腺炎-风疹)疫苗和百日咳疫苗(Health,1996)受副作用传闻的影响。
第四,为发展中国家提供经济型疫苗,这些国家薄弱的储运设施有碍于免疫计划的有效实施。在疫苗必须进口的发展中国家,需要正确的保存和分配疫苗。对于发展中国家而言,用于在冷冻、适宜的卫生条件下维护疫苗的相关费用是相当巨大的。对某些疫苗而言,如口服脊髓灰质炎疫苗和BCG疫苗,这些疫苗在2-8℃仅存活1年(Health,1996)。现在对发展中国家来说,对能够在环境温度下长期存储的强壮疫苗是首先要考虑的问题。这类疫苗应该具备热稳定性,能够耐受剧烈的温度变化以及干燥的状况。最后,一种易于生产的疫苗将会为发展中国家带来巨大的好处,并且应该具有在该国生产的潜力。
本发明的一个目的在于提供一种芽胞,该芽胞可被遗传修饰从而在其发芽进入营养细胞后可制得一种药物。
因此,本发明提供了一种芽胞,该芽胞是一种经过遗传密码进行遗传修饰的芽胞,该芽胞包括至少一种编码治疗活性的化合物和目标序列或营养细胞蛋白质的基因结构物。
本发明的一个优点在于,使用芽胞给予疫苗将消除对注射的需要以及在发展中国家与针有关的问题。除此之外,芽胞是稳定的并且耐热和干燥,因而克服了在发展中国家存储疫苗的问题。芽胞易于生产,并可以低成本生产,这使根据本发明的疫苗的生产是经济的并且最后,作为非病原体且作为当前使用的口服原生菌(probiotic),与当前疫苗系统相比,使用枯草杆菌(Bacillus subtilis)更为安全。
本发明的另外的优点在于,芽胞在粘膜表面诱发免疫应答。这使该接种疫苗对抗粘膜病原体更有效,例如,伤寒沙门菌、霍乱弧菌、以及结核分枝杆菌。
本发明的另外的优点在于,芽胞在粘膜表面诱发免疫应答。这使该接种疫苗对抗粘膜病原体更有效,例如,伤寒沙门菌、霍乱弧菌、以及结核分枝杆菌。
在粘膜表面释放的疫苗在对抗那些经粘膜途径感染的疾病时将更有效。疫苗给予的粘膜途径可以包括口服、鼻内途径和/或直肠途径。
本发明的另一个优点在于,当给动物服用所述芽胞时,所述芽胞发芽后进入营养细胞,所述营养细胞表达所述嵌合基因,而其中所述嵌合基因包括所述药物和所述蛋白质,其目的是引发对抗所述抗原的免疫应答。
本发明的另一个优点在于,粘膜免疫性可通过枯草杆菌细胞的使用来获得。假设枯草杆菌细胞将必须进行设计,从而增强它们与粘膜的噬菌细胞(巨噬细胞/树状细胞)之间的相互作用。该假设基于的事实是,用异种抗原递呈的某些疫苗系统使用移植(colonising)细菌(诸如乳酸杆菌素或链球菌)进行抗原递送。美国专利5 800 821特别指出,有必要对枯草杆菌细胞中的鼠疫杆菌侵入蛋白质(Inv)进行表达,以便促进它与粘膜之间的相互作用。本发明已经表明该假设是没有理由的,也是没有必要的。
优选地,治疗上有活性的(治疗活性)化合物是抗原或药物或抗原或药物的前体。优选地,该基因结构物是嵌合基因。优选地,芽胞是杆状菌属或梭菌属。
遗传修饰是通过应用本领域技术人员已知的标准方法,使用含有嵌合基因的载体进行母细胞的转化,然后按照本发明引诱母细胞生成芽胞来实现。
基因结构物可在一个或多个、每个或独立的、可诱导的启动基因、启动基因或强大的启动基因或被修饰的启动基因的对照下进行。基因结构物也可以具有一个或多个增强子单元或上游活化剂序列以及与之相关的类似物。
该基因结构物可以包括可诱导的表达系统。该可诱导的表达系统是这样的,即当所述芽胞发芽进入到营养细胞时,除非治疗上有活性的化合物被暴露于诸如pH或药物等外部刺激物,否则它不会被表达出来。
一般而言,芽胞在肠胃发芽。更优选地,芽胞在肠胃的十二指肠和/或空肠发芽。
遗传密码可能包括DNA或cDNA。应当知道,术语遗传密码包括密码子使用的简并性。
令人惊奇的是,口服前没有必要引发芽胞发芽。对于杆状菌种的芽胞而言尤为如此。
服用前,不需对芽胞进行热灭活。
营养细胞仅表达芽胞发芽后得到的嵌合基因产物。这可以通过以下方法来实现,例如制备抗原的基因结构物与仅以营养态表达的蛋白质基因结构物(例如,与蛋白质OppA相关的膜),这种蛋白质不是芽胞外壳蛋白质。
优选地,抗原是破伤风毒素片段C的至少一个片段或不稳定毒素B亚单位。
本发明的这一内容使得抗原被暴露于人或动物体内,从而使所述抗原引起免疫应答。
优选地,该抗原在使用时,适合于引起免疫应答。
所用蛋白质可以是那些仅以营养态表达的蛋白质。蛋白质也可以是那些以细胞屏障表达的蛋白质。
当我们说以细胞屏障表达的蛋白质时,我们是指任何以细胞膜或以与细胞膜相关、或者其细胞内或细胞外所表达的蛋白质(包括脂蛋白和糖蛋白);与细胞膜结合表达的蛋白质,与细胞壁相关、或者在周边空间内,或者在细胞壁外部的蛋白质,或者与细胞壁结合表达的蛋白质。
这样,芽胞可被口服递送给抗原。可选地,也可经由鼻内或直肠途径服用芽胞。
抗原可以是一种具有不同营养细胞蛋白质的嵌合体。通过具有编码抗原的基因结构物,该抗原具有编码一个或多个不同营养蛋白细胞编码的基因结构物,有可能提供一种临时的抗原表达。例如,药物可以被表达为含有营养细胞蛋白质的嵌合体,它始终是这样被表达的,例如,OppA或rrnO,因此,可提供恒定“剂量”的抗原。
可选地,具有抗原编码的基因结构物可有具有营养细胞蛋白质编码的、间歇表达的基因结构物,所以一旦用嵌合体表达,所述嵌合体就能够在时间对照的方式下给予药物。具有药物编码的基因结构物也可以有一个最初在高浓度下表达的营养细胞蛋白质的基因结构物,但是它会随着时间的推移而减少,这样一旦表达,嵌合体就能够服用初始的高剂量抗原。
临时服用剂量可通过使用诸如一种或多种以上的基因结构物而定。
可选地,具有抗原编码的基因结构物可有可溶的、具有细胞质营养细胞蛋白质编码的基因结构物,例如rrnO。
当抗原用具有可溶细胞质蛋白质的嵌合体表达时,所述可溶细胞质蛋白质可以起到将全部嵌合体靶向周边空间,以便靠被动机理(例如扩散)进行随后的分泌。可选地,可溶解蛋白质可通过主动机理靶向嵌合体进行分泌,例如,通过类型I、类型II、或类型III的分泌。
可溶细胞质蛋白质的基因结构物可全部或部分包含信号序列。
根据本发明的第二方面内容,本发明提供了一种芽胞,该芽胞用遗传编码进行了遗传修饰,遗传编码包括具有抗原编码和信号序列的基因结构物,其中所述信号序列适合于将所述抗原靶向(对准)营养细胞的特异性部分。例如,信号序列可指向药物进行分泌,例如主动分泌(类型I、类型II、或类型III的分泌),或通过营养细胞,例如糖基化,进行转译后处理。
营养细胞可在肠胃内细胞溶解,随后作为嵌合体释放出抗原。
当抗原用营养细胞屏障蛋白质表达时,抗原通常会通过紧邻营养细胞的免疫系统引起局部免疫应答。可选地,当抗原用细胞质表达,并且营养细胞随后发生细胞溶解并释放抗原,或者抗原被营养细胞分泌时,所述抗原通常会在比紧邻营养细胞更大的区域引发扩散免疫应答。
根据本发明,可将芽胞进行遗传设计,从而包含一种或多种能够转化生物前体的酶,这样一旦发芽,所述一种或多种酶就被表达出来,并且通过所述生物前体的转化合成一种或多种抗原。例如通过以下方式a)处理生物前体,例如激素。激素可以是一种以营养细胞表达的嵌合蛋白质,例如一种细胞屏障蛋白质,该蛋白质需要后续处理(例如经由酶分裂部位从细胞释放)而被激活,或者b)非蛋白质化合物的生物合成或处理,例如,由可获的生物前体物质合成类固醇激素和解痛剂,或者将前体药物处理存活性药物。
根据本发明这一方面内容,所述芽胞用遗传编码进行了遗传修饰,包括至少一种具有药物和营养细胞蛋白质编码的基因结构物,作为嵌合基因。
药物可以是以下一种或多种a)蛋白质,包括酶、抗原、抗体、激素、或新陈代谢前体;b)疫苗;c)内啡呔及其类似物。
根据本

发明内容
,本发明提供了根据本发明用于内科疾病治疗的芽胞。
根据本

发明内容
,本发明提供了一种组合物,该组合物包括根据本发明的至少两种不同的芽胞,可选地,药用赋形剂,其中所述的至少两种不同的芽胞表达了至少两种不同的抗原或药物,专门用于治疗内科疾病。
根据本

发明内容
,本发明提供了一种制备根据本发明的芽胞用于内科疾病的治疗的药物中的应用。
根据本发明第三方面内容,本发明提供了一种组合物,该组合物包括根据本发明的与药用赋形剂或载体结合的芽胞。
适宜的药用赋形剂,对于本领域技术人员而言是熟知的。
根据本

发明内容
,本发明提供了一种根据本发明的用于内科治疗方法的组合物。
本发明还提供了一种根据本发明的组合物在制备用于治疗内科疾病药物中的应用。
内科治疗的方法可包括内科疾病的治疗,例如治疗某种疾病或服用某种疫苗。根据本发明治疗的内科疾病包括诸如发炎、疼痛、激素失衡、和/或肠紊乱。
根据本

发明内容
,本发明提供了一种内科治疗方法,该方法包括以下步骤a)将根据本发明的芽胞给予需要医疗的人或动物;b)所述芽胞发芽进入肠胃的营养细胞中;
c)所述营养细胞表达治疗活性的化合物,用于内科治疗。
现在仅通过实施例并参照附图对本发明进行描述,其中

图1表明pDG364克隆载体图,图中显示了多个克隆点,catgene以及amyE基因的前后部分。并标明了用于线性化的限制部位;括号中标注了核苷酸位置。
图2示出了双交换重组事件,使用克隆载体pDG364生成部分二倍体。
图3a示出了分级(12%SDS-PAGE)蛋白质的免疫印迹分析。其中用到TTFC的多克隆抗血清。1道,非重组菌株PY79营养细胞,2道,携带amyE∷oppA-TTFC的菌株PY79,3道,提纯的TTFC蛋白质。
图3b表明分级(12%SDS-PAGE)蛋白质的免疫印迹分析,该蛋白质从非重组体PY79芽胞的芽胞表面提取得到(1道),芽胞表示为CotA∷LTB(2道)和提纯的LTB蛋白质。[注解用于2道的菌株具有遗传型amyE∷oppA-TTFC thrC∷cotA-LTB]。
图3c表明将多克隆抗-TTFC血清用于自营养细胞声波处理提取物来的分级蛋白质的免疫印迹分析。1道,非重组体PY79细胞。2道,amyE∷oppA-TTFC thrC∷cotA-LTB细胞和3道;提纯的TTFC蛋白质。
图4表明用重组体枯草杆菌营养细胞进行腹膜内(↑)免疫接种后,抗-TTFC血清IgG的滴度(滴定值)。对8组小鼠的个体标本用ELISA进行TTFC-特异性IgG测试,这些小鼠经过腹膜内免疫接种,具有1×109野生型(●)或表达枯草杆菌细胞(△)的OppA-TTFC。
图5表明用重组体枯草杆菌芽胞进行口服免疫接种后,抗-TTFC血清IgG的滴度。对8组小鼠的个体标本用ELISA进行TTFC-特异性的IgG测试,这些小鼠经过口服(↑)免疫接种,具有1.7×1010野生型(●)或OppA-TTFC重组体枯草杆菌芽胞(△)。同时也测定了首次实验的对照组(○)的血清。当血清经稀释后,其光学密度与全部的前免疫血清经稀释后的1/40相同时,计算出终点滴度。
图6表明用重组体枯草杆菌芽胞进行口服免疫接种后,抗-TTFC血清IgG的滴度。对8组小鼠的个体标本用ELISA进行TTFC-特异性IgG测试,这些小鼠经过口服(↑)免疫接种,具有1.7×1010野生型(●)或OppA-TTFC CotA-LTB重组体枯草杆菌芽胞(△)。同时也测定了首次实验的对照组(○)的血清。当血清经稀释后,其光学密度与全部的前免疫血清经稀释后的1/40相同时,计算出终点滴度。
图7表明用重组体枯草杆菌芽胞进行口服免疫接种后,抗-LTB血清IgG的滴度。对8组的小鼠的个体标本用ELISA进行TTFC-特异性IgG测试,这些小鼠经过口服(↑)免疫接种,具有1.7×1010野生型(●)或OppA-TTFC CotA-LTB重组体枯草杆菌芽胞(△)。同时也测定了首次实验的对照组(○)的血清。当血清经稀释后,其光学密度与全部的前免疫血清经稀释后的1/40相同时,计算出终点滴度。
图8表明在小鼠模型中,营养细胞和GIT芽胞的存活情况。给近亲交配的一组BALB/C小鼠口服一定剂量的营养细胞或枯草杆菌菌株SC2362芽胞。测定指定时间点的排泄物和肠标本的全部活菌计数。A组,2.4×1010营养细胞的口服剂量;B组,2.1×108芽胞的口服剂量。数据用算术平均值表示,误差条表示标准偏差。
图9表明在模拟胃疾病时,营养细胞和芽胞的存活情况。对枯草杆菌的营养细胞、E.大肠杆菌和C.rodentium以及枯草杆菌芽胞(分别从A组至D组)进行模拟胃疾病的治疗(●),在指定时间点,对比未经治疗(ο)的标本,进行存活力的评定。对照原始接种物,进行百分比计数。数据用双重独立试验的算术平均值表示。
图10表明在模拟肠疾病时,营养细胞和芽胞的存活情况。对枯草杆菌的营养细胞、E.coli和C.rodentium以及枯草杆菌芽胞(分别从A组至D组)进行肠模拟疾病的治疗(●),在指定时间点,对比未经治疗(ο)的标本,进行存活力的评定。对照原始接种物,进行百分比计数。数据用双重独立试验的算术平均值表示。
图11表明在模拟肠疾病时,芽胞的发芽情况。在胆汁盐存在(●)或不存在(ο)的情况下,在AGK溶液中对枯草杆菌菌株PY79的芽胞悬浮液进行发芽检查。加入丙氨酸以激发发芽后,在指定时间点进行OD600nm读数,比较原始悬浮液,进行OD读数百分比。数据用双重独立试验的算术平均值表示。
图12表明所示的b-半乳糖甘酶的表达和鉴定。A组用小鼠的抗-β-半乳糖甘酶抗体对在LB中生长的PY97和SC2362(rrnO-lacZ)标本予以标记,然后进行抗鼠IgG-TRITC结合(红色荧光素)。B组分级细胞的考马斯(Coomassie)染色10%SDS-PAGE(上面组)和β-半乳糖甘酶-特异性免疫印记(下面组)分布,该分级细胞从PY79(spo+),SC2362(rrno-lacZ)和DL169(gerD-cwlBDD∷neo rrnO-lacZ)中提取。箭头表示在117kDa预测的mwt处β-半乳糖甘酶。C组用细胞中标明的β-半乳糖甘酶浓度(以mg计)完成Dot blot实验,细胞从菌株PY97(spo+),SC2362(rrno-lacZ)和DL169(gerD-cwlBD D∷neo rrnO-lacZ)中提取。位于左侧(组+)经提纯的β-半乳糖甘酶稀释液(以ng计)被画上点。用到抗-β-半乳糖甘酶初级抗体和二级抗兔过氧化物酶结合的抗体。用ECL目测反应,相关叙述参见实施例2中“材料和方法”部分。
图13表明口服携带rrnO-lacZ基因的芽胞后全身应答。向一组近亲交配的BALB/C小鼠口服2×1010芽胞/剂量或3×1010营养细胞/剂量的枯草杆菌。用ELISA对个体的血清标本进行抗-β-半乳糖甘酶特异性IgG的测试。同时测试也包括首次实验组、非免疫接种组和对照组(ο)的血清,以及下述服用剂量的小鼠,即PY97芽胞(◇)、PY97营养细胞(u)、SC2362芽胞(1)、SC2362营养细胞(n)、DL169芽胞(△)和DL169营养细胞(黑三角形)。数据用算术平均值表示,误差条表示标准偏差。
图14表明抗-β-半乳糖甘酶IgG亚类的分析结果。向一组近亲交配的BALB/C小鼠口服2×1010芽胞/剂量的枯草杆菌菌株SC2362(A组),或3×1010营养细胞/剂量的菌株SC2362(B组),或菌株DL169的营养细胞(C组)。用ELISA对个体的血清标本进行抗-β-半乳糖甘酶特异性IgG1(ο),IgG2a(△)和IgG2b(□)亚类的测试。数据用算术平均值表示,误差条表示标准偏差。
参照以下非限制性实施例对本发明作进一步描述。
实施例1重组基因的构成在以下实施例中,oppA基因用于重组基因的构成。对该基因进行了很好的研究,并形成操纵子的一部分。OppA担当着由寡肽透性酶(Opp)进行初始吸收肽的受体。枯草杆菌中的OppA蛋白质被很好地表达出来,并涉及到活性以及芽胞的形成(称作SpoOK)。
在细胞质膜中,基因序列融合进oppA的3’-端,使重组蛋白质(蛋白质X)得以表达,其中,OppA-蛋白质X被集合至膜中,其C-末端域(携带融合域)被暴露在膜的外面。在革兰氏阳性中,这意味着抗原将被暴露在膜和肽聚糖壁之间的空间里。
因为oppA涉及到芽胞的形成,所以必须以反式对该蛋白质进行修饰以实现完整复制。也就是说,oppA的复制必须在染色体上完整的保留下来。为了做到这一点,我们使用amyE位点(具有淀粉酶编码)携带嵌合基因。因此,重组体oppA-genX嵌合体被置于细胞的amyE位点,该细胞在通常的染色体位置携带有完整的oppA基因(以及opp位置)。可选的位点是thrC,在此有克隆载体。
本发明的优选实施例中,用到革兰氏阳性菌枯草杆菌。对与该有机体相关所作的优秀遗传学研究以及对其基因组的深入研究使得其继埃希氏大肠杆菌之后,成为第二个最多被研究的原核细胞。该有机体被认为是非病原体,并被划分为当前用于人和动物消费原生菌(probiotic)的新型食物。该微生物体简单而明显的特征在于,它能在养分匮乏时生成一种内生芽胞(孢子)作为其发育生命周期的一部分。当成熟的芽胞从母细胞释放出来时,即使不是上千年也能以代谢休眠的形式存活上百年。
a)基因嵌合体的构成i)amyE∷oppA-TTFC.TTFC(破伤风毒素片段C)是由梭菌破伤风菌毒素产生的破伤风毒素47KDa组分。TTFC被融合进oppA中,并在amyE位点被引入。
PCR用于放大i)tetC基因(在载体pTet8中携带)适宜的序列,具有47KDa TTFC片段的编码,ii)oppA基因的5’-区,包括它的启动基因。通过使用3’和5’端的限制消化和结扎来融合oppA和tetC的PCR产物(使用PCR引物中包埋的分裂位点)。然后在多个克隆位点将oppA-TTFC片段克隆进pDG364载体(图1)。
图1表明质粒pDG364,该载体在其它地方已有所描述。该载体的基本特征是amyE基因的右侧臂和左侧臂(称作amyE前部和amyE后部)。应用通常的PCR技术将克隆DNA(即cot-抗原嵌合体)引入多个克隆位点。通过用标识有主链序列的酶(例如PstI)进行消化,使克隆有效,使质粒克隆线性化。线性化DNA目前被用于转化枯草杆菌的活性细胞,使用由质粒(耐氯霉素)携带的抗生素抗性进行选择。如图2所示,线性化质粒将经由双交换重组事件,应用amyE的前侧臂和后侧臂进行集合重组。在该过程中,克隆DNA被引入amyE基因中,同时amyE基因在该过程失活。这个步骤最大程度地减少了对染色体的损害,并且没有削弱细胞的生长和新陈代谢作用,而且也没有阻碍芽胞的形成。
由穿过接合处的DNA序列,载体被线性化,然后使用双交换重组体引入枯草杆菌的染色体这些事实使克隆得以证实(图2)。耐氯霉素的选择与阴性淀粉酶菌落的筛选确保了图2所示的双交换,这在其它地方有所描述。在TTFC存在下,应用TTFC的多克隆抗血清,用图3所示的免疫印迹分析对amyE处携带这种构成的细胞进行测试。
ii)amyE∷oppA-TTFC thrC∷cotA0-LTB。该构造携带了置于amyE与thrC位点处的两种结构。
在这种结构中,我们使用到一种质粒,它携带一种将cotA基因融合进大肠杆菌11kDa不稳定(易变)毒素片段B(LTB)的嵌合体基因融合。应用PCR技术放大LTB和CotA序列,并将它们融合在一起,即构架(frame)上。CotA从芽胞外被的表层对主要的蛋白质65kDa进行编码。第一步,使用载体pDG1664构成CotA-LTB嵌合体。pDG1664类似于pDG364(图1),但它携带耐红霉素基因(erm)。因此,双交换重组事件的选择可通过ErmR的选择来实现。pDG1664的第二个重要特征在于插入用到thrC位点的前后(左右)臂,从而得以完成thrC位点的插入和破裂。应用这种策略,我们制备了thrC∷CotA-LTB细胞,引诱这些细胞形成芽胞,然后用LTB的小鼠多克隆血清检查芽胞外壳蛋白质是否存在CotA-LTB(图3)。芽胞表面上CotA-LTB嵌合体的充分表达一经显示,我们就使用thrC∷CotA-LTB的染色体DNA来转化携带thrC∷CotA-LTB菌株的活性细胞。进行ErmR的选择,转化物将会携带两个嵌合体基因,即oppA-TTFC和CotA-LTB。通过对含有抗-TTFC血清的营养细胞以及含有抗-LTB血清的芽胞外壳蛋白质进行免疫印记(Westernblotting)分析证实了两种嵌合体的存在。
b)多抗原递呈为了在芽胞外被上获得多抗原递呈,有必要使用pDG364或pDG1664质粒载体。用pDG364制得嵌合体基因,并在amyE位点引入嵌合体,用pDG1664制得第二个嵌合体,并在thrC位点将其引入。这个过程可以实现,因为每一个转化事件都需要经历一个独立的耐药性选择。
我们已经应用这种方法表达了芽胞表面的LTB以及营养细胞内的TTFC。该特征具有一定的吸引力,能够用于二价(染色体)接种。可选地,我们可以使用芽胞上的(融合至CotA),也可以使用来自营养细胞(融合至oppA)的TTFC进行表达,从而可以具有更高的剂量。
c)菌株的证实在我们的方法中,对于确定嵌合体基因产物在表面显现,即在细胞的最表层显现的必要性并没有进行论证。(这可以通过使用FACS分析或某些其它类型的流动血细胞计数或应用免疫荧光等方法来实现)。我们的方法假设必须使营养细胞与粘膜之间产生相互作用,并且要这样做,因为只要抗原在表面或接近表面,就能够刺激免疫性。这也包括细胞载体的免疫性,它源于因巨噬细胞或树状细胞而引起的芽胞的吞噬作用。按照我们的理论,抗原被部分保护在细胞膜内实际上是有益的。经由粘膜免疫所显示的免疫原性足以进行进一步研制。
d)肠胃外免疫接种实施了两种免疫接种。首先,用以OppA-TTFC表达的福尔马林失活细胞(约5×109)对黑色C57近亲交配小鼠(8组)的腹膜内进行免疫接种。图5表明了因这些免疫接种导致的血清IgG水平,并显示出OppA-TTFC嵌合体的成功显现和免疫原性。为了证实携带OppA-TTFC和CotA-LTB双构造的免疫原性,我们制备了芽胞和营养细胞,并通过IP途径对8组小鼠进行免疫,紧接着观察免疫应答。再一次通过两种途径获取了较高的血清IgG水平。
e)粘膜免疫为了获得粘膜免疫,我们让8组近亲交配的黑色C57小鼠口服一定剂量。图5-7示出了一些实施例。
首先,口服以OppA-TTFC表达的高浓度芽胞(1.7×1010)(图5)。如图所示,我们能够在基本受保护的水平下获得血清抗-TTFC特异性IgG应答(通常用高于103的滴度来反映)。能够获得IgG应答的唯一方法是看是否产生了能够导致免疫的相当水平的芽胞发芽。
第二,给小鼠口服一定剂量的携带CotA-LTB和OppA-TTFC的芽胞(图6和图7),结果显示,它相对于LTB和TTFC都具有较高的血清IgG水平。这表明多抗原能够被显现出来,并被用于产生免疫性,这为二价疫苗的开发工作开辟了道路。
其它应用1)该策略能够用于显示生物活性分子。例如,用于工业应用的酶。
2)根据本发明的芽胞也可以和佐剂一起使用以便增强发芽细胞的免疫应答。这些佐剂可以包括霍乱毒素、壳聚糖、或抑肽酶。
以芽胞表达的芽胞外壳蛋白质可与以营养细胞表达的细胞膜蛋白质相结合。即,我们不仅限于CotA或OppA。我们所确定的以芽胞外被表达的初级候选者包括CotA、CotB、CotC、CotD、CotE和CotG。
其它细胞表面递呈(表达)途径我们已经用OppA蛋白质作为实施例来递呈,这主要是基于易于使用和高含量的表达。也可以使用其它细胞膜蛋白质,包括涉及趋化性、溶质吸收等的蛋白质。唯一的原则是i)抗原能被融合进蛋白质的暴露区域,ii)蛋白质在膜上的含量高。
要使用这类蛋白质,就需要有经验方法,系统尝试着一次递呈一个。另一个方法是使用与细胞膜肽聚糖结合的蛋白质,即,壁本身。在许多革兰氏阳性中,有一组“细胞壁锚固(wall-anchored)的表面蛋白质”,共价附着在细胞壁的细胞质膜和肽聚糖。
实施例2菌株在本文其它地方已经对SC2362有所描述[1],它携带rrnO-lacZ基因以及具有耐氯霉素(5mg/ml)编码的cat基因。rrnO是一种具有rRNA编码的生长性表达基因。在该菌株中,携带启动基因的rrnO的5’-区域已经被融合进E.大肠杆菌的lacZ基因。PY79是SC2362的原养型和同基因的前体,是Spo+[2]。通过SC2362来转化含有染色体DNA的菌株TB1的活性细胞(gerD-cwlB D∷neo)从而创造出DL169(rrnO-lacz gerD-cwlB D∷neo),然后对由rrnO-lacZ暗盒(cassette)携带的耐氯霉素进行选择。TB1具有由耐新霉素取代的染色体gerD-cwlD区,与同基因野生型菌株PY79相比,我们发现该菌株芽胞的发芽率已降到0.0015%(E.Ricca;personnal comm..)。
芽胞和营养细胞的制备应用本文别处[3]所述的衰竭方法在DSM(Difco-芽胞形成培养基)培养基中进行芽胞形成。在芽胞形成引发22小时后,收获芽胞形成培养物。按照Nicholson和Setlow[3]所述,应用溶解酵素处理方法分离残余的芽胞囊细胞,紧接着依次在1M NaCl、1M KCl、和水(2次)中洗涤从而制备提纯的芽胞悬浮液。洗涤中包括PMSF(10mM)以便抑制蛋白质水解。经过在水中的最后悬浮,在68℃下对芽胞处理1小时,从而杀死残余的细胞。接着,在-20℃冷冻等分试样前,立即滴定芽胞悬浮物得到cfu/ml值。
在含有5%D-葡萄糖和0.2%L-谷氨酸盐的LB中生长,直至OD600nm相当于大约109cfu/ml时,制得营养型枯草杆菌细胞,然后立即使用。在这样的条件下生长会阻止无意的芽胞形成[4]。
对排泄物和肠组织中的活细菌进行分析为了防止食粪,将小鼠分别圈在带有格栅的笼子里进行排泄物计数。在适宜的时间收集所有的排泄物,并且将连续稀释液在含有氯霉素(5mg/ml)和Xgal(DSMCX)的DSM(Difco-芽胞形成培养基;[5])琼脂平皿中进行平皿接种之前,将其在PBS中均质化,从而选择出SC2362细胞。从牺牲的小鼠中回收肠组织,并且将连续稀释液在DSMCX进行平皿接种之前,使用玻璃珠(0.5mm;4×30秒释放,4℃)在PBS中均质化。
模拟GIT条件细菌在LB培养基中生长,直至成为细胞密度相当于约109细胞/ml的细菌为止,在模拟的胃液(1mg/ml胃蛋白酶{猪的胃粘膜,Sigma},pH2.0)或小肠液(0.2%胆汁盐{50%胆酸钠∶50%脱氧胆酸钠;Sigma},pH7.4)中收获并悬浮。悬浮物在37℃进行温育,取下标本,连续稀释,在LB琼脂平皿上进行平皿接种cfu/ml。
间接ELISA法检测b-半牛乳糖苷酶特异性血清抗体将50ml/孔的提纯的b-牛乳糖(Sigma,2mg/ml碳酸盐/重碳酸盐缓冲液)涂布在平皿上,置于室温过夜。在37℃用PBS的2%BSA阻断1小时后,应用血清标本,使用2倍稀释序列,起始于1/40稀释的ELISA稀释缓冲液(0.1M Tris-HCl,pH7.4;3%(w/v)NaCl;0.5%(w/v)BSA;10%(v/v)绵羊血清(Sigma);0.1%(v/v)Triton-X-100;0.05%(v/v)Tween-20)。每个平皿载有阴性对照(1/40稀释的预先免疫血清)以及阳性对照(小鼠的抗-b-半牛乳糖苷酶(Sigma))的复制孔。在加入抗-小鼠HRP结合物(Sigma)前,在37℃温育平皿2小时。在37℃下再温育平皿1小时,使用底物TMB(3,3’,5,5’-四甲基-联苯胺;Sigma)生长。用2M H2SO4中止反应。画出每个标本的稀释曲线,当稀释生成的光学密度与全部前免疫血清稀释液的1/40相同时,计算终点滴度。通过Mann-WhitneyU实验对各组之间进行统计比较。P值>0.05可视为不显著。为了测量排泄物IgA,按照前述[6]完成相似的ELISA方案。使用2倍连续稀释来应用标本,起始于PBS/2%BSA/0.05%Tween20中未稀释的排泄物提取物。当稀释生成与未经稀释的预先免疫排泄物提取物的光学密度相同时,计算终点滴度。终点滴度为6或更大时,被视为“阳性”。
芽胞外壳蛋白质和营养细胞溶解产物的提取芽胞外壳蛋白质从高密度(1×1010芽胞/ml)菌株芽胞PY79悬浮液中提取,使用如别处详细描述的SDS-DTT提取缓冲液[3]。对于营养细胞溶解产物而言,菌株PY79在LB培养基中生长为1.5的OD600nm,洗涤细胞悬浮液,然后用声波降解法进行细胞溶解,接着进行高速离心过滤。提取得到的蛋白质用SDS-PAGE法进行完整性评价,并用BioRad DC蛋白质试剂盒进行浓度评价。
免疫性给8组小鼠(雌性,BALB/C,8周)口服芽胞悬浮液(0.2ml)或菌株PY79、SC2362、或DL169的营养细胞。使用氟烷轻微地麻醉小鼠。这其中也包括首次实验的非免疫对照组。用胃内强饲法,分别在第0、1、2、20、21、22、41、42、和43天实施口服免疫。在第-1、18、40、和60天收集血清标本,并在第-1、18、40、和58天收集新鲜的粪粒。排泄物标本(0.1g)在4℃下于PBS/1%BSA/1mM PMSF(苯甲基磺酰氟,Sigma)中过夜温育,然后旋转以便破坏所有的固体物质,并于13,000rpm下离心10分钟。在-20℃下保存血清和排泄物的提取物,直至需要时为止。
免疫荧光显微镜检查枯草杆菌菌株(PY79和SC2362)在LB培养基中生长为mid-log。用2.4%(w/v)的多聚甲醛、0.04%戊二醛和0.03M Na-PO4的缓冲液PH7.5(最终浓度),在室温下在原位固定标本10分钟,然后在冰中固定50分钟。固定的细菌于室温下在PH7.4的PBS中洗涤三次,然后在GTE-溶菌酶(50mM葡萄糖,20mM Tris-HCl PH7.5,10mM EDTA,溶菌酶2mg/ml)中重新悬浮。在已经过0.01%(w/v)聚-L-赖氨酸(Sigma)处理的显微镜防护玻璃(BDH)上立即施加等分试样(10ml)。4分钟后,液体被防护玻璃闭塞,从而使其在室温下彻底干燥2小时。在PH7.4的PBS中洗涤玻璃3次,在室温下与含有2%BSA的PBS阻断15分钟,然后再洗涤9次。在室温下,用1∶200稀释比的初级抗体(小鼠-抗-b-半乳糖苷酶)对样本标记45分钟,洗涤3次,再进一步在室温下用抗-小鼠IgG-TRITC结合物(Sigma)进行温育45分钟。洗涤3次后,防护玻璃被安装至显微镜幻灯片中,在装配有BioRad辐射2100激光扫描系统的Nikon Eclipse萤光显微镜下观察。使用LaserSharp软件拍摄图像,并用Confocal Assistant程序进行处理。激光功率为30%Green HeNe,扫描速度为50lps。图像尺寸为10×10mm。
结果胃肠道中枯草杆菌的存活情况作为经由口服途径进行不同抗体递送而培养芽胞的第一步,我们就鼠科模型胃肠道中存在的枯草杆菌营养细胞和芽胞的生存情况予以评价。为了评价营养细胞的强壮性,我们接种了2组近亲交配的小鼠(Balb/c),每组提供单一剂量为2.4×1010营养细胞的菌株SC2362(rrnO-lacZ)。对1组有6只小鼠的SC2362存活计数的数目进行了评定,该SC2362存在于独立圈住的小鼠经剂量服用后,前24小时收集到的排泄物中(参见图8A)。在该研究中,rrnO-lacZ标记使得对于使用Lac+显型和耐氯霉素(由cat基因编码并由rrnO-lacZ构成携带)的存活群体的鉴别和筛选工作变得简化。SC2362的最大计数,即相当于原始剂量0.00016%,在服用6小时后被发现,之后在第24小时,它们已迅速下降至一个可忽略的水平。由前24小时排泄物中收回的SC2362平均累计计数相当于接种剂量的0.00025%。在第二组小鼠中(12只动物),其中2只于第3,6、9、12、18、和24小时被杀死(牺牲),取出小肠和大肠,使其均质化,并平皿培养,对SC2362存活单元计数。如图8A所示,在小肠中发现极低数目的SC2362,其最大计数在第3小时发现(约100)。较高计数(0.00016%接种剂量)于第3小时在大肠中发现,但是这些计数随后就开始下降。
为了检验芽胞的存活力,我们进行了与以上所述相似的实验,但是每只小鼠的口服剂量为2.1×108芽胞的菌株SC2362(参见图8B)。我们的化验技术与过去研究[7]的区别在于,在平皿培养前没有对排泄物予以加热处理,因此,计数包括芽胞以及发芽芽胞(营养细胞)。1组6只小鼠的排泄物计数表明,第6小时排泄物中存在的存活SC2362的数目巨大,最高水平在第12小时(~12%接种剂量)出现。在第24小时,排泄物中仍然存在相当数量的SC2362计数(~4%)。小肠与大肠中的计数表明,其动力学与服用营养细菌(第3小时为最大计数)的动力学相似,但是却具有明显地更高水平的存活单元。1组5只小鼠也被用于首次实验的对照,检验其中1只小鼠的排泄物计数,并在适宜的时间点检验其它4只小鼠的小肠与大肠计数。每种情形下,都没有收回验证我们化验技术的计数。
模拟GIT环境下枯草杆菌的存活情况下面我们会问,用生物体外化验方法,在GIT环境下,什么条件会对营养枯草杆菌和完整芽胞的存活都产生影响。基于过去模拟GIT条件的研究[8-12],我们又创造了两种环境,即,胃与小肠。胃中发现的模拟条件包括LB培养基中pH2.0的胃蛋白酶(1mg/ml),对于小肠,则为LB中pH7.4含有胰酶(1mg/ml)的0.2%胆汁盐。为了评价存活的芽胞,用PBS替代LB,这是因为营养富集的LB培养基可能会促进芽胞发芽。对于约108-109cfu/ml处营养枯草杆菌细胞或芽胞的菌株SC2362悬浮液,于37℃在模拟胃或小肠条件下温育,通过平皿培养法测定存活力,并测定cfu/ml。
我们也将两个肠菌种包括进来作为对照,即E.大肠杆菌(菌株BL21)和Citrobacter rodentium(ATCC 51459),后者是影响小肠的小鼠病原体[13]。如图9所示,模拟的胃条件导致枯草杆菌(图9A)、E.大肠杆菌(图9B)和C.rodentium(图9C)的营养细胞存活力明显下降,1小时内存活能力几乎完全丧失。但是芽胞基本不受影响(图9D)。但却发现小肠中的胆汁盐对枯草杆菌营养细胞的存活能力具有巨大影响,第1小时后,原始接种体中仅有0.0002%存活(图10A)。可是E.大肠杆菌和C.rodentium却没有受到影响,它们能够在这样的条件下生长,并且细胞数目有适度增加(图10B和C)。但是对枯草杆菌的影响主要是由于胆汁盐所致,这是因为在胰酶存在的情况下,细胞存活力仍然被极大地降至几乎与前相同的水平(数据未显示)。最后,胆汁盐似乎对完整的芽胞没有影响(图10D)。
模拟肠条件下的芽胞发芽芽胞一旦进入十二指肠就显示出发芽现象[1,7]。因为这个区域富集胆汁盐,我们的工作已经表明胆汁盐对细胞存活力有影响,因此我们想知道是什么因素使胆汁盐对芽胞发芽产生影响。应用已经建立起来的程序[3],我们对存在或不存在0.2%胆汁盐时的发芽情况分别进行了评价。在称之为AGK(丙胺酸-葡萄糖-KCl)的特异性发芽的情况下,于37℃下温育纯芽胞的悬浮物(野生型菌株PY79)。加入10mM(最终浓度)L-丙胺酸激发芽胞发芽,记取OD600nm读数(图11)。随着芽胞发芽的进行,OD不断下降,这是因为亮相位的芽胞损失了折射能力,并且长出[14,15]。我们的结果(重复2次)显示,在AGK存在时,芽胞发芽极为快速,前90分钟OD600nm降低32.4%。尽管在0.2%胆汁盐存在下,芽胞发芽被抑制,但并没有消失,90分钟内OD600nm降低42.8%。这种对芽胞发芽的影响,我们在前面已经观察到[16],它与我们在此更为详尽地发现相一致。在该工作中(未显示),我们已经观察到在模拟胃的条件下,芽胞发芽没有受到影响(即,它们不会发芽)。
作为抗原递送载体的芽胞我们此处的研究表明,芽胞在经过胃屏障时可很好地存活下来。为了强调芽胞是否能用于不同抗原的递送,我们用到由SC2362携带的rrnO-lacZ基因。rrnO-lacZ本身是嵌合基因,含有融合进E.大肠杆菌lacZ基因的较强的sA-可识别rrnO启动基因[1]。作为一种对照手段,我们构造了一种发芽突变体,DL169,它携带rrnO-lacZ以及对芽胞发芽起重要作用的有一定缺失(gerD-cwlB D∷neo)的染色体gerD-cwlB区域。携带gerD-cwlB缺失的芽胞,其发芽能力被严重地削弱(降至野生型芽胞的0.0015%)(E.Ricca,pers.comm.)。我们已证实,使用抗β-半乳糖苷酶的多克隆血清,通过荧光免疫,lacZ以SC2362营养细胞的形式被表达,如图12A所示。在同基因野生型菌株PY79中没有发现可检测的表达。对SC2362和DL169细胞进行分级全细胞提取物的SDS-PAGE分析(图12),结果揭示出相当于β-半乳糖苷酶尺寸的117kD主频带。用多克隆抗β-半乳糖苷酶抗体进行免疫印记分析,结果确认了这一点,并表明有许多高mwt.但没有明显降解的分解产物。
通过点印迹实验,使用提纯的β-半乳糖苷酶(Sigma)以及枯草杆菌菌株PY79、SC2362、和DL169的全细胞提取物的连续稀释物,得到反映出rrnO-lacZ以SC2362细胞表达的β-半乳糖苷酶的定量测定结果(图5C)。蛋白质与抗β-半乳糖苷酶多克隆抗体反应,然后与碱性磷酸结合的二级抗体反应,用BCIP/NBT或ECL系统(Bio-Rad)着色。光密度分析表明,PY79细胞中没有检测到β-半乳糖苷酶。在SC2362和DL169细胞提取物中,β-半乳糖苷酶的量等同于SC2362全部提取蛋白质的3.14%(31.4ng/mg),等同于DL169全部提取蛋白质的2.4%(24ng/mg)(平均为0.43mg)。通过SDS-PAGE分析,确认这些菌株中生成了高含量β-半乳糖苷酶(参见图12B),同时也表明不同基因表达式的rrnO启动基因的功效。
口服载有rrnO-lacZ的芽胞后血清抗β-半乳糖苷酶的应答给7组近亲交配的小鼠口服SC2362、DL169或PY79的芽胞或营养细胞。我们使用前面经口服免疫优化后所采取的剂量[6],每种免疫剂量或者含有2×1010芽胞,或者含有3×1010营养细胞。通过光密度分析(参见上述标题为“作为抗原递送载体的芽胞”部分),我们能够确定每剂量的SC2362或DL169营养细胞含有大约0.43mg的β-半乳糖苷酶。
用ELISA对血清样本进行抗-β-半乳糖苷酶IgG分析(图13),作为对照,我们也对1组7只未免疫的小鼠采样分析。如图13所示,对于那些用SC2362(rrnO-lacZ)芽胞进行口服免疫的小鼠来说,其终点滴度明显高于(P<0.05)那些服用非重组芽胞(PY79)的,或者自40天后那些受控的首次实验组的。尽管DL169芽胞无法在免疫的小鼠体内生成血清转化,同时抗-β-半乳糖苷酶滴度不能明显(P>0.05)与那些服用非重组芽胞(PY79)的、或者那些受控的首次实验组的相区别。这清楚地表明,经口服后,一部分SC2362芽胞一定已经发芽,导致随后的rrnO-lacZ表达。服用DL169芽胞后未能产生这些应答,这证明芽胞发芽对于产生这种体液应答是必要的。在该阶段,我们不关心抗体应答的程度,但宁愿证明芽胞发芽能用于抗体递送。将每个菌株的营养细胞所获得的免疫性结合起来用于对照,令我们有些惊讶的是,在服用SC2362或DL169细胞的小鼠体内检测到抗-β-半乳糖苷酶IgG应答。应答程度类似于服用SC2362芽胞后所达到的程度(图13),应答的相似性可能意味着当使用该剂量方案并以β-半乳糖苷酶作为免疫原时,极限水平已经达到。
检验那些经由SC2362芽胞(图14A)、SC2362营养细胞(图14B)和DL169营养细胞(图14C)免疫的小鼠血清,判断是否存在β-半乳糖苷酶-特异性IgG1、IgG2a、和IgG2b亚类。用SC2362或DL169的营养细胞免疫,结果显示,在第20天从IgG2a首次检测到亚类,然后IgG1的逐渐增加。服用SC2362芽胞后,IgG1和IgG2a的均有早期增加。在这三种情况中,IgG2b的有较为缓慢地增加。
口服载有rrnO-lacZ的芽胞后粘膜抗-β-半乳糖苷酶的应答8只小鼠中仅有1只接受SC2362芽胞的小鼠在第58天给出16.8的阳性(positive)滴度。在这一组中,用同样菌株营养细胞免疫,其抗-b-半乳糖苷酶特异性排泄物IgA水平较高,8只小鼠中有3只、1只和4只分别在第18天、40天和50天产生阳性反应(数据未显示)。最后,用DL169芽胞免疫的那组小鼠没有给出阳性反应,用DL169营养细胞免疫的小鼠仅在第18天给出阳性反应。而其它组的均没有发现阳性滴度。
讨论实施例2的目的是对作为口服疫苗递送系统的枯草杆菌芽胞进行评价。我们的推理基于几个特性,这些特性能使芽胞成为特别有前途的疫苗载体物。首先,它们可用做人和动物当前使用的原生菌。第二,它们通常是能在土壤中发现的非病原微生物。第三,作为健壮和睡眠状态的生命形式,它们适于以干燥(芽胞)形式长期保存。第四,作为典型单细胞分化(芽胞形成)生物体,对本生物体的遗传分析是首屈一指的,并为卓越的克隆技术所支持。最后,当以芽胞状态口服时,该生物体在被排泄前,能够在小肠中发芽并经历有限轮(rounds)的复制和细胞生长。基于在GIT中芽胞发芽的能力,我们已经调查了发芽芽胞作为不同抗原递送时的机理。我们方法的逻辑性和新颖性在于,芽胞可能会在经过胃时存活,之后会发芽,然后在营养(生长)阶段表达不同的抗原。
在评价特异性体液应答前,我们评估了芽胞以及GIT管道中营养细胞的存活情况。对小鼠采用体内分析,我们发现,当在24小时后的有最多排泄物时给予口服,芽胞基本不受影响。与此相反,在小鼠的GIT中,营养枯草杆菌细胞有着非常低的存活力。作为一个接近值,我们估计有不到0.0005%的营养细胞在经过GIT时能存活。胃有可能成为营养枯草杆菌的第一个并且是最严重的障碍,这一点可从小肠中回收到的极其低的存活计数水平获得支持。对于那些确实存活的细菌来说,它们似乎在服用后的前3个小时内已经穿过胃,并且在截至第6个小时后在排泄物中出现。
我们支持这些体外化验的观察结果,其中对芽胞或营养细胞存活情况的评价在模仿胃或小肠的模拟条件下进行。这些结果显示,对于营养枯草杆菌而言,在胃中或小肠中长期存活的机会是有限的。模拟的胃环境似乎呈现出不利的环境,这不仅对枯草杆菌如此,而且对其它诸如E.大肠杆菌和C.rodentium等肠细菌而言亦是如此。对于枯草杆菌来说,可以从我们对小肠组织的直接计数实验中反映出来,其中清楚地表明,在经过胃的时候,有一定百分比的细胞已经存活。在活的有机体内,推测起来是受凝集和聚集、经过时间以及胃的组成等因素的影响。对于枯草杆菌来说,由胆汁盐的影响所构成的第二个障碍是在其从胃中退出时出现的,由此会确定几乎没有存活,这一点可由上述的体内实验获得支持,在其中,我们估计有不到0.0005%的营养细菌在经过GIT时能存活。芽胞,正如所预期的,能够在这种苛刻的条件下不受有害影响而存活下来。
胆汁盐对枯草杆菌的影响表明,这种生物体无法在GIT中长期存活,这一点与肠细菌正好相反。胆汁盐对芽胞和营养细胞的影响令人觉得有趣。在对营养细胞杀菌的同时,它们对芽胞的影响是适度的发芽抑制作用。因此,从胃中出来的芽胞会在初期被抑制发芽,但是对于那些确已发芽的芽胞而言,将会被杀死。尽管存在着相反的效果,但这些可通过肠内腔的精确组成以及自胃中出来后经过的距离进行调整。
我们已经使用β-半乳糖苷酶作为典型抗原来评价我们的疫苗假设,因为该蛋白质已经被成功地用于评价新的疫苗递送系统中[17,18]。我们对口服芽胞后全身的抗-β-半乳糖苷酶IgG应答进行分析,结果证明芽胞其实能够发芽,并且能够合成充足的免疫原从而产生所观察到的血清转化。这就验证了我们的假设,并表明芽胞作为疫苗载体物的潜力。我们已经表明一部分芽胞能够在小肠中发芽,并且可能进入该区域的GALT。可选地,完整的芽胞会经过GALT内的粘膜并发芽(例如,在Peyer的Patches中)。小尺寸(1-1.2微米)芽胞颗粒使得其具备明显的可能性,因为它们小得足够被M细胞吸收。
产生的分泌IgA应答明显地有益于粘膜疫苗,并且在本次初步研究中,虽然有些小鼠确实有应答,但是对β-半乳糖苷酶的局部反应是较低的。最有可能的是,这反映了β-半乳糖苷酶极其低的免疫性,但也可能反映了剂量方案。令人饶有兴趣的是,当营养细胞用于抗原递送时,我们获得了类似的应答。这些都被用于对照,尽管存在着这样的事实,即,我们预测胃中几乎有100%的细胞死亡,充足的β-半乳糖苷酶能够被递送从而生成观察到的抗-β-半乳糖苷酶IgG滴度。我们可以估计到大约0.43mg口服剂量的抗原被服用9次。推测起来,我们观察到的应答来自于完整的营养细胞,这些营养细胞已经过胃并进入了小肠,它负责产生口服抗原后的体液应答。我们不能根据本研究就说被杀死的枯草杆菌细胞是否能够产生所观察到的体液应答,但是我们能够预测,不论细胞是活着还是死亡都无关紧要。乍一看,似乎觉得为什么芽胞状态是有利的并不太明显,这是因为两种形式都能引起局部和全身的应答。但是芽胞态具有能在环境温度下,以干燥状态长期保存(也许几十年)的好处。
参考文献[1]Casula,G.and S.M.Cutting.B acillus ProbioticsSporeGermination in the Gastrointestinal Tract.Applied and EnvironmentalMicrobiology 2002;682344-2352. Youngman,P.,J.Perkins,and R.Losick.Construction of acloning site near oneend of Tn917 into which foreign DNA may beinserted without affecting transposition in Bacillus subtilis or expressionof the transposon-borne erm gene.Plasmid 1984;121-9. Nicholson,W.L.and P.Setlow,Sporulation,germination andoutgrowth.,in Molecular Biological Methods for Bacillus.,C.R.Harwood.and S.M.Cutting.,Editors.1990,John Wiley & Sons Ltd.Chichester,UK.p.391-450. Schaeffer,P.,J.Millet,and J.Aubert.Catabolic repression ofbacterial sporulation.Proceedings of the National Academy of SciencesUSA 1965;54704-711. Cutting,S.M.and P.B.Vander-Horn,Genetic Analysis,inMolecular Biological Methods for Bacillus,C.R.Harwood and S.M.Cutting,Editors.1990,John Wiley & Sons Ltd.Chichester,England.p.27-74. Robinson,K.,et al.Oral vaccination of mice against tetanus withrecombinant Lactococcus lactis.Nature Biotechnology 1997;15653-657. Hoa,T.T.,et al.The Fate and Dissemination of B.subtilis sporesin a murine model.Applied and Environmental Microbiology 2001;673819-3823. Almirall,M.and E.Esteve-Garcia.The stability of a b-glucanasepreparation from Trichoderma longibrachiatum and its effect in a barleybased diet fed to broiler chicks.Animal Feed Science & Technology1995;54149-158. Araujo,A.H.,et al.In vitro digestibility of globulins fromcowpea(Vigna unguiculata)and xerophitic algaroba(Prosopsis juliflora)seeds by mammalian digestive proteinasesa comparative study.FoodChemistry 2002;78143-147. Aungst,B.J.and S.Phang.Metabolism of a neurotensin(8-13)analog by intestinal and nasal enzymes,and approaches to stabilize thispeptide at these absorption sites.International Journal of Pharmaceutics1994;11795-100. Freund,O.,et al.In vitro and in vivo stability of newmultilamellar vesicles.Life Sciences 2000;67411-419. Lebet,V.,E.Arrigoni,and R.Amado.Digestion procedureusing mammalian enzymes to obtain substrates for in vitro fermentationstudies.Lebensm.Wiss.u.Technol.1998;31509-515. Higgins,L.M.,et al.Citrobacter rodentium infection in miceelicits a mucosal Thl cytokine response and lesions similar to those inmurine inflammatory bowel disease.Infect.Immun.1999;673031-3039. Higgins,L.M.,et al.Citrobacter rodentium infection in miceelicits a mucosal Thl cytokine response and lesions similar to those inmurine inflammatory bowel disease.Infect.Immun.1999;673031-3039. James,W.and J.Mandelstam.spoVIC,a new sporulation locusin Bacillus subtilis affecting spore coats,germination and the rate ofsporulation.Journal of General Microbiology 1985;1312409-2419. Spinosa,M.R.,et al.On the fate of ingested Bacillus spores.Research in Microbiology 2000;151361-368. Barletta,R.G.,et al.Recombinant BCG as a candidate oralvaccine vector.Research in Microbiology 1990;141931-939. Gheradi,M.M.and M.Esteban.Mucosal and systemic immuneresponses induced after oral delivery of vaccinia virus recombinants.Vaccine 1999;171074-1083.
权利要求
1.一种用遗传密码进行遗传修饰的芽胞,所述芽胞包括至少一种编码治疗活性的化合物和目标序列或营养细胞蛋白质的基因结构物。
2.根据权利要求1所述的芽胞,其特征在于,所述治疗活性的化合物是抗原或药物或抗原或药物的前体。
3.根据权利要求1或2所述的芽胞,其特征在于,所述基因结构物是嵌合基因。
4.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述芽胞是杆状菌属或梭菌属。
5.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述遗传修饰是通过使用含有基因结构物的载体进行母细胞的转化,然后引诱所述母细胞生成前述权利要求中任一权利要求所述的芽胞来实现。
6.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述基因结构物可在一个或多个、每个或独立的、可诱导的启动基因、启动基因或强大的启动基因或被修饰的启动基因的对照下进行。
7.根据权利要求6所述的芽胞,其特征在于,所述基因结构物具有增强子单元或与其结合的上游活化剂序列。
8.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述结构物包括可诱导的表达系统。
9.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述芽胞在人或动物肠胃的十二指肠和/或空肠发芽。
10.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述治疗活性的化合物是抗原,所述抗原在使用时,适合于引起免疫应答。
11.根据权利要求10所述的芽胞,其特征在于,所述抗原是破伤风毒素片段C的至少一个片段或不稳定毒素B亚单位。
12.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述蛋白质是那些以细胞屏障表达的蛋白质。
13.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述蛋白质始终以营养细胞表达。
14.根据权利要求13所述的芽胞,其特征在于,所述蛋白质是OppA或rmO。
15.根据权利要求1至12中任一权利要求所述的芽胞,其特征在于,所述蛋白质间歇地以营养细胞表达。
16.根据权利要求1至11中任一权利要求所述的芽胞,其特征在于,所述蛋白质是可溶性细胞质营养细胞蛋白质。
17.根据权利要求16所述的芽胞,其特征在于,所述蛋白质是rrnO。
18.根据权利要求16或17所述的芽胞,其特征在于,可溶性细胞质蛋白质的基因结构物全部或部分包括信号序列。
19.根据权利要求1至11中任一权利要求所述的芽胞,其特征在于,所述信号序列适合于将所述治疗活性的化合物靶向所述营养细胞的特异性部分。
20.根据权利要求19所述的芽胞,其特征在于,所述信号序列指示用于分泌的所述治疗活性的化合物(优选的是主动分泌,更优选的是类型I、类型II、或类型III的分泌),或通过营养细胞进行转译后处理(优选的是糖基化)。
21.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述治疗活性的化合物是抗原前体,其是指一种或多种能够转化生物前体的酶,这样一旦发芽,所述一种或多种酶就被表达出来,并且通过所述生物前体的转化合成一种或多种抗原。
22.根据权利要求21所述的芽胞,其特征在于,所述生物前体是激素、类固醇激素、解痛剂、或前体药物。
23.根据权利要求1至20中任一权利要求所述的芽胞,其特征在于,所述治疗活性的化合物是药物,所述药物是蛋白质、疫苗、或内啡呔。
24.根据前述权利要求中任一权利要求所述的芽胞,其特征在于,它可用于内科疾病的治疗,优选地,所述内科疾病是发炎、疼痛、激素失衡、和/或肠紊乱。
25.一种组合物,包括至少两种不同的根据前述权利要求中任一权利要求所述的芽胞,其特征在于,所述至少两种不同的芽胞表达至少两种不同的治疗活性的化合物。
26.根据权利要求25所述的组合物,其特征在于,所述组合物进一步包括药用赋形剂或载体。
27.一种组合物,包括根据权利要求1至24中任一权利要求所述的芽胞,其与药用赋形剂或载体结合。
28.根据权利要求25至27中任一权利要求所述的组合物,其可用于内科疾病治疗,优选地,所述内科疾病是发炎、疼痛、激素失衡、和/或肠紊乱。
29.一种制备根据权利要求1至24中任一权利要求所述的芽胞在用于治疗内科疾病药物上的应用,优选地,所述内科疾病是发炎、疼痛、激素失衡、和/或肠紊乱。
30.一种内科治疗的方法,所述方法包括以下步骤a)将根据权利要求1至24中任一权利要求所述的芽胞给予需要医疗的人或动物;b)所述芽胞发芽进入肠胃的营养细胞中;c)所述营养细胞表达治疗活性的化合物,用于所述内科治疗。
31.根据权利要求30所述的方法,其特征在于,所述芽胞是口服、鼻内、或直肠给予。
全文摘要
本发明提供了一种用遗传密码进行遗传修饰的芽胞,该芽胞包括至少一种编码治疗活性的化合物和目标序列或营养细胞蛋白质的基因结构物。
文档编号A61K48/00GK1639322SQ03805424
公开日2005年7月13日 申请日期2003年3月7日 优先权日2002年3月7日
发明者西蒙·迈克尔·卡廷 申请人:伦敦大学皇家霍洛威学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1